Reinstatement of Phascolosoma (Phascolosoma) varians Keferstein, 1865 (Sipuncula: Phascolosomatidae) based on morphological and molecular data Itzahí Silva-Morales1 ¹Departamento de Sistemática y Ecología Acuática, El Colegio de la Frontera Sur, Chetumal, Quintana Roo Corresponding Author: Itzahí Silva-Morales1 ¹Av. Centenario, Chetumal, Quintana Roo, 77014, Mexico $Email\ address: itzahi.silva@estudianteposgrado.ecosur.mx$

Abstract

41 42

43

44

45

46

47

48

49

50

51

52

53

54 55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

Phascolosoma (P.) varians, a species from the Greater Caribbean, was considered as a synonym of Phascolosoma (P.) nigrescens, a species from Fiji because both species were found morphologically indistinguishable. After the assignation of the synonymy, no detailed analysis of morphological characters nor genetic analysis have corroborated the supposed widespread distribution of Phascolosoma (P.) nigrescens.

In this study, *Phascolosoma* (*P*.) varians is redescribed, and differences concerning its supposed senior synonym were found. Both species differ mainly by the shape of the hooks, attachment of nephridia to the body wall, and the contractile vessel. Also, a high genetic divergence in nucleotide sequences of COI was found between the species, supporting the morphological data. Herein, the synonymy of *Phascolosoma* (*P*.) varians with *Phascolosoma* (*P*.) nigrescens is rejected due to the morphological and molecular differences; thus, the widespread distribution of *Phascolosoma* (*P*.) nigrescens is still considered questionable.

Introduction

The phylum Sipuncula comprised of 320 species (Stephen & Edmonds, 1972), but after Edward and Norma Cutler revisions, the number was reduced to 149 valid species (Cutler, 1994). Since 1994, 13 new species have been described (Kawauchi & Rice, 2009; Hylleberg, 2013; Saiz et al., 2015; Silva-Morales et al., 2019). Particularly, in the Greater Caribbean region, 38 valid species have been recorded, from which 40% corresponds to species with type localities outside Great Caribbean, with seven belonging to Phascolosomatidae (Quiroz-Ruiz & Londoño-Mesa, 2015).

The reduction in the number of species produced an extensive list of synonyms, which triggered subsequent incorrect identifications. This approach was supported by the idea of a wide distribution of sipunculan species, based on the supposed high dispersal capability of some species with pelagosphere larva, which have been evidenced that can remain in the water column for up to six months under laboratory conditions (Rice, 1976). However, some recent works, based on molecular data, clarified some taxonomical problems at the species level, showing that small morphological differences correspond to different species, rejecting the supposed wide distribution of some species (Staton & Rice, 1999; Kawauchi & Giribet, 2010; Schulze et al., 2012; Kawauchi & Giribet, 2014; Johnson et al., 2016; Silva-Morales et al., 2019). For that reason, Kawauchi, Sharma & Giribet (2012) proposed to clarify the taxonomic status of each species through a meticulous case-by-case analysis, integrating molecular data, and considering that some species names included as synonyms, deserve to be restored.

Keferstein (1865) described *Phascolosoma* (*Phascolosoma*) varians from St. Thomas, West Indies, and *P.* (*P.*) nigrescens from Fiji. Cutler & Cutler (1990) reviewed the subgenus *Phascolosoma* (*Phascolosoma*), and they included 15 species described all around the world as synonyms of *P.* (*P.*) nigrescens. The identification key by Cutler (1994) indicates that the diagnostic character of *P.* (*P.*) nigrescens is: Clear streak of hook with swelling in middle of vertical and horizontal portion. *Phascolosoma* (*P.*) varians, was one of the species included as junior synonymy of *P.* (*P.*) nigrescens.

Comentado [UdMO1]: Genetic is not the same as molecular

Eliminado: s

Comentado [UdMO2]: Are explained?

Eliminado: which

Eliminado: furthermore

Eliminado: was

Eliminado: the revisions by

Comentado [UdMO3]: Was not Cutler & Culter, 1990? The idea says ".. after Edward and Norma Cutler revisions.."

Comentado [ML4]: Or since 2009? Why is since 1994 without the reference from 1994?

Comentado [ML5]: Greater or Great? Why not Grand?

Eliminado: of

Comentado [ML6]: This research? Or that with the reduction? In the later case, I suggest to use "Such approach...."

Comentado [ML7]: Is this correct following the author instructions? Three last names? From how many you have to put et al.? check

Comentado [ML8]: Hidden under...

Eliminado: of

Comentado [ML9]: Visible?

Eliminado: feature

Con formato: Fuente: Sin Cursiva

Con formato: Fuente: Sin Cursiva

Cutler (1994) considered the distribution of this species as very widespread circumtropical, generally, between 30° N and 30° S, in shallow waters of the Indian, Pacific, and Atlantic oceans. In the Greater Caribbean, *Phascolosoma (P.) nigrescens* has been reported by Cutler & Schulze (2004) from Barbados, Schulze & Rice (2004) from Belize, Schulze (2005) from Panama, and Frontana-Uribe *et al.* (2018) from the Mexican Caribbean.

Herein, a detailed redescription of P. (P.) varians based upon topotypic specimens and additional material form the Caribbean region is provided. Furthermore, P. (P.) varians is reestablished due to the morphological and molecular differences concerning its supposed senior synonym, P. (P.) nigrescens.

Materials & Methods

90

92

93

94 95

96

97

98

99

100 101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

91

Specimens from the collections of the Marine Invertebrate Museum (UMML), Rosenstiel School of Marine and Atmospheric Science, University of Miami; Invertebrate Collections of the Florida Museum of Natural History (<u>UF-FLMNH</u>), University of Florida, and the Reference Collection of Benthos (ECOSUR) of El Colegio de la Frontera Sur, Chetumal, Mexico were reviewed.

The redescription of the species was mainly based on a topotypic specimen, but variations <u>were</u> complemented with additional materials from the Caribbean region.

Standardized descriptions included external and internal anatomy; the descriptions of hooks and papillae followed the terminology described by Cutler (1994). To measure the angle between the primary tooth and the hook, a line X was drawn perpendicular to the base through the most anterior part of the concave side, and a line Y was drawn from the tip until intersect X in the middle of the point (see Cutler 1994:161-162, fig. 44A).

Hooks and papillae were extracted with fine forceps to study them under an optical microscope. Hooks were removed from three different regions (anterior, median and posterior) of the ringed area. Papillae were described from three different regions (anterior, middle and posterior) of the trunk, and also from the base of the introvert. Furthermore, these structures were examined using SEM to achieve a more detailed examination. Therefore, the complete introvert was dehydrated in a series of different concentration of hexamethyldisilazane (HMDS), and airdried. Then, it was mounted on an aluminum stub and coated with gold for observation using a JEOL JSM-6010Plus-LA scanning electron microscope at the Scanning Electron Microscopy Laboratory (LMEB), ECOSUR-Chetumal.

A series of digital photographs of some internal and external features were taken using a Canon X6 <u>digital</u> camera mounted on a microscope. All images were stacked using HeliconFocus v6.7.1 (HeliconSoft 2007) to improve field depth.

For molecular analyses, nine sequences of specimens identified as *Phascolosoma* (*P*.) *nigrescens* were retrieved from GenBank, three of them from the Western Atlantic (DQ300139, DQ300142, AY161122), three from Australia (DQ300143, JN865121, JN865122), one from Israel (DQ300140), and another from South Africa (DQ300141). Also, a sequence of *Phascolosoma* (*P*.) *granulatum* Leuckart, 1828 (DQ300138) and two sequences of

Comentado [ML10]: Very? How much? Author must avoid to use this kind of words that implies an imprice cualification.

Eliminado: ;

Comentado [ML11]: A redescription must be detailed.

Comentado [ML12]: But topotypic material is also from the Ceribbean. Re-writer sentence.

Eliminado: UF

Comentado [ML13]: From other Caribbean localities

Comentado [ML14]: Proposed

Eliminado: is

Eliminado: is

Eliminado: to

Comentado [ML15]: Middle point?

Comentado [ML16]: This could be indicated in, at least, one figure.

Comentado [ML17]: Compound

Comentado [ML18]: This terminology apply for the body. The correct terminology for an "apendix", like the introvert, is proximal, middle and distal. Distal is near the mouth.

(Eliminado: median

Eliminado: . Once

Eliminado:

Eliminado: then

Eliminado: of field

Comentado [ML19]: DNA or RNA?

Comentado [ML20]: Could be more precise at least on this, because the Caribbean also is in the Western Atlantic. So, if you are trying to solve the problem on distribution, this could be important.

Phascolosoma (P.) agassizii Keferstein, 1866 (JQ904338, JQ904337) were included for comparison.

All sequences were aligned using ClustalW method; the selection of the best model of

substitution was determined according to the lowest Bayesian Information Criterion scores (BIC). As a result, Tamura 3-parameter (Tamura, 1992), using a discrete Gamma distribution (+G) with five categories and by assuming that a certain fraction of sites is evolutionarily invariable (+I) was used as model to construct a tree using maximum likelihood analysis. Also, the Kimura 2-parameter model (Kimura, 1980) was used to estimate the average evolutionary divergence over sequence pairs within and between species. All analyses were carried out with Mega 7 (Kumar, Stecher & Tamura, 2015).

Comentado [ML21]: As sister/out groups? Use precise terminology

Eliminado: with

Comentado [ML22]: Thus

Comentado [ML23]: grammar

Comentado [ML24]: Check this... three authors? Et al ?

Results

140

141

142 143

144

145

146

147

148

149

150 151

152153

154 155

156

157 158 159

160

161 162 163

164

165 166

167 168

169

170

171

172

173

174

175176

Systematics

Family Phascolosomatidae Stephen & Edmonds, 1972

Phascolosoma Leuckart, 1828

Phascolosoma (Phascolosoma) Leuckart, 1828

Type species. Phascolosoma granulatum Leuckart, 1828

Diagnosis. Body wall muscles separated into distinct bands. Spindle muscle attached posteriorly; introvert hooks without accessory spinelets (after Cutler 1994).

Phascolosoma (Phascolosoma) varians Keferstein, 1865 reinstated

Phascolosoma varians. Keferstein 1865: 424-426, pl. 32, Fig. 22. de Quatrefages 1865: 623. Wesenberg-Lund 1954: 7-8.

Physcosoma varians ten Broeke 1925: 85.

Phymosoma varians, Selenka 1883: 69-70, pl. 9, figs. 124-127. Shipley 1890: 1-24, fig. pls. 1-4, figs. 1-32.

Phascolosoma (Phascolosoma) varians, Stephen & Edmonds 1972: 327-328, fig. 39I.

Phascolosoma nigrescens Cutler 1994 (partim): 179-181; Cutler & Schulze 2004: 226; Rice & Macintyre 1982: 314; Schulze 2005: 526; Frontana-Uribe et al. 2018:174, fig. 5a-b; (non Keferstein, 1865).

Comentado [ML25]: Not in references

Comentado [ML26]: Becuse it is a referencie, you must use coma between the name and the reference. Otherwise, it could be understood as the author of the species, which is wrong.

Comentado [ML27]: Check if "de" must be included.

Eliminado: T

Eliminado: :

Eliminado: :

Comentado [ML28]: Is there any order in the localities? I recomend to use a geographical order from North to South and West to East. Or alfabetical? Any suggested order is accpetable, but use any. Even, inside each country.

Material examined

178179

177

```
Florida, USA, UMML 26.5, 2 specimens, Bear Cut, Key Biscayne, 25°43'54.33"N,
```

- 185 80°09'26.16"W, May 7, 1961, coll. P. Robertson. UMML s/n, 1 specimen. Margot Fish Shoal,
- Dade Co, Apr 5, 1966, coll. G. Hendrix, bored in coral rubble. UF 292, 1 specimen, N of St.
- 187 Petersburg, 28°27'33.12"N, 84°16'18.48"W, 30 m, Mar 13, 2011, colls. G. Paulay, N. Evans, F.
- 188 Michonneau, C. Thacker, R. Williams, A. Baeza. UF 293, 1 specimen, N of St. Petersburg,
- 189 28°27'33.12"N, 84°16'18.48"W, hard ground with sponges, 30 m, Mar 13, 2011, coll. G. Paulay.
- 190 UF 324, 1 specimen, St. Petersburg, 28°33'24.12"N, 84°16'28.20"W, hard bottom, sponge reef,
- 191 27 m, May 24, 2012, coll. J. Slapcinsky. UF 325, 1 specimen, St. Petersburg, 28°39'03.96"N,
- 192 84°23'03.84"W, 26-30 m, hard bottom, sponge reef, May 25, 2012, colls. G. Paulay, N. Evans, F.
- 193 Michonneau. Mexico, Mexican Caribbean. Isla Contoy. ECOSUR-S62, 3 specimens, Morro
- 194 Norte, 21°28'32.79"N, 86°47'30.13"W, coralline rock, 2.5 m, Feb 26, 2008, colls. S. Salazar-
- 195 Vallejo, L. Carrera-Parra. ECOSUR-S63, 2 specimens. Punta Sur, 21°27'37.10"N,
- 196 86°47'04.60"W, coralline rock, 1.5 m, Mar 2, 2001, colls. S. Salazar-Vallejo, L. Carrera-Parra.
- 197 ECOSUR-S69, 1 specimen, Punta Sur, 21°27'37.10"N, 86°47'04.60"W, coralline rock, 1.5 m,
- 198 Feb 28, 2001, colls. S. Salazar-Vallejo, L. Carrera-Parra. ECOSUR-S70, 1 specimen, Ixlache
- 199 reef, 21°26′02.52″N, 86°46′56.16″W, coralline rock, 2 m, Feb 25, 2008, colls. S. Salazar-Vallejo,
- 200 L. Carrera-Parra. Cancún, Punta Nizuc. ECOSUR-S87, 1 specimen, 21°01'41.92"N,
- 201 86°46'45.72"W, coralline rock, 2.6 m, Aug 31, 1997, colls. S. Salazar-Vallejo, L. Carrera-Parra,
- 202 M. Ruiz-Zárate. ECOSUR-S88, 2 specimens, 21°01'17.06"N, 86°46'45.95"W, coralline rock, 4
- 203 m, Sep 1, 1997, colls. S. Salazar-Vallejo, L. Carrera-Parra, M. Ruiz-Zárate. ECOSUR-S89, 3
- 204 specimens, 21°01'17.06"N, 86°46'45.95"W, coralline rock, 4 m, Sep 1, 1997, colls. S. Salazar-
- Vallejo, L. Carrera-Parra, M. Ruiz-Zárate. ECOSUR-S90, 2 specimens, 21°01'17.06"N,
- 206 86°46'45.95"W, coralline rock, 4 m, Sep 1, 1997, colls. S. Salazar-Vallejo, L. Carrera-Parra, M.
- 207 Ruiz-Zárate. Playa del Carmen. ECOSUR-S86, 4 specimens, Navega pier, 20°37'12.07"N,
- 208 87°04'26.63"W, fouling, 1 m, Aug 23, 2003, coll. M. Tovar-Hernández. *Cozumel*. ECOSUR-
- 209 S64, 14 specimens, Playa Azul, 20°32'51.98"N, 86°55'46.45"W, coralline rock, 1 m, Mar 25,
- 210 2001, colls. S. Salazar-Vallejo, L. Carrera-Parra. ECOSUR-S65, 1 specimen, in front to
- 211 SEDENA, 20°31'00.61"N, 86°56'45.52"W, coralline rock, 1.5 m, Mar 24, 2001, colls. S.
- 212 Salazar-Vallejo, M. Londoño-Mesa. *Tulum*. ECOSUR-S66, 3 specimens, Playa Aventuras,
- 213 20°21'47.20"N, 87°19'53.10"W, coralline rock, 1.5 m, Feb 28, 1999, colls. S. Salazar-Vallejo, J.
- Bastida-Zavala. ECOSUR-S91, 1 specimen, Playa Aventuras, 20°21'47.20"N, 87°19'53.10"W,
- 215 coralline rock, 1.5 m, Feb 18, 2001, colls. S. Salazar-Vallejo, L. Carrera-Parra. ECOSUR-S92, 4
- 216 specimens, Ana y José beach, 20°09'24.22"N, 87°27'13.74"W, coralline rock, 1 m, Feb 11, 2001,
- 217 colls. S. Salazar-Vallejo, J. Bastida-Zavala, J. Ruiz-Ramírez. ECOSUR-S96, 3 specimens, Punta
- 218 Piedra, 20°10'38.94"N, 87°26'42.28"W, coralline rock, 1.5 m, Feb 11, 2001, colls. S. Salazar-
- 219 Vallejo, L. Carrera-Parra, M. Tovar-Hernández. *Mahahual*. ECOSUR-S67, 1 specimen, 25 m
- off coast, 18°43'27.09" N, 87°42'3.64"W, reef lagoon, rocky substrate with sediment, 0.75 m,
- 221 Oct 1, 1996, colls. S. Salazar-Vallejo, L. Carrera-Parra. ECOSUR-S71, 1 specimen, in sponge,
- 222 Jul 21, 1998. ECOSUR-S72, 2 specimens, 50 m off coast, 18°43'38.68"N, 87°41'56.81"W,
- 223 coralline rock, 2 m, Mar 4, 1998, colls. S. Salazar-Vallejo, L. Carrera-Parra. ECOSUR-S73, 6

Comentado [ML29]: If you say Mexico, Mexican Caribbean, you have to say here, USA, Florida. Check this in order to have all standardized.

Comentado [ML30]: It could be reduced as (2), indicating in methods that this means number of specimens. Thus, you could save space in the paragraph deleting all the "specimens".

Comentado [ML31]: You could also reduce this as 05.04.1966 (DD.MM.YYYY). You could mention this in methods

Comentado [ML32]: Recommend to avoid using italics. Only use it for genus and species names.

Eliminado: m

Comentado [ML33]: If you use accent here, you have to use it in México, Panamá, etc... Standardize.

- specimens, reef lagoon near to back reef, 18°42'34.01"N, 87°42'31.22"W, coralline rock, 1.5 m,
- Jan 9, 2001, colls. P. Salazar-Silva, J. Bastida-Zavala, M. Tovar-Hernández, S. Salazar-Vallejo,
- 227 L. Carrera-Parra. ECOSUR-S74, 1 specimen, fore reef, 18°42'43.32"N, 87°42'22.51"W, coralline
- 228 rock, 15 m, Jun 6, 1998, coll. M. Ruiz-Zárate. ECOSUR-S75, 2 specimens, reef lagoon,
- 229 18°42'36.23"N, 87°42'31.60"W, coralline rock, 1.5 m, Dec 1, 2000, colls. S. Salazar-Vallejo, L.
- 230 Carrera-Parra. ECOSUR-S76, 2 specimens, reef crest, 18°43'06.17"N, 87°42'14.17"W, coralline
- 231 rock, 1 m, Jul 21, 1998, colls. S. Salazar-Vallejo, L. Carrera-Parra. ECOSUR-S77, 5 specimens,
- 232 back reef, 18°42'31.30"N, 87°42'30.39"W, coralline rock, 2 m, Mar 22, 2000, colls. S. Salazar-
- Vallejo, L. Carrera-Parra. ECOSUR-S78, 1 specimen, reef lagoon, 18°42'36.17"N,
- 234 87°42'32.65"W, coralline rock, 1.5 m, Mar 21, 2000, colls. J. Bastida-Zavala, P. Salazar-Silva.
- 235 ECOSUR-S79, 5 specimens, old wooden pier, 18°42'41.95"N, 87°42'35.98"W, fouling, 1 m, Feb
- 236 24, 2001, colls. P. Salazar-Silva, J. Bastida-Zavala, M. Tovar-Hernández, S. Salazar-Vallejo, L.
- 237 Carrera-Parra, L. Harris. ECOSUR-S80, 8 specimens, old wooden pier, 18°42'41.95"N,
- 238 87°42'35.98"W, fouling, 1 m, Mar 18, 2001, colls. P. Salazar-Silva, J. Bastida-Zavala, M. Tovar-
- 239 Hernández, S. Salazar-Vallejo, L. Carrera-Parra. ECOSUR-S81, 14 specimens, reef lagoon,
- 240 18°43'22.73"N, 87°42'03.08"W, coralline rock, 1.5 m, Mar 28, 2001, colls. L. Carrera-Parra, M.
- 241 Londoño-Mesa, S. Salazar-Vallejo. ECOSUR-S82, 1 specimen, reef lagoon, 18°43'25.14"N,
- 242 87°42'01.75"W, coralline rock, 1.5, Jan 10, 2001, colls. L. Carrera-Parra, M. Londoño-Mesa, S.
- 243 Salazar-Vallejo. ECOSUR-S83, 12 specimens, reef lagoon, 18°43'24.93"N, 87°42'02.95"W,
- 244 coralline rock, 1 m, Jan 19, 2001, colls. P. Salazar-Silva, J. Bastida-Zavala, M. Tovar-
- 245 Hernández, S. Salazar-Vallejo, L. Carrera-Parra. ECOSUR-S84, 2 specimens, reef lagoon,
- 246 18°43'24.93"N, 87°42'02.95"W, coralline rock, 1 m, Nov 30, 2000, colls. S. Salazar-Vallejo, L.
- 247 Carrera-Parra. ECOSUR-S85, 13 specimens, reef lagoon, 18°43'21.01"N, 87°42'04.28"W,
- 248 coralline rock, 1.5 m, Feb 24, 2001, colls. P. Salazar-Silva, J. Bastida-Zavala, M. Tovar-
- 249 Hernández, S. Salazar-Vallejo, L. Carrera-Parra, L. Harris. ECOSUR-S93, 1 specimen, punta
- 250 Rio Bermejo, 18°41'07.53"N, 87°43'05.83"W, corralline rock, 1 m, May 17 2002, colls. S.
- 251 Salazar-Vallejo, M. García-Madrigal. ECOSUR-S94, 16 specimens, punta Rio Indio,
- 252 18°48'29.63"N, 87°39'58.82"W, coralline rock, 1.7 m, Mar 17, 2001, coll. L. Carrera-Parra.
- 253 Xahuayxol, ECOSUR-S58, 8 specimens, reef lagoon, 18°30'11"N, 87°45'29"W, coralline rock, 2
- m, Jun 1 1997, colls. S. Salazar-Vallejo, L. Carrera-Parra. ECOSUR-S59, 1 specimen, back reef,
- 255 18°30'11.45"N, 87°45'21.46"W, coralline rock, 12 m, Oct 30 1997, colls. R. Saenz-Morales, S.
- 256 Salazar-Vallejo, L. Carrera-Parra. ECOSUR-S60, 4 specimens, reef lagoon, 120 m off coast,
- 257 18°30'41.34"N, 87°45'24.63"W, coralline rock, 1.5 m, Oct 31 1997, colls. S. Salazar-Vallejo, L.
- 258 Carrera-Parra. ECOSUR-S61, 11 specimens, reef lagoon, 18°30'39.77"N, 87°45'24.80"W,
- coralline rock, 1.8 m, Jun 4, 1998, colls. S. Salazar-Vallejo, L. Carrera-Parra. ECOSUR-S68, 3
- 260 specimens, reef lagoon, 18°30'39.04"N, 87°45'25.09"W, coralline rock, 1.7 m, Sep 27, 1996,
- 261 colls. S. Salazar-Vallejo, L. Carrera-Parra. ECOSUR-S95, 21 specimens, reef lagoon,
- 262 18°30'12.46"N, 87°45'29.79"W, coralline rock, 2 m, Jun 1, 1997, colls. S. Salazar-Vallejo, L.
- 263 Carrera-Parra. ECOSUR-S97, 1 specimen, 100 m off coast, 18°30'41.43"N, 87°45'25.16"W,
- 264 coralline rock, 2 m, Sep 28, 1996, coll. S. Salazar-Vallejo, L. Carrera-Parra. ECOSUR-S98, 1

```
266
       Salazar-Vallejo, L. Carrera-Parra. ECOSUR-S99, 6 specimens, reef lagoon, 18°30'13.71"N,
267
       87°45'31.50"W, coralline rock, 1 m, Jun 2 1998, colls. S. Salazar-Vallejo, L. Carrera-Parra.
       ECOSUR-S100, 2 specimens, 100 m off coast, 18°30'15.08"N, 87°45'30.98"W, in sediment with
268
       Thalassia testudinum, 2 m, Sep 27, 1996, colls. S. Salazar-Vallejo, L. Carrera-Parra. Xcalak.
269
270
       ECOSUR-S101, 9 specimens, back reef, 18°15'50.40"N, 87°49'31.12"W, coralline rock, 1.7 m,
       Oct 25, 2002, colls. S. Salazar-Vallejo, L. Carrera-Parra, P. Salazar-Silva, M. Londoño-Mesa.
271
272
       Nicaragua, Atlantic coast. UMML 000, 1 specimen, R/V Pillsbury, Cruise 7101, sta. 1338,
273
       12°52'00"N, 82°35'17.98"W, hillocks or low rounded mounds, 28 m, Jan 29, 1971, coll. G. Voss.
274
       Providence Island. UMML 000, 1 specimen, R/V Pillsbury, Cruise 7101, sta. 1349,
275
       13°33'00"N, 81°28'00"W, patch reef slightly southwest of Low Island surrounded by sand
276
       bottom, 3 m, Jan 30, 1971. Dominican Republic. UMML 000, 2 specimens. R/V Pillsbury,
       Cruise 7006, sta. 1272, off Cabo Rojo, 17°52'41.98"N, 71°41'12.01"W, 20-27 m, Jul 17, 1970,
277
278
       coll. J. Staiger. Turks and Caicos, West Indies. UMML 000. 1 specimen, Pillsbury Cruise
279
       7106, sta. 1423, 21°40'59.98"N, 71°22'59.98"W, Jul 19, 1971. Saint Martin, Îlet de
280
       L'embouchure. UF 329, 1 specimen, 18°04'1.2"N, 63°00'39.6"W, reef flat lagoon with seagrass,
281
       1 m, Apr 9, 2012, colls. G. Paulay, J. Slapcinsky, M. Bemis. UF 330, 5 specimens,
       18°04'01.20"N, 63°00'43.20"W, reef flat lagoon with seagrass, 0-1 m, Apr 9, 2012, colls. G.
282
283
       Paulay, J. Slapcinsky, M. Bemis. UF 338. 1 specimen, 18°04'01.20"N, 63°00'43.20"W, reef, 1 m,
284
       Apr 17, 2012, coll. A. Anker. UF 340, 1 specimen, 18°04'01.20"N, 63°00'43.20"W, reef, 1 m,
285
       Apr 17, 2012, coll. A. Anker. UF 347, 1 specimen, 18°04'01.20"N, 63°00'43.20"W, reef, 0-1 m,
286
       Apr 17, 2012, colls. G. Paulay, J. Slapcinsky, A. Anker. UF 359, 3 specimens, steep rubbly reef
287
       slope, 2-10 m, Apr 22, 2012, colls. G. Paulay, F. Michonneau. Mont Vernon, UF 332, 1
288
       specimen, Little Key, 18°06'00"N, 63°01'19.20"W, seagrass, sand, rocks, 0-2 m, Apr 11, 2012,
289
      coll. J. Slapcinsky. Grande Caye, UF 353, 1 specimen, 18°06'43.20" N, 63°01'08.40"W, coral
290
       rocks, 3 m, Apr 20, 2012, coll. A. Anker. Rocher Créole. UF 352. 1 specimen, 18°07'04.80"N,
291
       63°03'21.60"W, reef, 9 m, Apr 18, 2012, colls. G. Paulay, J. Slapcinsky, M. Bemis. NE side of
       St. Martin, UF 336, 1 specimen, 18°07'48"N, 63°00'18"W, canyon with sponges, in algae, 13 m,
292
       Apr 11, 2012, coll. R. Renoux. Île Tintammare, UF 361, 3 specimens, Chicot, windward side of
293
294
       the island, 18°06'7.2"N, 62°58'58.80"W, reef, in rubble, 12-15 m, Apr 23, 2012, coll. G. Paulay.
295
       Caye Verte, UF 364, 1 specimen, 18°05'24"N, 63°00'43.2"W, reef with sand and grass, 7 m, Apr
296
       25, 2012, coll. M. Bemis. Panama. Bocas del Toro. UF 126, 1 specimen, coll. C. Meyer. UF
297
       485. 1 specimen, Punta Puebla, 9°22'01.20"N, 82°17'27.60"W, May 16, 2016, colls. M. Leray, F.
298
       Michonneau, R. Lasley, UF 486, 1 specimen, Punta Juan, 9°18'03.60"N, 82°17'38.40"W, May
299
       16, 2016, coll. R. Lasley. UF 494, 1 specimen, Runway, 9°20'31.20"N, 82°15'36"W, May 23,
300
       2016, colls. M. Leray, F. Michonneau, R. Lasley. UF 499. 1 specimen, Marina, 9°19'51.60"N,
301
       82°14'38.40"W, May 28, 2016, colls. M. Leray, F. Michonneau, R. Lasley. UF 500, 2 specimens,
302
       Marina, 9°19'51.60"N, 82°14'38.40"W, May 28, 2016, colls. M. Leray, F. Michonneau, R.
303
       Lasley. UF 501, 1 specimen, Cayo Hermanas, 9°16'04.80"N, 82°21'07.20"W, May 30, 2016,
```

colls. M. Leray, F. Michonneau, R. Lasley. UF 503, 1 specimen. Cayo Hermanas, 9°16'04.80"N,

specimen, reef lagoon, 18°30'12.46"N, 87°45'29.79"W, coralline rock, 2 m, Jun 1, 1997, colls. S.

265

304

Comentado [ML34]: Caribbean? Nicaraguan Caribbean? Use the same structure for all the localities.

Comentado [ML35]: This is in Colombia, no in Nicaragua.

Comentado [ML36]: You have to precise what is "West Indies". It is more than these islands. Maybe the use of Greater and Lesser Antilles is more adequate; even more correct, these two islands belongs to the Lucayan Archipelago. Check and correct.

Comentado [ML37]: I found that the acronym is UF-FLMNH. Check this.

Con formato

82°21'07.20"W, May 31, 2016, colls. M. Leray, F. Michonneau, R. Lasley. UF 541, 1 specimen, Salt Creek, 9°16'48"N, 82°06'07.20"W, outer reef, *Agaricia* reef, 4-4.5 m, May 22, 2016, colls. M. Leray, F. Michonneau, R. Lasley. UF 542, 1 specimen, Runway, 9°20'31.20"N, 82°15'36"W, May 23, 2016, colls. M. Leray, F. Michonneau, R. Lasley, 4-4.5 m, lagoon fringing reef, *Agaricia* reef.

Redescription based on a male from St. Martin, <u>Mont Vernon</u>, West Indies (UF 332)

305

306

307

308

309

310

311

312

313

314

315

316

B17

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

External anatomy. Trunk 14 mm length (Fig. 1A); light brown with some darker patches; papillae dark brown and light brown distributed dispersedly, most of them on dorsal zone, scarce ventrally; papillae conglomerated in anal (Fig. 1B) and caudal (Fig. 1C) region, and dispersed in middle region (Fig. 1D).

Introvert 10 mm in length (Fig. 1A), dark brown, color uniform ventrally and dorsally, with some transversal bands light brown (Fig. 1E), posterior end of introvert with similar color pattern as trunk, extensible collar small. Introvert papillae dark brown, smaller than those from the trunk (Fig. 1F), located between rings of hooks, starting from the first ring (Fig. 2G). Nuchal organ with wavy contour.

Hooks laterally compressed, arranged in sixty complete rings and some incomplete rings, probably by abrasion. The rings are followed by a zone with scattered hooks. Most anterior hooks (Fig. 2A, 2F, 2G) with distal tip (main tooth) at 90° angle with respect to the perpendicular line of hook; length of distal tip not projecting beyond the base of the hook; secondary tooth rounded; internal clear streak (apical canal) expanded near to midpoint of vertical and middle horizontal portions of hook. Hooks of median region with larger secondary tooth (Fig. 2B), most posterior hooks (Fig. 2C) with principal tooth smaller than its base, almost 25% less.

SEM allowed observing the growth of hooks and papillae (Fig. 2H); both are smaller in the most anterior region and larger in the posterior end. The papillae of the introvert have three stages of development. First stage, the smallest, spherical with a ring of short apical protrusions (Fig. 2K) "dome shape" (fide Cutler 1994). Second stage, medium size, with appearance of two units, one smallest with a ring of short apical protrusions, and broad base (Fig. 2J) "mammillate form" (fide Cutler 1994). Third stage, largest, conical (Fig. 2I) "cone shape" (fide Cutler 1994).

Internal anatomy (Fig. 2D). A pair of nephridia occupying 80% of trunk length, open at the same level as anus. Longitudinal musculature divided into 23 to anastomosed bands, depending on where we count (anterior, <u>middle</u>, or posterior trunk). Two pairs of retractor muscles; ventral pair attached to 8-9 bands starting from the third band after ventral nerve cord (Fig. 2E), dorsal pair attached to 3-6 bands starting from the fifth band after ventral nerve cord. Contractile vessel without swelling or villi. Spindle muscle attached posteriorly.

Habitat. Inside coralline rock and hard bottom, 1 to 30 m depth.

Distribution. Greater Caribbean from Florida to Venezuela.

Eliminado:

Comentado [ML38]: "In length" or "long". And how much "in width" or "wide"?

Con formato: Fuente: Negrita

Comentado [ML39]: at random, randomly... etc.

Comentado [ML40]: in body is region, not zone

Eliminado: region

Eliminado: (Fig. 1C)

Eliminado: most

Eliminado: median

Eliminado: color

Comentado [ML41]: It is one specimen.. how many bands? This must be precise

Comentado [ML42]: I think this is wrong. Introvert, as an appendix, does not have posterior end, because the "posterior region" is not an end (it continues with the trunk). You have to say "proximal" or "distal" region. Which is this?

Eliminado: color

Eliminado: of

Comentado [ML43]: In descriptions you do not suppose things.

Comentado [ML44]: Telegraphic descriptions do not use verb to be. Re-write the sentence.

Comentado [ML45]: (Fig. 2A,F,G)

Comentado [ML46]: it must be one or the other, but two terms is not used. You have to use the standardized way to name structures. If there is other terms, you have to discusse this in the section, not here.

Comentado [ML47]: confuse: 90° with perpendicular (45°)?? Not understable.

(Eliminado: never

Con formato: Subrayado

Eliminado: a

Comentado [ML48]: Main tooth? Distal tip? confuse

Comentado [ML49]: I could say this in proportions.

Comentado [ML50]: All this paragraph needs to be real

Comentado [ML51]: Superlative always has "the": the21

Eliminado: a

Con formato: Fuente: Negrita

Comentado [ML52]: Not in telegraphic style

Eliminado: median

Comentado [ML53]: Since the description is made ... [3]

Comentado [ML54]: Including Antilles, or as you say [4]

380

373

395

396

388

West Indies and P. (P.) nigrescens from Fiji. Although his descriptions were well illustrated, Selenka (1883) redrew better the type materials (Fig. 3). Keferstein (1865) recognized both species as follow: Phascolosoma varians with a body three to four times as long as thick; introvert as long or longer than the body; closely spaced rows of hooks, very variable in numbers (12-90), which often only cover the foremost part of the trunk; hooks very broad, with an upper right-angled tip (0.072 mm high, 0.092 mm wide); with 20-28 short tentacles, standing in two rows at the side; musculature strong, about thirty longitudinal muscles, but in many cases anastomosed as longitudinal strands; contractile vessel on the esophagus simple; nephridia very long, attached in the anterior third by a mesentery. Whereas Phascolosoma nigrescens has a trunk about four times as long as thick; introvert longer than the trunk; numerous hooks narrowly spaced, forming rings situated very close to each other in the anterior end of the trunk; hooks flattened with a small curved hooked tip (0.084 mm high, 0.084 mm wide); over twenty tentacles in several rows; muscles strong, separated in about 24 longitudinal strands with few anastomose onces; contractile vessel on the esophagus with many small, lateral sags; nephridia attached almost to their entire length by a wide mesentery.

Remarks. Keferstein (1865) described *Phascolosoma* (*Phascolosoma*) varians from St. Thomas,

Cutler & Cutler (1990) reviewed the subgenus Phascolosoma (Phascolosoma), and included P. (P.) varians, together with other 14 species from different regions of the world, as a junior synonym of P. (P.) nigrescens. Their decision was based on this premise "One possible hypothesis is that the morphology is determined by more than one pair of genes and that allelic frequencies vary from place to place. The alleles for sharp angle and large secondary tooth occur at a high frequency in the Caribbean and a low frequency in the Indo-West Pacif. Phascolosoma (P.) varians is the junior name because it was described later on the page". Later. Cutler (1994) ratified this synonymy, considering that the morphological differences between P. (P.) nigrescens and P. (P.) varians are not enough to recognize them as different species.

Thus, after the redescription of P. (P.) varians herein presented, morphological differences to reject its senior synonym were found. The most important features to recognize both species are based on the shape of hooks, the attachment of nephridia to the body wall, and the contractile vessel on the esophagus. Phascolosoma (P.) varians has hooks with a rounded secondary tooth; the base of the hook is broader than high; most of the anterior hooks (Fig. 2A and 2F) with a distal tip (main tooth) at 90° angle with respect to the perpendicular line of the hook; contractile vessel simple; nephridia attached to body wall in the anterior third; whereas P(P.) nigrescens has hooks with a quadrate secondary tooth; the base of hook is as broad as high; most anterior hooks with a distal tip with less of 90° angle with respect to the perpendicular line of the hook; contractile vessel on the esophagus with many small, lateral sags; nephridia attached almost to their entire length.

The wavy contour of nuchal organ and the specific attachment of the retractor muscles were not described by Keferstein; thus, these characters are included in this discussion. Keferstein refers to "tentacles in two rows or many rows, maybe it's about the wavy contour of Comentado [UdMO55]: Improved the drawings?

Fliminado: e

Comentado [ML56]: Narrow?

Comentado [ML57]: How much is very?

Comentado [ML58]: Is this seen in the additional material or in the Kaferstein material?

Comentado [ML59]: Arranged

Comentado [ML60]: Well-developed

Eliminado: about thirty

Comentado [ML61]: Is this meaning "without many small, lateral sags"? The contrary of the next descrption? Write both descriptions in comparable style.

Comentado [ML62]: How much is very?

Eliminado:

Comentado [ML63]: In the previous species you say body. Is it the same? You have to write both with the same terminology and order of information, in order to be comparable.

Eliminado: closely

Comentado [ML64]: Is this the same as closely or narrowly? If yes, do not repeat information.

Comentado [ML65]: In a right-angle too? Or how?

Comentado [ML66]: Well-developed

Comentado [ML67]: There are more than one premise!

Comentado [ML68]: If you put this between quotation marks you to not have to put it in italics too. Just one thing for distinguish their words. Suggest just quotations

Eliminado: d

Eliminado: Herein, a

Eliminado:

Comentado [ML69]: It is presented morphological differences between these two species. But what about the other species that author included in the tree? You have to be more convincent telling reader that these characters have highly taxonomic importance and stability, explaining them how are in other species. How are these characters in, at least, the most close species

Eliminado: concerning

Comentado [ML70]: Square?

Comentado [ML71]: For both species? clarify

Eliminado: nevertheless

Eliminado: features

Eliminado: now

Eliminado: described

Comentado [ML72]: Not to use contraction style.

nuchal organ that was observed in this material. The differences between the number of tentacles is not useful to separate both species because it is variable regarding the development stage of the specimen, and the variation is overlaping in both species. Because of the difficulty to establish the exact number of longitudinal muscle bands, it should be considered cautiously in recognizing species. Also, the number of hook rings is variable between both species, being the loss of rings very common. Number of papillae seems to be a character without differences between both species.

Molecular analyses

The eleven analyzed sequences revealed six distinct groups of Phascolosoma (P.) nigrescens (Fig. 4). The genetic distance between the sequences of Phascolosoma (P.) nigrescens from New Caledonia (mean distance 18%) is high. In comparison, the intraspecific variation of P. (P.) varians is 2.6% and the mean distance between the sequences of Phascolosoma (P.) agassizii from the Pacific coast of USA is 1.0%. Considering that New Caledonia is the closest locality to Fiji — the type locality of P. (P.) nigrescens —, it is probable these two sequences correspond to different morphotypes and either one of them can actually correspond with Phascolosoma (P.) nigrescens.

The reinstated species group, *Phascolosoma* (*P*.) *varians* from the Greater Caribbean—is clearly separated from the other groups, mainly from the Pacific specimens. Even, this analysis shows that the species *Phascolosoma* (*P*.) *varians* is closer to *Phascolosoma* (*P*.) *granulatum* than the *P*. (*P*.) *nigrescens* from Broome, Australia. The value of the genetic distance between *P*. (*P*.) *nigrescens* from Broome, Australia and *Phascolosoma* (*P*.) *varians* is 18%. This value is similar to the results of Silva-Morales *et al.* (2019); they found a genetic distance of 19% between *Antillesoma antillarum* from the Greater Caribbean and *Antillesoma mexicanum* from the Southern Mexican Pacific. This mean that *Phascolosoma* (*P*.) *varians* from the Greater Caribbean is well differentiating morphologically and genetically of *Phascolosoma* (*P*.) *nigrescens* from Broome, Australia.

Discussion

The genetic analysis suggests the following considerations: 1) the specimens from Israel, South Africa and Broome, Australia identified as *Phascolosoma* (*P.*) *nigrescens* would corresponds to different species. It is very likely that other species from those regions, considered synonyms, need to be reinstated or some new species <u>be</u> described. 2) It is necessary <u>to</u> clarify the species complex of *Phascolosoma* (*P.*) *nigrescens* combining molecular and morphological data. Both suggestions are not resolved in this work because is beyond the scope of this study.

Studies about the distribution of sipunculans have rejected the supposed wide distribution of some species. However, in none of those studies, a new species had been described, or a name reinstatement had been made. For example, Staton & Rice (1999) found a genetic separation

Eliminado: I

Eliminado: s

Eliminado: between

Eliminado: of

Eliminado: ing

Eliminado: s

Eliminado: and
Eliminado: is

Eliminado: is an inappropriate character to difference both species because there are

Eliminado: no

Comentado [ML73]: I see molecular analysis not clear, not well explained. It is not easy no follow the explanations with the tree. Recommend to reconsider if it is needed this molecular analysis since it does not explaing in a proper way, the reinstatement of the species. There is not clear evidence with sequences, with distances from other material, more that few numbers given in the two paragraphs. Author(s) must think if not taking into account the molecular analysis, the results are the same. Better than to improve the molecular discussion, is to improve the morphologica discussion.

Comentado [ML74]: I do not know if I am understanding the tree, but the author are naming 7 groups, with al I the species. From them, only 4 have P. (P). nigrescens.

Comentado [ML75]: Not clear. These two groups are the most distant clades. So, whay to talk about them?—

Comentado [ML76]: ???

Comentado [ML77]: This is risky. You have to have sequences from Fiji to be sure, otherwise to say "probable" is not the correct way.

Comentado [ML78]: ???

Comentado [ML79]: But the Pacific specimens are very far in the tree. This is sure, also because this Pacific is the northern Pacific, not even the Tropical Pacific.

Comentado [ML80]: Wasn't this the sister group (for you, the comparison group)? So, was it a good group [6]

Comentado [ML81]: This paragraph presents conclusions, that could be at the end of discussion.

Comentado [ML82]: Different species from P. (P.) nigrescens or different species between them? Be more

Comentado [ML83]: How much? The word "very" is very imprecise!!!

Comentado [ML84]: This is the first time this concept appears in the document. Why it was not included in the

Comentado [ML85]: Grammar

between the genotypes of *Apionsoma* (A.) *misakianum* (Ikeda, 1904) from the northern and southern of Florida using allozymes, even they did not find an indication of "hybrids" occurring between them, establishing the presence of a species-complex, they did not carry out a morphological analysis.

Kawauchi & Giribet (2010) rejected the cosmopolitanism of *Phascolosoma* (*P*.) perlucens Baird, 1868, analyzing molecular and morphological data of specimens from many localities around the world. They found four different lineages and identified variation in hook morphology in some localities correlates with a high genetic diversity between populations. Also, their results suggest a probable lack of gene flux between the lineages. Schulze et al. (2012) analyzed the molecular data and developmental features of three "cosmopolitan" species, Phascolosoma (P.) agassizii Keferstein, 1866, Thysanocardia nigra (Ikeda, 1904), and Themiste (T.) pyroides (Chamberlin, 1920). They found significant differences between the populations from the Sea of Japan and the Northeast Pacific region, with respect to egg size, developmental mode and developmental timing. The populations of all three species were remarkably distinct genetically and the gene flow between the two regions was extremely unlikely. Also, Kawauchi & Giribet (2014) analyzed Sipunculus (S.) nudus Linnaeus, 1766 with specimens from many localities worldwide: they found high levels of genetic differentiation between distantly related populations, identifying five distinct lineages, from which three could be distinguished morphologically. In the last two studies, neither new species was described, or an available name was reinstated.

Conclusions

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482 483

484 485

486

487

488

489

490

491 492

493

494

495

496

497

498

499

500

The high genetic divergence between the specimens from the Greater Caribbean regarding those specimens identified as P.(P.) nigrescens from a region close to its type locality, support the morphological differences found between P.(P.) varians and P.(P.) nigrescens. Herein, the synonymy of Phascolosoma (P.) varians with Phascolosoma (P.) nigrescens is rejected; as a consequence, Phascolosoma (P.) varians is reinstated.

Ultimately, the diversity of sipunculans is underestimated. Combining morphological and molecular data or other information, as ecological features, will allow us to know the real number of sipunculans species.

Acknowledgements

I would like to thank Luis F. Carrera-Parra (ECOSUR) who contributed greatly with his recommendations and comments to improve the manuscript and by taking the SEM photos. Thanks to Nancy Voss (UMML) and Gustav Paulay (UF) who kindly lent the specimens used in this study. Thanks to Sergio I. Salazar-Vallejo (ECOSUR) and Luis F. Carrera-Parra who provided specimens from the Collection of Benthos of El Colegio de la Frontera Sur, Chetumal, Quintana Roo, Mexico. Thanks to Gerardo Flores-Taboada for his comments and for reviewing the translation.

Eliminado: :

Eliminado:

Eliminado: but

Comentado [ML86]: I tried to improve the sentece, but it needs grammar revision.

Comentado [ML87]: Cosmopolitism?

Eliminado: y

Comentado [ML88]: Grammar

Comentado [ML89]: Ufff... depending on the sequences used. But if it was made with DNA, it not easy to come to this conclusion.

Eliminado: and

Eliminado: were identified

Eliminado: three of

Eliminado: ment

Comentado [ML90]: The real sipunculan diversity.

Comentado [ML91]: Sadly, she is gone! You have to indicate it.

509	References
510	Cutler EB. 1994. The Sipuncula. Their systematics, biology and evolution. Ithaca, N.Y.: Cornell
511	University Press.
512	Cutler NJ, Cutler EB. 1990. A revision of the subgenus <i>Phascolosoma</i> (Sipuncula,
513	Phascolosoma). Proceedings of the Biological Society of Washington, 103: 691-730.
514	Cutler EB, Schulze A. 2004. Sipuncula from Barbados, including two new for the island plus
515	Siphonosoma vastum; first record from the Atlantic Ocean. Bulletin of Marine Science,
516	74(1): 225-228.
517	de Quatrefages MA. 1865. Annélides et géphyriens. Paris: Histoire Naturelle des Annelés Marins
518	et d'Eau Douce.
519	Frontana-Uribe SC, Hermoso-Salazar M, Solís-Weiss V. 2018. Sipunculans from intertidal and
520	lower subtidal coralline substrates of the Mexican Caribbean Sea. In: Boyle MJ,
521	Kawauchi GY, eds. Proceedings of the Second International Symposium on the Biology
522	of the Sipuncula. Washington, D.C.: Smithsonian Institution Scholarly Press, 169–185.
523	HeliconSoft Limited. 2007. HeliconFocus 4.21 (blend the focused areas). Available at
524	http://www.heliconsoft.com (accesed 05 March 2020).
525	Hylleberg J. 2013. Classification and identification of Sipunculans from Thailand, with
526	description of new species and a new subgenus. Phuket Marine Biological Center,
527	Research Bulletin, 32: 53–82.
528	Johnson ND, Sanders C, Maiorova A, Schulze A. 2016. Cryptic species in Pacific sipunculans
529	(Sipuncula: Phascolosomatidae): east-west divergence between non-sister taxa. Zoologica
530	Scripta, 45(4):455-463. DOI: https://doi.org/10.1111/zsc.12158
531	Kawauchi GY, Giribet G. 2010. Are there true cosmopolitan sipunculan worms? A genetic
532	variation study within Phascolosoma perlucens (Sipuncula, Phascolosomatidae). Marine
533	Biology, 157(7):1417-1431. DOI http://dx.doi.org/10.1007/s00227-010-1402-z
534	Kawauchi GY, Giribet G. 2014. Sipunculus nudus Linnaeus, 1766 (Sipuncula): cosmopolitan or
535	a group of pseudo-cryptic species? An integrated molecular and morphological approach.
536	Marine Ecology, 35(4):478-491. DOI: https://doi.org/10.1111/maec.12104
537	Kawauchi GY, Rice ME. 2009. Two new species of <i>Nephasoma</i> (Sipuncula: Golfingiidae) from
538	the western Atlantic Ocean. Proceedings of the Biological Society of Washington, 122(1):
539	1–13. DOI: http://dx.doi.org/10.2988/08-32.1

Con formato

540	Kawauchi GY, Sharma PP, Giribet G. 2012. Sipunculan phylogeny based on six genes, with a
541	new classification and the descriptions of two new families. Zoologica Scripta,
542	41(2):186–210. DOI: http://dx.doi.org/10.1111/j.1463-6409.2011.00507.x
543	Keferstein W. 1865. Beiträge zur anatomischen und systematischen Kenntniss der Sipunculiden.
544	Zeitschrift für Wissenschaftliche Zoologie, 15: 404-445.
545	Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions
546	through comparative studies of nucleotide sequences. Journal of Molecular Evolution,
547	16(2): 111–120 DOI: http://dx.doi.org/10.1007/BF01731581
548	Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis
549	version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7):1870–1874. DOI:
550	http://dx.doi.org/10.1093/molbev/msw054
551	Quiroz-Ruiz MM, Londoño-Mesa MH. 2015. Sipunculans (Sipuncula) from the Great
552	Caribbean: Species list and bibliography. Bulletin of Marine and Coastal Research,
553	44(2):327–342.
554	Rice ME. 1976. Larval development and metamorphosis in Sipuncula. American Zoologist,
555	16:563-571. DOI: https://doi.org/10.1093/icb/16.3.563
556	Rice M.E & Macintyre I.G. 1982. Distribution of Sipuncula in the Coral Reef Community,
557	Carrie Bow Cay, Belize. Smithsonian contributions to the Marine Sciences, 12: 311-320
558	Saiz JI, Bustamante M, Tajadura J, Vijapure T, Sukumaran S. 2015. A new subspecies of
559	Phascolion Théel, 1875 (Sipuncula: Golfingiidae) from Indian waters. Zootaxa, 3931(3):
560	433–437. DOI: https://doi.org/10.11646/zootaxa.3931.3.7
561	Selenka E. 1883. Die Sipunculiden, eine systematische Monographic, Reisen in Archipel
562	Phillippinen von Dr. C. Semper. Wiesbaden.
563	Schulze A. 2005. Sipuncula (Peanut Worms) from Bocas del Toro, Panama. Caribbean Journal
564	of Science, 42(3): 523–527.
565	Schulze A, Maiorova A, Timm LE, Rice ME. 2012. Sipunculan larvae and "cosmopolitan"
566	species. Integrative and Comparative Biology, 52(4):497–510. DOI:
567	http://dx.doi.org/10.1093/icb/ics082
568	Schulze A, Rice ME. 2004. Sipunculan diversity at Twin cays, Belize with a key to the species.
569	Atoll Research Bulletin, 1-9. DOI: 10.5479/si.00775630.521.1-9

Con formato

570	Shipley AE. 1890. On Phymosoma varians. Quarterly Journal of Microscopical Science, 31: 1-
571	27.
572	Silva-Morales I, López-Aquino MJ, Islas-Villanueva V, Bastida-Zavala JR, Ruiz-Escobar F.
573	2019. Morphological and molecular differences between the amphiamerican populations
574	of Antillesoma (Stephen & Edmonds, 1972) (Sipuncula: Antillesomatidae), with the
575	description of a new species. Revista de Biología Tropical, 67(S5):101-109. DOI:
576	https://doi.org/10.15517/RBT.V67IS5.38934
577	Staton J, Rice ME. 1999. Genetic differentiation despite teleplanic larval dispersal: Allozyme
578	variation in sipunculans of the Apionsoma misakianum species complex. Bulletin of
579	Marine Science, 65(2):467–480.
580	Stephen AC, Edmonds SJ. 1972. The phyla Sipuncula and Echiura. London: Trustees of the
581	British Museum (Natural History)
582	Tamura K. 1992. Estimation of the number of nucleotide substitutions when there are strong
583	transition-transversion and G+C-content biases. Molecular Biology and Evolution, 9(4):
584	678-687. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a040752
585	ten Broeke JMA. 1925. Westindische Sipunculiden und Echiuriden. Bijdragen tot de Dierkunde,
586	24(1): 81-96. DOI: https://doi.org/10.1163/26660644-02401006
587	Wesenberg-Lund E. 1954. Priapuloidea, Sipunculoidea and Echiuridea. Bulletin de l'Institut
588	royal des Sciences naturelles de Belgique, Biologie, 30(16): 1-18.

Página 8: [1] Comentado [ML50]

Mario Londoño

31/8/20 23:17:00

All this paragraph needs to be re-write in telegraphic style and more clear. Using Cutler terminology you have to realize that a basic squeme is needed to explain this better. Otherwise, this "rare" terminology makes the paragraph not clear.

Página 8: [2] Comentado [ML51]

Mario Londoño

31/8/20 23:15:00

Superlative always has "the": the smallest, the largest, ...

Página 8: [3] Comentado [ML53]

Mario Londoño

31/8/20 23:22:00

Since the description is made using only one specimen (UF 332) range in nombre is imposible. How many bands does the 332 have exactly?

Página 8: [4] Comentado [ML54]

Mario Londoño

31/8/20 21:53:00

Including Antilles, or as you say West Indies. Remember that the Greater Caribbean is not only the continental shelf.. it includes also all the Greater and Lesser Antilles

Página 9: [5] Comentado [ML69]

Mario Londoño

1/9/20 21:55:00

It is presented morphological differences between these two species. But what about the other species that author included in the tree? You have to be more convincent telling reader that these characters have highly taxonomic importance and stability, explaining them how are in other species. How are these characters in, at least, the most close species (phylogenetically, geographically or morphologically)? I think the reinstatement is still weak in arguments.

Página 10: [6] Comentado [ML80]

Mario Londoño

1/9/20 23:00:00

Wasn't this the sister group (for you, the comparison group)? So, was it a good group for this? You have to discuse also the behavoior of the sister/out groups. The tree does not show a relevant outgroup

Página 10: [7] Comentado [ML82]

Mario Londoño

1/9/20 21:57:00

Different species from P. (P.) nigrescens or different species between them? Be more precise.

Página 10: [8] Comentado [ML84]

Mario Londoño

1/9/20 22:02:00

This is the first time this concept appears in the document. Why it was not included in the introduction, objectives, etc.? I consider it as very important to include in all document in order to justify the molecular analysis, form example. Who else is considering this species a species-complex? Why? Etc.