Towards a unified generic framework to define and observe contacts between livestock and wildlife: A systematic review (#48700)

First submission

Guidance from your Editor

Please submit by 8 Jul 2020 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 9 Figure file(s)
- 9 Table file(s)
- 1 Raw data file(s)
- 1 Other file(s)
- Custom checks

Systematic review or meta analysis

- Have you checked our policies?
- Is the topic of the study relevant and meaningful?
- Are the results robust and believable?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Towards a unified generic framework to define and observe contacts between livestock and wildlife: A systematic review

Sonny A Bacigalupo ^{Corresp., 1}, Linda K Dixon ², Simon Gubbins ², Adam J Kucharski ³, Julian A Drewe ¹

Corresponding Author: Sonny A Bacigalupo Email address: sbacigalupo@rvc.ac.uk

Wild animals are the source of many pathogens of livestock and humans. The current global pandemics of both COVID-19 (affecting people) and African swine fever (affecting pigs) are likely to have originated in wildlife. Concerns about the potential for the transmission from wildlife of diseases of economic and zoonotic importance have led to increased surveillance at the livestock-wildlife interface. Knowledge of the types, frequency and duration of contacts between livestock and wildlife is necessary to identify risk factors for disease transmission and to design possible mitigation strategies. Observing the behaviour of many wildlife species is challenging due to their cryptic nature and avoidance of humans, meaning there are relatively few studies in this area. Further, and perhaps surprisingly, a consensus on the definition of what constitutes a 'contact' between wildlife and livestock is lacking. A systematic review was conducted to investigate which livestock-wildlife contacts have been studied and why, as well as the methods used to observe each species. Over 43,000 publications were screened, of which 122 fulfilled specific criteria for inclusion in the analysis. The majority of studies examined contacts between cattle and badgers or deer, with studies involving wild pigs being the next most frequent. There was a range of observational methods including motion-activated cameras and global positioning system collars. As a result of the wide variation and lack of consensus in the definitions of direct and indirect contacts, we developed a unified framework to define livestock-wildlife contacts that is sufficiently flexible to be applied to most wildlife and livestock species for non-vector-borne diseases. We hope this framework will help standardise the collection and reporting of contact data; a valuable step towards being able to compare the efficacy of wildlife-livestock observation methods. In doing so, it may aid the development of better disease transmission models and improve the design and effectiveness of interventions to reduce or prevent disease transmission.

¹ Royal Veterinary College, Hatfield, United Kingdom

² The Pirbright Institute, Woking, Surrey, United Kingdom

³ London School of Hygiene & Tropical Medicine, University of London, London, United Kingdom

Towards a unified generic framework to define and observe contacts between livestock and wildlife: A systematic review

Sonny A. Bacigalupo¹, Linda K. Dixon², Simon Gubbins², Adam J. Kucharski³, Julian A. Drewe¹

¹Royal Veterinary College, University of London, Hatfield, UK

² The Pirbright Institute, Woking, Surrey, UK

³ London School of Hygiene & Tropical Medicine, London, UK

Corresponding Author

Sonny Bacigalupo¹

Royal Veterinary College, Hawkshead Lane, Brookmans Park, Hatfield, AL9 7TA, UK

Email address: sbacigalupo@rvc.ac.uk

Abstract

2	Wild animals are the source of many pathogens of livestock and humans. The current global
3	pandemics of both COVID-19 (affecting people) and African swine fever (affecting pigs) are
4	likely to have originated in wildlife. Concerns about the potential for the transmission from
5	wildlife of diseases of economic and zoonotic importance have led to increased surveillance at
6	the livestock-wildlife interface. Knowledge of the types, frequency and duration of contacts
7	between livestock and wildlife is necessary to identify risk factors for disease transmission and to
8	design possible mitigation strategies. Observing the behaviour of many wildlife species is
9	challenging due to their cryptic nature and avoidance of humans, meaning there are relatively
10	few studies in this area. Further, and perhaps surprisingly, a consensus on the definition of what
11	constitutes a 'contact' between wildlife and livestock is lacking. A systematic review was
12	conducted to investigate which livestock-wildlife contacts have been studied and why, as well as
13	the methods used to observe each species. Over 43,000 publications were screened, of which 122
14	fulfilled specific criteria for inclusion in the analysis. The majority of studies examined contacts
15	between cattle and badgers or deer, with studies involving wild pigs being the next most
16	frequent. There was a range of observational methods including motion-activated cameras and
17	global positioning system collars. As a result of the wide variation and lack of consensus in the
18	definitions of direct and indirect contacts, we developed a unified framework to define livestock-
19	wildlife contacts that is sufficiently flexible to be applied to most wildlife and livestock species
20	for non-vector-borne diseases. We hope this framework will help standardise the collection and
21	reporting of contact data; a valuable step towards being able to compare the efficacy of wildlife-
22	livestock observation methods. In doing so, it may aid the development of better disease

- 23 transmission models and improve the design and effectiveness of interventions to reduce or
- 24 prevent disease transmission.

Introduction

26	The interface where livestock and wildlife may come into contact with each other is an area of
27	growing scientific interest, particularly as wildlife can act as a 'reservoir' for diseases of
28	livestock [1]. Disease transmission between livestock and wildlife can have marked economic
29	impact, such as African swine fever outbreaks in domestic pigs and wild boar (Sus scrofa) in
30	Europe and Asia [2], where the loss of 12-20% of the global pig herd in 2019 led to a 10%
31	increase in the food price index of pork [3]. The impact of disease transmission on wildlife can
32	be seen in the loss of around half the global saiga (Saiga tatarica) antelope population in 2015 to
33	Pasteurella multocida, a pathogen harboured by livestock [4]. Contact between wildlife and
34	livestock may also lead to conflict between humans and wildlife, with compensation for large
35	carnivore predation and other damage costing 28.5 million euros annually in Europe [5]. The
36	proximity of agricultural land to wildlife habitats is a key factor in human-wildlife conflicts and
37	in the spill-over of pathogens from wildlife to livestock and humans [6]. The emergence of
38	diseases from wildlife that infect humans via livestock intermediaries, such as bat-borne Hendra
39	virus (affecting humans via horses) and Nipah virus (affecting humans via pigs) [7], further
40	highlight the importance of contacts between wildlife, livestock and people. These contacts are
41	seldom recorded, however, because many wildlife species are cryptic and therefore difficult to
42	observe, capture and sample.
43	
44	Observing wildlife-livestock contacts is becoming easier with advances in remote technologies
45	such as motion-activated cameras, global positioning system (GPS) collars and proximity loggers
46	[8-10]. These methods are usually (but not always) used to monitor one species at a time. They
47	are not standardised, however, meaning there are many variations in monitoring protocols, often

48	depending on basic practicalities such as battery life, people-hours, cost and the aims of the
49	study. The methods used to monitor livestock-wildlife contacts may influence (or be influenced
50	by) the kind of contact to be monitored, the context of the study and what the data will be used
51	for.
52	
53	Livestock-wildlife contact data is needed to inform the simulation and modelling of diseases that
54	have multiple host species, but information on the types of contact needed for transmission and
55	the rates at which these occur is lacking [11]. Knowledge of livestock-wildlife contact data can
56	be used to identify risk factors and predict where these contacts are more or less likely to occur,
57	for example predicting the likelihood of badger (Meles meles) visits to cattle farms in the context
58	of bovine tuberculosis transmission [12]. It could also be used to implement and improve
59	mitigation strategies to prevent unwanted livestock-wildlife contacts. To mitigate wolf (Canis
60	lupus) predation on sheep, for example, the effectiveness of prevention programs needs to be
61	evaluated in ways that do not depend on livestock attacks alone, using methods such as GPS
62	monitoring of wolf movements around sheep farm bio-fences [5, 13]. Similarly, the effectiveness
63	of measures taken to prevent disease transmission can also be evaluated such as by comparing
64	deer-cattle contact rates between farms with and without deer fences installed [14-16].
65	Knowledge of livestock-wildlife contacts can be used in these contexts to limit the economic loss
66	associated with disease and predation. Given these multiple ways of gathering and using
67	livestock-wildlife contact data, the definition of what constitutes a meaningful contact will vary
68	depending on the aim of the study.
69	

70 In the context of disease transmission, defining a contact is challenging and while types of 71 contact are often broadly grouped into being 'direct' or 'indirect', there are no standardised 72 definitions [17]. Direct contacts are usually thought of as representing physical contact or being in close proximity over a short period of time, and so may include fighting, mating or being face-73 74 to-face or nose-to-nose. Indirect contacts are more difficult to define due to issues of long-75 distance aerosol transmission, environmental persistence of pathogens in spores and fomites, and 76 intermediate insect vectors [11]. Other ecological definitions of livestock-wildlife contacts could also include avoidance behaviour or competition for resources between species. This variation in 77 78 definitions means it is difficult to make meaningful comparisons between studies and to apply 79 findings from one study to different contexts. Therefore, a standardised generic template for 80 defining livestock-wildlife contacts would be useful. 82 The aim of this study was to systematically review the reasons for, and observational methods 83

81

used in, studies investigating livestock-wildlife contacts, and to propose a generalised framework

84 for defining contacts between livestock and wildlife.

Methods

86	Literature Search and Data Extraction
87	We defined <i>livestock</i> as 'farmed domesticated mammals' [18], wild animals as 'free-ranging
88	non-domesticated mammals', and <i>contact</i> as 'activity implying an interaction or association
89	between species'. The terms interaction and contact were used synonymously within the
90	literature, but contact is used here for consistency. The systematic review question was
91	"Which methods have been used to assess the frequency of, types of, and risk factors for,
92	contacts between wild animals and livestock or livestock farms worldwide?".
93	
94	Search terms for wildlife, livestock and type of contact were combined by the Boolean operators
95	'OR' and 'AND' to identify publications that investigated contact between any wild and
96	domestic mammal (Table S1). Search terms were based on common species names, and generic
97	terms such as 'feral', 'wildlife', 'livestock' and 'farm'. Searches were conducted in CAB
98	Abstracts, Scopus and Pubmed. CAB Abstracts is a comprehensive database of life science
99	research with broad coverage of veterinary literature in particular, and Scopus has a broad
100	coverage of interdisciplinary journals [19, 20].
101	
102	Search results were consolidated into Microsoft Excel and duplicates were identified and
103	removed using queries followed by manual inspection. Titles, abstracts and full texts of the
104	retrieved publications were evaluated by SAB against pre-specified exclusion and inclusion
105	criteria (Table 1). Any papers for which the criteria were not clear were also evaluated by JAD.
106	In all such cases both authors agreed on the final decision. There were no disagreements. We
107	wished to capture publications that collected, used or analysed data to investigate direct or

typically >5kg (thus excluding studies on small rodents). Specifically, publications were
included if they attempted to quantify, characterise, or identify risk factors for livestock-wildlife
contacts. Only articles in English and those accessible to researchers were included. All
reasonable efforts were made to access papers that passed abstract screening. We excluded
studies in which predation events were the sole indicator of livestock-wildlife contacts, and
studies of wild animals that were not free-living, were tamed or were relocated for the purpose of
the study. Publications until 11 November 2019 were included, and no time restrictions were
applied to the start of the search. Working definitions of direct and indirect contact were agreed
by the researchers to avoid ambiguity when evaluating publications for inclusion. Direct contact
was provisionally defined as physical contact between at least one wild animal and one farm
animal. Indirect contact was provisionally defined as contact between at least one wild animal
and a resource used by at least one farm animal including, but not limited to, food, water and
space. Study data was extracted and livestock and wildlife species, observation methods and
definitions were categorised. Studies were grouped into seven themes that emerged during data
extraction and were agreed upon by the authors (Fig. S1). Results were visualised and plotted
using R (version 3.6.3 [21]) and R packages listed in Table S2.
The quality of the selected papers was appraised against a set of criteria based on the study
objectives, definitions of contact, certainty of results and robustness of conclusions (Table 1).

indirect contacts between farmed livestock and wild mammals whose adult bodyweight is

Each criterion contributed equally to the overall quality score for each paper.

130	Development	of a	Generic	Unified	Framework

- 131 The generic unified framework was developed by grouping and identifying commonalities in
- definitions of 'direct' and 'indirect' contact. The spatial (distance) and temporal (time) limits
- separating meaningful contacts from non-contact events were identified for each study. These
- data informed the development of a generic framework for defining direct and indirect contact.

PeerJ

Results 135 136 Search results, quality appraisal and themes 137 A total of 43,032 papers were identified by the search terms across all three databases, of which 138 30,080 were unique results. After screening using the exclusion and inclusion criteria in Table 1, 122 publications remained in the final analysis (Fig. 1). Publication date ranged from 1980 to 139 140 2019, with 117 (96%) published in the last 20 years (Fig. 2). Studies conducted in Europe, North 141 America and Africa made up 89% of the results (Table S3) with the USA and UK producing the 142 most publications (21% and 18%, respectively). 143 144 Study aims were reported in 120 (98%) publications, of which 100 (83%) studies aimed 145 specifically to investigate contact between livestock and wildlife. Contacts were observable, and 146 not simply alluded to, in 100 (82%) publications. Direct or indirect contact, or both, were defined 147 in 86 (70%) publications. Study power was mentioned in only 11 (9%) publications and the level of uncertainty was acknowledged in 64 (53%) publications. Conclusions were robust and directly 148 149 derived from the results in 109 (89%) publications. The overall quality scores of the papers 150 ranged from 0 (one study) to 7 (eight studies), and 91 (75%) publications scored between 4 and 6 151 out of 7 (Fig. S2). 152 153 Disease was the dominant theme and featured in 80 of 122 studies (66%), followed by humanwildlife conflict (22/122 studies; 18%), competition between wildlife and livestock (17/122; 154 155 14%), conservation (16/122; 13%), wildlife management (11/122; 9%), behavioural studies (3/122; 2%) and methods validation (2/122; 2%) (Fig. S1). Within the disease-themed papers, 156 Mycobacterium bovis was the most studied pathogen (49/80; 61%) followed by foot-and-mouth 157

159

160

161

162

disease virus (8/80; 10%) (Tables S4 and S5). Wildlife-cattle contacts were the focus of 98 of the 122 studies (80%) and a further 22 studies (18%) focussed on sheep, pigs, farmed deer and camelids. The most studied wildlife species were deer (30/122; 25%), wild pigs (26/122; 21%) and badgers (25/122; 20%: Fig. S3 and S4). The wildlife species were not specified in 11 papers concerning wild ungulates competing for livestock grazing [22-24] or as hosts of cattle diseases such as bovine tuberculosis [25-27] and foot-and-mouth disease [28, 29].

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

163

Methods used to observe livestock-wildlife contacts

Methods that monitored both livestock and wildlife species were used in 88 publications (72%) whereas 34 studies (28%) monitored wildlife only. Camera trapping was the most frequent method of monitoring wildlife (37 studies, 31%), and was most prominently used in badgers. deer and wild pigs (Fig. 3). GPS collars were the second most used method to monitor wildlife (29 studies, 24%), and while they were also used predominantly on badgers, deer and wild pigs. they were used proportionally more than cameras to monitor predators and large herbivores such as buffalo, wild horses and elephants. Other methods used to monitor wildlife were direct observation (21: 17%), farmer questionnaires (20: 16%), radio-transmitters (17: 14%), activity signs (15: 12%) and proximity loggers (7: 6%). Studies that monitored livestock tended to use the same methods as for wildlife, although 10 studies dedicated fewer resources to monitor livestock; for example, Pruvot and co-authors [30] used GPS collars to monitor wild deer and farmer questionnaires to monitor cattle behaviour. Studies that did not monitor livestock tended to infer wildlife-livestock contact from monitoring only the activities of wildlife on or around livestock holdings, such as on pasture, in buildings and the shared use of resources such as livestock feed.

? 1

A variety of methods were used to observe different types of contact data (Fig. S5). Methods such as GPS collars and radio-tracking (telemetry) were used to collect location and proximity data on a broad scale (e.g. [10, 31, 32]), whereas proximity loggers were used to detect close proximity contacts between livestock and wildlife or with postulated high-risk disease transmission areas such as badger latrines (e.g. [9]). Camera traps and direct observation were used to observe wildlife and livestock activity, such as nose-to-nose contacts between cattle and badgers [33], foxes taking piglets from farrowing huts [34] and wild boar eating from cattle troughs [35]. Some methods were used to detect the presence of wild animals on farms or on pasture only, such as surveys of activity signs to detect wild boar rooting on sheep pasture [36] and GPS collars to demonstrate the avoidance of livestock pasture by lions [37]. Thirty studies combined more than one method to monitor wildlife, such as [38] which combined activity signs, GPS collar data and camera traps to monitor feral swine activity at and around domestic pig pens. The majority of studies, however, used only one method and were able to collect information about the type of contact defined by the study.

Definitions of direct and indirect contacts

Definitions for both direct contact and indirect contact were provided by 27 studies, with a further four defining direct contact only and 54 defining indirect contact only (Table 2; Table 3). Definitions of direct contact tended to focus on the spatial distance between wildlife and livestock at one point in time (Table 2). Definitions of indirect contact tended to focus on the spatial distance of wildlife to a location that livestock had previously occupied, within a certain time frame (Table 3), although there were two studies that used time to define direct contact [15,

39]. The amount of time was usually determined by the context of the study, such as the survival time of a specified pathogen in the environment, known as the critical time window of a contact [40]. Contacts were also defined in 15 studies as the shared use of resources between livestock and wildlife, such as feed and water. There were large variations between studies in the defined distances and time windows, with direct contact distances ranging from physical contact (7 studies) to within 120n. each other (1 study), and indirect definitions ranging from within the same camera image (2 studies) to within 50 kilometres of a location (1 study). There was less variation in definitions between studies with similar contexts and aims. For example, among *M. bovis* transmission studies in cattle and badgers, the definition of direct contact ranged from physical contact to within two metres (6 studies), and indirect contacts were defined as presence on farmland, sharing of resources and visits to badger latrines by cattle (20 studies). Importantly, no definition of contact was provided in 25 studies (44%) that reported direct contacts, and 34 studies (29%) that reported indirect contacts.

Regardless of the contact definitions or methods used to observe contacts, direct contacts were detected much less frequently than indirect contacts. For example, one study [15] found no instances of cattle within two metres of deer, compared to over 40,000 indirect contacts of deer with cattle via shared feed. Overall, the median number of direct contacts between wildlife and livestock was in single figures, whereas median indirect contacts occurred in the order of hundreds or even thousands of contacts (Table 4). Low study power was acknowledged by 11 studies (9%), and is likely to be a feature of many more which did not report it. The low power of studies to observe rare contacts, coupled with the variation in, or lack of, contact definitions,

makes it very difficult to compare the effectiveness of the methods used to observe wildlifelivestock contacts.

228

229

Proposed unified framework to define direct and indirect contacts

Space (area or distance between animals) and time were the two recurring parameters in the 230 231 definitions in this review, albeit interpreted in a wide variety of ways. In an effort to unify these themes, a novel generic framework to categorise wildlife-livestock contacts is proposed in Fig. 4, 232 based on the locations of individuals in space and over time. The exact values of the critical 233 234 distance between animals and the critical time window over which this happens will depend on 235 the system being studied as well as the specific objectives of each study. Using this framework, we propose that the contact type (direct or indirect) is defined using the two parameters S_C and 236 237 T_C. For *direct contact*, two individuals are within a pre-specified critical space (distance or area: S_{C1}) within a pre-specified critical time window (T_{C1}). For *indirect contact* animals are within 238 239 another pre-specified critical space (S_{C2}) within a pre-specified critical time window (T_{C2}). T_{C2} 240 may be the same as T_{C1} (if S_{C2} is larger than S_{C1}) or T_{C2} may be different to T_{C1} (in which case 241 T_{C2} will usually, but not always, be larger than T_{C1}). Similarly, S_{C2} may be the same as S_{C1} (if T_{C2} is larger than T_{C1}) or S_{C2} may be different to S_{C1} (in which case S_{C2} will usually, but not 242 243 always, be larger than S_{C1}). The reader is directed to Fig. 4 for examples from the literature of possible combinations of S_C and T_C . Although these critical values will likely vary between 244 245 studies (depending on, for example, the animal species, the purpose of the study and the critical 246 time window of a contact), the adoption of this generic framework to define direct and indirect 247 contacts will help ensure results between studies are more easily comparable.

Discussion

248249250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

enable meaningful comparisons between studies regardless of the species studied or the context of the study. This is needed because our systematic review found definitions describing contacts between livestock and wildlife to be wide-ranging. Direct contact was extremely diverse, ranging from direct physical contact to animals being merely within a hundred metres of each other. Indirect contact ranged from animals sharing resources, being within five kilometres of each other or overlapping in home ranges, and the time window that these events occurred in varied from hours to weeks. Making any sort of meaningful comparison between such studies is challenging. For example it is difficult to assess what, if any, implications there are for deercattle disease transmission from a behavioural study showing deer avoid cattle despite similar habitat preferences [41], without knowing what types of contact (e.g., direct or indirect; what specific types) were likely to be meaningful. It is even difficult to compare studies within the same system, for example establishing the relevance of cattle-badger contacts for bovine tuberculosis transmission when some studies define a contact as 'presence on farm' [42, 43] and others define it as 'presence in buildings', and neither study defines the time window.

The generic unified framework was developed to promote consistent definitions of contacts and

265

266

267

268

269

270

271

Models that incorporate empirical rather than theoretical information on the frequency and duration of contacts important for disease transmission are more likely to be useful for disease mitigation [11]. The use of a standardised definition framework in future studies of livestock-wildlife contacts would enable consistency in datasets, which could then be incorporated into models in a similar way to the retrospective data used in recent bovine tuberculosis transmission models [16, 44]. The generic unified framework proposed in this current paper will be useful in

designing livestock-wildlife contact studies since defining the type of contact helps with the choice of observation method. The framework is also flexible and applicable to different contexts, species and diseases, and it is hoped it will broaden the range of future livestock-wildlife contact studies.

This review has identified the narrow scope of livestock-wildlife contact studies, with the majority of studies focusing on cattle-wildlife contacts and diseases of cattle. Bovine tuberculosis (infection with *M. bovis*) featured prominently, indicative of the economic and potentially zoonotic importance of this disease to the USA and UK, where the most livestock-wildlife contact studies were conducted [45, 46]. That foot-and-mouth-disease was the most studied viral pathogen is likely explained by its broad geographical spread and high economic impact [47]. This demonstrates the human-centric view of the wildlife-livestock interface, with most focus on the impacts on humans and domestic animals, and very little (if any) focus on the value of wildlife [48]. There were, however, livestock-wildlife contact studies of high impact conservation importance such as mannhemmasis in bighorn sheep (*Ovis canadensis*) and pasteurellosis in saiga antelope [49-51]. If we are to collect more (and better) wildlife-livestock contact data that include a broader range of species and contexts, careful consideration must be used when selecting the most effective and practical observational method for monitoring cryptic wildlife species.

To resolve human-wildlife conflicts usually requires robust livestock-wildlife contact studies. At least 120 studies that only used predation events to infer livestock-wildlife contacts were excluded from the review, yet predators – particularly wolves – were the second most commonly

studied group of wild mammals. Given that predation studies appear to form a large proportion of wildlife-livestock contact studies, this is an area where adoption of the generic framework could help design meaningful contact studies to evaluate preventive measures without relying solely on predation events.

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

295

296

297

298

This review highlights that observing contacts between multiple species is possible and can yield high quality information. Increasing the efficiency of monitoring methods would justify their use for more applications. Health surveillance systems at livestock-wildlife interfaces have been suggested as a method to detect and control emerging diseases along with preventing contact between wildlife and livestock [52]. Preventing high-risk contacts may be more cost-effective than surveillance, but the effectiveness of prevention strategies will need to evaluated by monitoring contacts, or lack thereof. More efficient monitoring will also allow for quantitative risk assessments of wildlife-livestock contacts which are presently difficult to conduct due to a limited understanding of potential contacts leading to pathogen transmission [53]. Some observation methods such as camera traps are likely to have the ability to identify new potential transmission routes between livestock and wildlife (e.g., the use of cattle salt licks by racoons [26]), and may identify livestock-wildlife contacts previously not considered (e.g., observing farm visits by foxes during a study focusing on badgers [54]). Identifying wildlife species that may be the origin of rapidly emerging human diseases such as COVID-19 is a priority to prevent future pandemics [55]. In situations where human infections are mediated by livestock, rapid implementation of observational methods to detect contacts between wildlife and livestock could improve the efficiency of identifying wildlife hosts and risky behaviours. In order to determine

317	the efficiency and efficacy of different observational methods, the methods used and data
318	collected by them must be comparable, hence the need for a unified framework.
319	
320	The generic unified framework presented in this paper is a step towards being able to compare
321	observation methods and contact data in order to standardise and evaluate different monitoring
322	methods. This is important as our systematic review revealed that the methods used to observe
323	livestock-wildlife contacts to date have often been of low power, particularly considering the
324	relatively rare madre of certain types of direct contact.
325	
326	Our study has some limitations which we summarise here. At present, our generic unified
327	framework does not explicitly account for disease transmission via vectors (e.g. mosquitoes) or
328	fomites (e.g. vehicle tyres), although the latter will to some extent be captured within our
329	definition of indirect contact. We focussed on mammals so did not address diseases such as avian
330	influenza. Small mammals (<5kg) were not included in this review despite bats and some rodents
331	being hosts of pathogens that affect livestock such as Nipah virus, Hendra virus and
332	leptospirosis. While the generic unified framework may be applicable to these types of wildlife,
333	it is unclear whether the observational methods seen in this review would be applicable.
334	
335	As human populations continue to expand and agriculture encroaches further on wildlife
336	habitats, disease spill-over between wildlife, livestock and humans is becoming more frequent
337	[1]. As a result, the study of contacts between livestock and wildlife is receiving ever increasing
338	attention. This systematic review of the observational methods used to study contacts, and the
339	subsequent proposal of a generic unified framework for defining contacts, are two steps towards

- ensuring that data are collected and reported in a standardised way at a time of increasingly
- 341 urgent need.

PeerJ

- 342 Acknowledgements
- 343 RVC manuscript number PPS_02151.

References 344

- 1. Wiethoelter, A.K., et al., Global trends in infectious diseases at the wildlife-345
- 346 livestock interface. Proceedings of the National Academy of Sciences, 2015.
- 347 **112**(31): p. 9662-9667.
- Dixon, L.K., et al., African Swine Fever Epidemiology and Control. Annual 348 2.
- 349 review of animal biosciences, 2019. 8.
- 350 3. Pitts, N. and T. Whitnall, *Impact of African swine fever on global markets*.
- Agricultural Commodities, 2019. 9(3): p. 52. 351
- Fereidouni, S., et al., Mass die-off of saiga antelopes, Kazakhstan, 2015. Emerging 352 4. 353 infectious diseases, 2019. **25**(6): p. 1169.
- Bautista, C., et al., Large carnivore damage in Europe: Analysis of compensation 354 5. and prevention programs. Biological conservation, 2019. 235: p. 308-316. 355
- Jones, B.A., et al., Zoonosis emergence linked to agricultural intensification and 356 6.
- environmental change. Proceedings of the National Academy of Sciences, 2013. 357
- **110**(21): p. 8399-8404. 358
- Field, H., et al., The natural history of Hendra and Nipah viruses. Microbes and 359 7. infection, 2001. **3**(4): p. 307-314. 360
- Böhm, M., M.R. Hutchings, and P.C.L. White, Contact networks in a wildlife-361 8.
- 362 livestock host community: identifying high-risk individuals in the transmission of bovine TB among badgers and cattle. PLoS ONE, 2009(No.April): p. e5016. 363
- 9. Drewe, J.A., et al., Patterns of direct and indirect contact between cattle and 364
- badgers naturally infected with tuberculosis. Epidemiology and Infection, 2013. 365 **141**(7): p. 1467-1475. 366
- 10. Barasona, J.A., et al., Spatiotemporal interactions between wild boar and cattle: 367 implications for cross-species disease transmission. Veterinary Research, 2014. 368
- **45**(122): p. (12 December 2014). 369
- 370 11. Craft, M.E., Infectious disease transmission and contact networks in wildlife and
- 371 livestock. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015. **370**(1669): p. 20140107. 372
- 12. Robertson, A., et al., Predicting badger visits to farm vards and making 373 374 predictions available to farmers. PloS one, 2019. 14(5).
- 375 13. Ausband, D.E., et al., No trespassing: Using a biofence to manipulate wolf 376 movements. Wildlife Research, 2013. 40(3): p. 207-216.
- 377 14. Lavelle, M.J., et al., Deer response to exclusion from stored cattle feed in 378 Michigan, USA. Preventive veterinary medicine, 2015. 121(1-2): p. 159-164.
- 379 15. Lavelle, M.J., et al., Evaluating wildlife-cattle contact rates to improve the
- 380 understanding of dynamics of bovine tuberculosis transmission in Michigan, USA. Preventive Veterinary Medicine, 2016. 135: p. 28-36.
- 381
- 16. Wilber, M.Q., et al., *Modelling multi-species and multi-mode contact networks*: 382
- 383 *Implications for persistence of bovine tuberculosis at the wildlife–livestock*
- interface. Journal of Applied Ecology, 2019. 56(6): p. 1471-1481. 384

- Eames, K., et al., *Six challenges in measuring contact networks for use in modelling*. Epidemics, 2015. **10**: p. 72-77.
- 387 18. FAO. *Livestock Statistics Concepts, Definitions and Classifications*. 2020 [cited 2020 26th February 2020]; Available from: http://www.fao.org/economic/the-statistics-division-ess/methodology/methodology-systems/livestock-statistics-

390 concepts-definitions-and-classifications/en/.

- 391 19. Grindlay, D.J.C., M.L. Brennan, and R.S. Dean, Searching the Veterinary
 392 Literature: A Comparison of the Coverage of Veterinary Journals by Nine
 393 Bibliographic Databases. Journal of Veterinary Medical Education, 2012. 39(4):
 394 p. 404-412.
- 395 20. Aghaei Chadegani, A., et al., A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian Social Science, 2013.
 397 9(5): p. 18-26.
- 398 21. R Core Team, *R: A language and environment for statistical computing.* 2020, R Foundation for Statistical Computing: Vienna, Austria.
- 400 22. Mizutani, F., M. Kadohira, and B. Phiri, Livestock-wildlife joint land use in dry
 401 lands of Kenya: a case study of the Lolldaiga Hills ranch. Animal Science Journal,
 402 2012. 83(6): p. 510-516.
- Sitters, J., et al., *Herded cattle and wild grazers partition water but share forage* resources during dry years in East African savannas. Biological Conservation, 2009. **142**(4): p. 738-750.
- Crawford, C.L., et al., Behavioral and Ecological Implications of Bunched,
 Rotational Cattle Grazing in East African Savanna Ecosystem. Rangeland
 Ecology & Management, 2019. 72(1): p. 204-209.
- Munyeme, M., et al., Cattle owners' awareness of bovine tuberculosis in high and low prevalence settings of the wildlife-livestock interface areas in Zambia. BMC Veterinary Research, 2010. **6**(21): p. (20 April 2010).
- Witmer, G., et al., *Epizootiologic survey of Mycobacterium bovis in wildlife and* farm environments in northern Michigan. Journal of Wildlife Diseases, 2010. **46**(2): p. 368-378.
- Katale, B.Z., et al., Prevalence and risk factors for infection of bovine tuberculosis in indigenous cattle in the Serengeti ecosystem, Tanzania. BMC Veterinary
 Research, 2013. 9(267): p. (30 December 2013).
- 418 28. Brahmbhatt, D.P., et al., Contacts between domestic livestock and wildlife at the
 419 Kruger National Park Interface of the Republic of South Africa. Preventive
 420 Veterinary Medicine, 2012. 103(1): p. 16-21.
- 421 29. Molla, B., et al., *Participatory epidemiology and associated risk factors of foot-*422 and-mouth disease in cattle in South Omo zone, South-Western Ethiopia. J. Vet. 423 Med. Anim. Health, 2013. **5**(11): p. 322-328.
- Pruvot, M., et al., *What attracts elk onto cattle pasture? Implications for inter*species disease transmission. Preventive Veterinary Medicine, 2014. **117**(2): p. 326-339.

- 427 31. Raizman, E.A., et al., Feasibility study on the spatial and temporal movement of Samburu's cattle and wildlife in Kenya using GPS radio-tracking, remote sensing and GIS. Preventive Veterinary Medicine, 2013. 111(01-Feb): p. 76-80.
- Cooper, S.M., et al., *Distribution and interaction of white-tailed deer and cattle in a semi-arid grazing system*. Agriculture, Ecosystems & amp// Environment, 2008. **127**(01-Feb): p. 85-92.
- Tolhurst, B.A., et al., Behaviour of badgers (Meles meles) in farm buildings: opportunities for the transmission of Mycobacterium bovis to cattle? Applied Animal Behaviour Science, 2009. 117(01-Feb): p. 103-113.
- Fleming, P.A., et al., *Predation by red foxes (Vulpes vulpes) at an outdoor piggery*. Animals, 2016. **6**(10): p. 60.
- Kukielka, E., et al., Spatial and temporal interactions between livestock and
 wildlife in South Central Spain assessed by camera traps. Preventive Veterinary
 Medicine, 2013. 112(03-Apr): p. 213-221.
- Guillermo Bueno, C., et al., *Does wild boar rooting affect livestock grazing areas in alpine grasslands?* European Journal of Wildlife Research, 2010. **56**(5): p. 765 770.
- Oriol-Cotterill, A., et al., *Spatiotemporal patterns of lion space use in a human-dominated landscape.* Animal Behaviour, 2015. **101**: p. 27-39.
- Wyckoff, A.C., et al., *Movement and habitat use of feral swine near domestic swine facilities.* Wildlife Society Bulletin, 2012. **36**(1): p. 130-138.
- 448 39. Cooper, S.M., et al., *Distribution and interspecies contact of feral swine and cattle*449 *on rangeland in South Texas: implications for disease transmission.* Journal of
 450 Wildlife Diseases, 2010. **46**(1): p. 152-164.
- 451 40. Cowie, C.E., et al., Interactions between four species in a complex wildlife:
- 452 livestock disease community: implications for Mycobacterium bovis maintenance
 453 and transmission. European Journal of Wildlife Research, 2016. 62(1): p. 51-64.
- 454 41. Mattiello, S., et al., *Effect of dairy cattle husbandry on behavioural patterns of red*455 *deer (Cervus elaphus) in the Italian Alps.* Applied Animal Behaviour Science,
 456 2002. **79**(4): p. 299-310.
- 42. Mullen, E.M., et al., *The avoidance of farmyards by European badgers Meles meles in a medium density population*. Applied Animal Behaviour Science, 2015.
 459 171: p. 170-176.
- 460 43. Sleeman, D.P., J. Davenport, and A. Fitzgerald, *Incidence of visits by badgers to farmyards in Ireland in winter*. Veterinary Record, 2008. **163**(24): p. 724.
- 462 44. Silk, M.J., et al., Quantifying direct and indirect contacts for the potential transmission of infection between species using a multilayer contact network.

 464 Behaviour, 2018. **155**(7-9): p. 731-757.
- 465 45. De la Rua-Domenech, R., *Human Mycobacterium bovis infection in the United*466 *Kingdom: incidence, risks, control measures and review of the zoonotic aspects of*467 *bovine tuberculosis.* Tuberculosis, 2006. **86**(2): p. 77-109.

468 46. O'Brien, D.J., et al., Management of bovine tuberculosis in Michigan wildlife:
 469 current status and near term prospects. Veterinary microbiology, 2011. 151(1-2):

p. 179-187.

- 47. Knight-Jones, T. and J. Rushton, *The economic impacts of foot and mouth*472 *disease—What are they, how big are they and where do they occur?* Preventive
 473 veterinary medicine, 2013. **112**(3-4): p. 161-173.
- 474 48. Chardonnet, P., et al., *The value of wildlife*. Revue scientifique et technique-Office international des épizooties, 2002. **21**(1): p. 15-52.
- 476 49. Clifford, D.L., et al., *Assessing disease risk at the wildlife-livestock interface: a*477 *study of Sierra Nevada bighorn sheep.* Biological Conservation, 2009. **142**(11): p.
 478 2559-2568.
- O'brien, J.M., et al., *Incorporating foray behavior into models estimating contact* risk between bighorn sheep and areas occupied by domestic sheep. Wildlife Society Bulletin, 2014. **38**(2): p. 321-331.
- Beauvais, W., et al., *Rapidly assessing the risks of infectious diseases to wildlife* species. Royal Society open science, 2019. **6**(1): p. 181043.
- Gortazar, C., et al., *The wild side of disease control at the wildlife-livestock-human interface: a review.* Frontiers in veterinary science, 2015. **1**: p. 27.
- Miller, R.S., M.L. Farnsworth, and J.L. Malmberg, *Diseases at the livestock—wildlife interface: status, challenges, and opportunities in the United States.* Preventive veterinary medicine, 2013. 110(2): p. 119-132.
- 489 54. O'Mahony, D.T., *Multi-species visit rates to farmyards: implications for biosecurity.* Veterinary Journal, 2015. **203**(1): p. 126-128.
- 491 55. Gralinski, L.E. and V.D. Menachery, *Return of the Coronavirus: 2019-nCoV*.
 492 Viruses, 2020. 12(2): p. 135.
- Brook, R.K., et al., Evaluating use of cattle winter feeding areas by elk and whitetailed deer: implications for managing bovine tuberculosis transmission risk from the ground up. Preventive Veterinary Medicine, 2013. **108**(02-Mar): p. 137-147.
- Hockings, K.J., et al., *Chimpanzee interactions with nonhuman species in an anthropogenic habitat.* Behaviour, 2012. **149**(03-Apr): p. 299-324.
- 498 58. Campbell, E.L., et al., *Interspecific visitation of cattle and badgers to fomites: A*499 *transmission risk for bovine tuberculosis?* Ecology and Evolution, 2019. **9**(15): p.
 8479-8489.
- Tolhurst, B.A., A.I. Ward, and R.J. Delahay, A study of fox (Vulpes vulpes) visits to farm buildings in Southwest England and the implications for disease management. European Journal of Wildlife Research, 2011. 57(6): p. 1227-1230.
- Vercauteren, K.C., et al., Fence-line contact between wild and farmed cervids in Colorado: potential for disease transmission. Journal of Wildlife Management, 2007. **71**(5): p. 1594-1602.
- Vercauteren, K.C., et al., Fence-line contact between wild and farmed white-tailed deer in Michigan: potential for disease transmission. Journal of Wildlife Management, 2007. **71**(5): p. 1603-1606.

- Jori, F., et al., Questionnaire-based assessment of wild boar/domestic pig interactions and implications for disease risk management in Corsica. Frontiers in Veterinary Science, 2017. 4(December): p. 198.
- 513 63. Trabucco, B., et al., *Stakeholder's practices and representations of contacts*514 between domestic and wild pigs: a new approach for disease risk assessment?
 515 Acta argiculturae Slovenica, 2013: p. 117-122.
- 516 64. Benham, P.F.J. and D.M. Broom, *Interactions between cattle and badgers at pasture with reference to bovine tuberculosis transmission*. British Veterinary Journal, 1989. **145**(3): p. 226-341.
- 519 65. Drewe, J.A., et al., *Performance of proximity loggers in recording intra- and inter-species interactions: A laboratory and field-based validation study.* PLoS ONE, 2012. **7**(6): p. -.
- Garnett, B.T., R.J. Delahay, and T.J. Roper, Use of cattle farm resources by
 badgers (Meles meles) and risk of bovine tuberculosis (Mycobacterium bovis)
 transmission to cattle. Proceedings of the Royal Society of London. Series B,
 Biological Sciences, 2002. 269(1499): p. 1487-1491.
- Woodroffe, R., et al., *Badgers prefer cattle pasture but avoid cattle: implications for bovine tuberculosis control.* Ecology Letters, 2016. **19**(10): p. 1201-1208.
- Walter, W.D., et al., On-farm mitigation of transmission of tuberculosis from white-tailed deer to cattle: literature review and recommendations. Veterinary Medicine International, 2012. **2012**: p. Article ID 616318.
- Hill, J.A., Wildlife-cattle interactions in northern Michigan: implications for the transmission of bovine tuberculosis. 2005.
- 533 70. Balseiro, A., et al., *Effectiveness of a calf-selective feeder in preventing wild boar access.* European Journal of Wildlife Research, 2019. **65**(3): p. 38.
- Barasona, J.A., et al., Environmental presence of Mycobacterium tuberculosis complex in aggregation points at the wildlife/livestock interface. Transboundary and emerging diseases, 2017. **64**(4): p. 1148-1158.
- Cadenas-Fernández, E., et al., Free-ranging pig and wild boar interactions in an endemic area of African swine fever. Frontiers in veterinary science, 2019. 6: p.
 376.
- Payne, A., et al., *Wildlife visits to farm facilities assessed by camera traps in a bovine tuberculosis-infected area in France*. European Journal of Wildlife Research, 2016. **62**(1): p. 33-42.
- 74. Richomme, C., D. Gauthier, and E. Fromont, *Contact rates and exposure to inter*species disease transmission in mountain ungulates. Epidemiology and Infection, 2006. **134**(1): p. 21-30.
- Wu, N., et al., Risk factors for contacts between wild boar and outdoor pigs in
 Switzerland and investigations on potential Brucella suis spill-over. BMC
 Veterinary Research, 2012. 8(116): p. (20 July 2012).
- Wyckoff, A.C., et al., Feral swine contact with domestic swine: a serologic survey and assessment of potential for disease transmission. Journal of Wildlife Diseases, 2009. **45**(2): p. 422-429.

PeerJ

- 553 77. Dion, E., L. VanSchalkwyk, and E.F. Lambin, *The landscape epidemiology of*554 *foot-and-mouth disease in South Africa: A spatially explicit multi-agent*555 *simulation.* Ecological Modelling, 2011. **222**(13): p. 2059-2072.
- Kukielka, E.A., et al., Wild and domestic pig interactions at the wildlife-livestock
 interface of Murchison Falls National Park, Uganda, and the potential association
 with African swine fever outbreaks. Frontiers in Veterinary Science, 2016.
 3(April): p. 31.
- 560 79. Arzamendia, Y. and B. Vilá, *Vicugna habitat use and interactions with domestic ungulates in Jujuy, Northwest Argentina*. Mammalia, 2015. **79**(3): p. 267-278.
- 562 80. Colman, J.E., et al., *Behavioral interference between sympatric reindeer and domesticated sheep in Norway*. Rangeland Ecology & amp// Management, 2012. **65**(3): p. 299-308.
- Kolowski, J.M. and K.E. Holekamp, Spatial, temporal, and physical
 characteristics of livestock depredations by large carnivores along a Kenyan
 reserve border. Biological Conservation, 2006. 128(4): p. 529-541.
- Laporte, I., et al., Effects of wolves on elk and cattle behaviors: implications for livestock production and wolf conservation. PLoS ONE, 2010(No.August): p. e11954.
- Mattiello, S., et al., *Social and spatial interactions between red deer and cattle in the Italian alps.* Zeitschrift für Saugetierkunde, 1997. **62**(SUPPL. 2): p. 134-138.
- 573 84. Steyaert, S.M., et al., *Resource selection by sympatric free-ranging dairy cattle and brown bears Ursus arctos.* Wildlife biology, 2011. **17**(4): p. 389-403.
- Rüttimann, S., M. Giacometti, and A.G. McElligott, *Effect of domestic sheep on chamois activity, distribution and abundance on sub-alpine pastures*. European Journal of Wildlife Research, 2008. **54**(1): p. 110-116.
- 578 86. Schroeder, N.M., et al., *Including species interactions in resource selection of guanacos and livestock in Northern Patagonia*. Journal of Zoology, 2013. **291**(3): p. 213-225.
- Stahl, P., et al., Factors affecting lynx predation on sheep in the French Jura.
 Journal of Applied Ecology, 2002. **39**(2): p. 204-216.
- 583 88. Anderson, A., et al., *Predation and disease-related economic impacts of wild pigs*584 *on livestock producers in 13 states.* Crop protection, 2019. **121**: p. 121-126.
- Barasona, J.A., et al., Effectiveness of cattle operated bump gates and exclusion fences in preventing ungulate multi-host sanitary interaction. Preventive Veterinary Medicine, 2013. **111**(01-Feb): p. 42-50.
- 588 90. Carrasco-Garcia, R., et al., *Wildlife and livestock use of extensive farm resources* 589 *in South Central Spain: implications for disease transmission.* European Journal 590 of Wildlife Research, 2016. **62**(1): p. 65-78.
- 591 91. Carusi, L.C.P., M.S. Beade, and D.N. Bilenca, *Spatial segregation among pampas* 592 *deer and exotic ungulates: A comparative analysis at site and landscape scales.* 593 Journal of Mammalogy, 2017. **98**(3): p. 761-769.
- Howe, R., et al., A spatially integrated disease risk assessment model for wildlife/livestock interactions in the Ngorongoro Conservation Area of Tanzania.

- Proceedings of the 9th Symposium of the International Society for Veterinary Epidemiology and Economics, Breckenridge, Colorado, USA, August 6-11 2000, 2000: p. Id 127.
- Meunier, N.V., et al., *Wildlife-livestock interactions and risk areas for cross*species spread of bovine tuberculosis. Onderstepoort Journal of Veterinary Research, 2017. **84**(1): p. a1221.
- Ward, A.I., et al., Survey of badger access to farm buildings and facilities in relation to contact with cattle. Veterinary Record, 2008. **163**(4): p. 107-111.
- Weise, F.J., et al., *Lions at the gates: Trans-disciplinary design of an early warning system to improve human-lion coexistence.* Frontiers in Ecology and Evolution, 2019. **6**: p. 242.
- Kaczensky, P., et al., Through the eye of a Gobi khulan–Application of camera collars for ecological research of far-ranging species in remote and highly variable ecosystems. PloS one, 2019. **14**(6).
- Scantlebury, M., et al., *Risk of disease from wildlife reservoirs: badgers, cattle, and bovine tuberculosis.* Journal of Dairy Science, 2004. **87**(2): p. 330-339.
- Smith, L.A., et al., *Inter- and intra-specific exposure to parasites and pathogens* via the faecal-oral route: A consequence of behaviour in a patchy environment. Epidemiology and Infection, 2009. **137**(5): p. 630-643.
- Hutchings, M.R. and S. Harris, *Quantifying the risks of TB infection to cattle posed by badger excreta.* Epidemiology and Infection, 1999. **122**(1): p. 167-174.
- Brook, R.K., *Incorporating farmer observations in efforts to manage bovine* tuberculosis using barrier fencing at the wildlife-livestock interface. Preventive Veterinary Medicine, 2010. **94**(03-Apr): p. 301-305.
- 623 102. O'Mahony, D.T., *Use of water troughs by badgers and cattle.* Veterinary Journal, 624 2014. **202**(3): p. 628-629.
- 625 103. Atwood, T.C., et al., Spatial ecology of raccoons related to cattle and bovine tuberculosis in Northeastern Michigan. Journal of Wildlife Management, 2009. 73(5): p. 647-654.
- Tsukada, H., et al., *Depredation of concentrated feed by wild mammals at a stock* farm in Japan. Mammal Study, 2010. **35**(4): p. 281-287.
- 630 105. Barth, S.A., et al., Faecal Escherichia coli as biological indicator of spatial interaction between domestic pigs and wild boar (Sus scrofa) in Corsica.
 632 Transboundary and Emerging Diseases, 2018. **65**(3): p. 746-757.
- 633 106. Maleko, D.D., et al., *Impacts of wildlife-livestock interactions in and around*634 *Arusha National Park, Tanzania*. Current Research Journal of Biological Sciences,
 635 2012. **4**(4): p. 471-476.
- 636 107. Mullen, E.M., et al., Foraging Eurasian badgers Meles meles and the presence of cattle in pastures. Do badgers avoid cattle? Applied Animal Behaviour Science, 2013. **144**(03-Apr): p. 130-137.

- Ribeiro-Lima, J., et al., *Patterns of cattle farm visitation by white-tailed deer in* relation to risk of disease transmission in a previously infected area with bovine tuberculosis in Minnesota, USA. Transboundary and Emerging Diseases, 2017. **64**(5): p. 1519-1529.
- Robertson, A., et al., *How well do farmers know their badgers? Relating farmer knowledge to ecological survey data.* Veterinary Record, 2017. **180**(2): p. 48.
- Woodroffe, R., et al., *Use of farm buildings by wild badgers: implications for the transmission of bovine tuberculosis.* European Journal of Wildlife Research, 2017. **63**(1): p. 6.
- Triguero-Ocaña, R., et al., Spatio-temporal trends in the frequency of interspecific
 interactions between domestic and wild ungulates from Mediterranean Spain.
 PloS one, 2019. 14(1).
- Bromen, N.A., et al., *Spatial relationships between livestock guardian dogs and mesocarnivores in central Texas.* Human–Wildlife Interactions, 2019. **13**(1): p. 8.
- 653 113. Chavez, A.S. and E.M. Gese, *Landscape use and movements of wolves in relation*654 *to livestock in a wildland-agriculture matrix.* Journal of Wildlife Management,
 655 2006. **70**(4): p. 1079-1086.
- Ham, C., et al., Effect of culling on individual badger Meles meles behaviour:
 Potential implications for bovine tuberculosis transmission. Journal of Applied
 Ecology, 2019. 56(11): p. 2390-2399.
- 659 115. Muhly, T.B., et al., Differential risk effects of wolves on wild versus domestic prey 660 have consequences for conservation. Oikos, 2010. **119**(8): p. 1243-1254.
- 661 116. Odadi, W.O., et al., Fire-induced negative nutritional outcomes for cattle when sharing habitat with native ungulates in an African savanna. Journal of Applied Ecology, 2017. **54**(3): p. 935-944.
- 664 117. Gehring, T.M., et al., *Utility of livestock-protection dogs for deterring wildlife* 665 *from cattle farms.* Wildlife Research, 2010. **37**(8): p. 715-721.
- Braz, P.H., et al., Risk of exposure of farms and subsistence nurseries to contact
 with wild boar in southern Mato Grosso do Sul. Pesquisa Veterinária Brasileira,
 2019. 39(2): p. 148-154.
- Judge, J., et al., Effectiveness of biosecurity measures in preventing badger visits
 to farm buildings. PLoS ONE, 2011(No.December): p. e28941.
- Kamler, J.F., et al., Social organization, home ranges, and extraterritorial forays
 of black-backed jackals. The Journal of Wildlife Management, 2019. 83(8): p.
 1800-1808.
- Van Der Weyde, L.K., et al., Movement patterns of cheetahs (Acinonyx jubatus) in farmlands in Botswana. Biology Open, 2017. **6**(1): p. 118-124.
- Viggers, K.L. and J.P. Hearn, *The kangaroo conundrum: home range studies and implications for land management.* Journal of Applied Ecology, 2005. **42**(1): p. 99-107.
- Berentsen, A.R., et al., *Characteristics of white-tailed deer visits to cattle farms: implications for disease transmission at the wildlife-livestock interface.* European
 Journal of Wildlife Research, 2014. **60**(2): p. 161-170.

- Tolhurst, B.A., et al., *The behavioural responses of badgers (Meles meles) to exclusion from farm buildings using an electric fence*. Applied Animal Behaviour
 Science, 2008. **113**(01-Mar): p. 224-235.
- 685 125. Miguel, E., et al., Contacts and foot and mouth disease transmission from wild to domestic bovines in Africa. Ecosphere, 2013. **4**(4): p. art51.
- Miguel, E., et al., *Drivers of foot-and-mouth disease in cattle at wild/domestic interface: insights from farmers, buffalo and lions.* Diversity and Distributions, 2017. **23**(9): p. 1018-1030.
- 690 127. Abade, L., et al., Spatial variation in leopard (Panthera pardus) site use across a 691 gradient of anthropogenic pressure in Tanzania's Ruaha landscape. PloS one, 692 2018. **13**(10).
- 693 128. Acebes, P., J. Traba, and J.E. Malo, *Co-occurrence and potential for competition*694 *between wild and domestic large herbivores in a South American desert.* Journal
 695 of Arid Environments, 2012. 77: p. 39-44.
- 696 129. Atickem, A. and L.E. Loe, *Livestock-wildlife conflicts in the Ethiopian highlands:*697 assessing the dietary and spatial overlap between mountain nyala and cattle.
 698 African Journal of Ecology, 2014. **52**(3): p. 343-351.
- Borgnia, M., B.L. Vilá, and M.H. Cassini, *Interaction between wild camelids and livestock in an Andean semi-desert*. Journal of Arid Environments, 2008. **72**(12): p. 2150-2158.
- 702 131. Coe, P.K., et al., Responses of elk and mule deer to cattle in summer. Journal of Range Management, 2001. **54**(2 (Special Electronic Section)): p. A51-A76.
- 704 132. Cohen, W.E., et al., *Observations on white-tailed deer and habitat response to*705 *livestock grazing in south Texas.* Journal of Range Management, 1989. **42**(5): p.
 706 361-365.
- 707 133. Dohna, H.z., et al., Wildlife-livestock interactions in a western rangeland setting:
 708 quantifying disease-relevant contacts. Preventive Veterinary Medicine, 2014.
 709 113(4): p. 447-456.
- Tay, Making contact: rooting out the potential for exposure of commercial production swine facilities to feral swine in North
 Carolina. EcoHealth, 2011. 8(1): p. 76-81.
- 713 135. Jori, F., et al., A qualitative risk assessment of factors contributing to foot and 714 mouth disease outbreaks in cattle along the western boundary of the Kruger 715 National Park. Revue Scientifique et Technique - Office International des 716 Épizooties, 2009. **28**(3): p. 917-931.
- 717 136. Kitts-Morgan, S.E., et al., *Wildlife visitation on a multi-unit educational livestock* facility in northwestern Georgia. Southeastern Naturalist, 2015. **14**(2): p. 267-280.
- Knust, B.M., P.C. Wolf, and S.J. Wells, Characterization of the risk of deer-cattle interactions in Minnesota by use of an on-farm environmental assessment tool.
 American journal of veterinary research, 2011. 72(7): p. 924-931.
- 722 138. Kuiters, A.T., G.W.T.A.G. Bruinderink, and D.R. Lammertsma, *Facilitative and competitive interactions between sympatric cattle, red deer and wild boar in Dutch woodland pastures.* Acta Theriologica, 2005. **50**(2): p. 241-252.

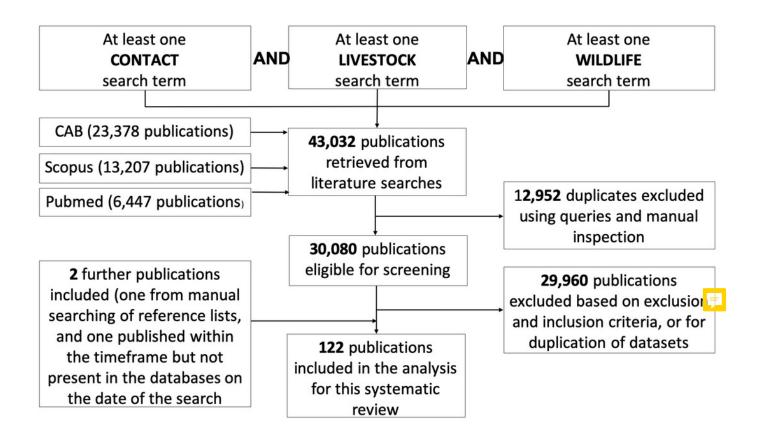

- 139. Loft, E.R., J.W. Menke, and J.G. Kie, *Interaction of cattle and deer on mountain rangeland*. California Agriculture, 1986. **40**(01-Feb): p. 06-Sep.
- 727 140. Moa, P.F., et al., *Does the spatiotemporal distribution of livestock influence forage* 728 patch selection in Eurasian lynx Lynx lynx? Wildlife Biology, 2006. **12**(1): p. 63-729 70.
- 730 141. Pearson, H.E., et al., *Pathogen presence in feral pigs and their movement around*731 *two commercial piggeries in Queensland, Australia.* Veterinary Record, 2014.
 732 **174**(13): p. 325.
- 733 142. Salter, R.E. and R.J. Hudson, *Range relationship of feral horses with wild ungulates and cattle in western Alberta*. Journal of Range Management, 1980.
 735 33(4): p. 266-271.
- Shrestha, R., Coexistence of wild and domestic ungulates in the Nepalese Trans Himalaya: resource competition or habitat partitioning?, in Coexistence of wild
 and domestic ungulates in the Nepalese Trans-Himalaya: resource competition or
 habitat partitioning? 2007: s, Norway. p. 35 pp.
- 740 144. Valls-Fox, H., et al., *Water and cattle shape habitat selection by wild herbivores* 741 *at the edge of a protected area.* Animal Conservation, 2018: p. -.
- Wronski, T., et al., Interactions between wildlife, humans and cattle: activity
 patterns of a remnant population of impala on the degraded Mutara Rangelands,
 Rwanda. Rangeland Journal, 2015. 37(4): p. 357-365.
- 745 146. No author available, *Caught on camera: surveillance monitors badgers' visits to farms*. The Veterinary record, 2013. **173**(5): p. 105-.

Figure 1

Flow chart documenting literature retrieval and criteria used to select articles for inclusion in the systematic review of direct and indirect contacts between wildlife and livestock.

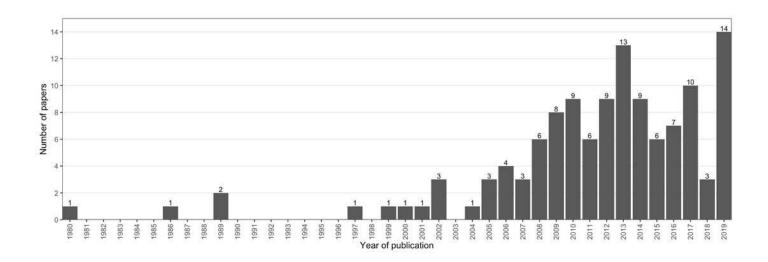

Search categories (wildlife, livestock, contact term) were combined by the Boolean operator 'AND' to identify publications containing all three terms. Databases were searched up to 11 November 2019 with no historic limit.

Figure 2

Distribution of the publication times of 122 papers included in the systematic review.

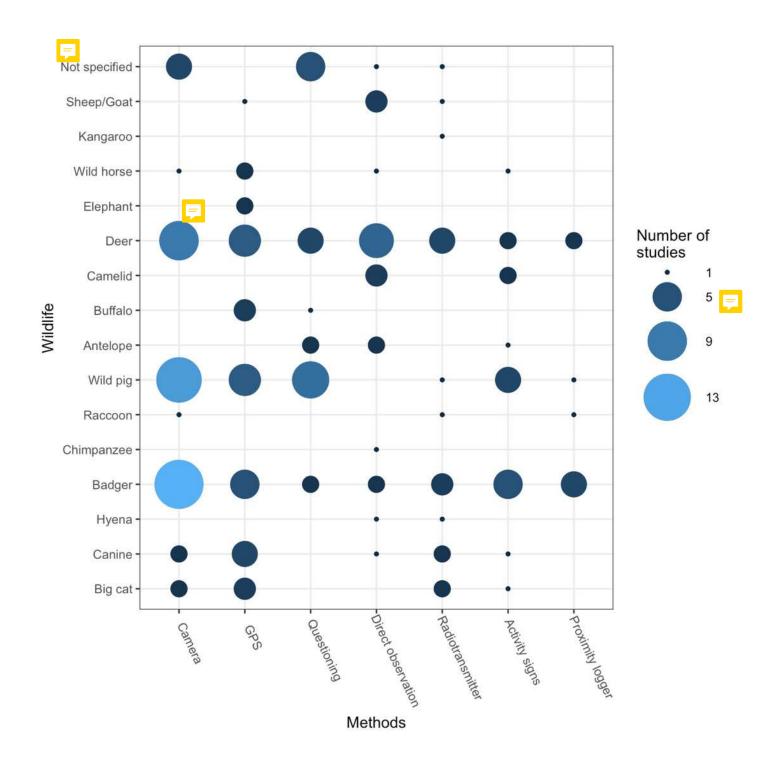
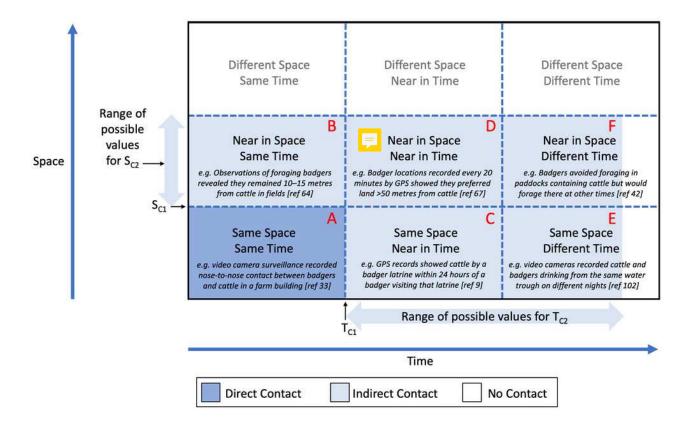


Figure 3

Methods used to monitor wildlife.

Data from 122 papers included in the systematic review. The size and shade of circles indicate the number of studies in each category. Many publications used more than one method to monitor contacts, and therefore the numbers of studies exceed 100% for some groups.


Figure 4

A proposed generic framework for describing and categorising contacts between livestock and wildlife.

Examples from studies of contacts between badgers and cattle are provided to demonstrate the use of the framework. The two key parameters are time and space: S_{c1} represents 'critical space 1', the maximum amount of space (distance or area) within which direct contact may occur; and T_{C1} represents 'critical time 1', the maximum duration of time within which direct contact may occur. Thus for a direct contact to occur, two or more individuals must be within a pre-specified critical space (distance or area: S_{C1}) within a pre-specified critical time window (T_{c1}). Similarly, S_{c2} represents 'critical space 2', the maximum amount of space (distance or area) within which indirect contact may occur; and T_{C2} represents 'critical time 2', the maximum duration of time within which indirect contact may occur. Thus for an indirect contact to occur, two or more individuals must be within a pre-specified critical space (distance or area: S_{c2}) within a pre-specified critical time window (T_{c2}). Note that T_{c2} may be the same as T_{c1} (if S_{c2} is larger than S_{c1} : compare example A with example B) or T_{c2} may be different to T_{c1} (in which case T_{c2} will usually, but not always, be larger than T_{c1} : compare example A with examples C, D, E and F). Similarly, S_{c2} may be the same as S_{c1} (if T_{c2} is larger than T_{c1} : compare example A with examples C and E) or S_{c2} may be different to S_{c1} (in which case S_{c2} will usually, but not always, be larger than S_{c1} : compare example A with examples B, D and F). The values of time or space which relate to being the same, near or different will vary by system and will depend on factors such as host behaviour and the survival time of an infectious dose of pathogen in the environment; therefore, values for T_{c1} , T_{c2} , S_{c1} and S_{c2} should be decided in advance of a study being conducted, and they should be clearly reported when data are presented. Note that the lighter blue shading does not extend all the

way to the right of the diagram because there is an upper limit to the value of time which T_{c2} can take: beyond this value, animals in the same (or nearby) space will not be in contact.

Table 1(on next page)

Exclusion and inclusion criteria to select studies for the systematic review of livestock and wildlife, and criteria used during data extraction to derive a 'quality score' for each study

1 2

3

4

5 6

7 8 9

10 11 12

13 14 15

> 16 17

18 19

20

29 30 31

27

28

31 32 33

3435

36

373839

Exclusion Criteria

- 1. Study does not involve a wild mammal species where adults are typically heavier than 5kg.
- 2. Study does not involve a farmed mammal species where adults are typically heavier than 5kg, or farmland associated with such livestock.
- 3. Study does not attempt to collect, use or analyse data to investigate contacts between wild animals and livestock or livestock farms.
- 4. Study does not attempt to collect, use or analyse data to establish at least one of the following: characterisation of, the nature of, frequency of, or risk factors for, contacts between wildlife and livestock.
- 5. Full text not available in English.
- 6. Full text not accessible to reviewers.
- 7. The method of recording livestock-wildlife contacts relies solely on predation events where the only observations are livestock kills or scat analysis
- 8. Wild animals were non-free-living, pre-tamed or relocated for the purpose of the study.

Inclusion Criteria

The study aims to collect, use, or analyse data to establish at least one of the following:

- 1. A quantifiable measure of direct contact between wildlife and livestock, where direct contact is defined as physical contact between at least one wild animal and one farm animal.
- 2. A quantifiable measure of indirect contact between wildlife and livestock, where indirect contact is defined as contact between at least one wild animal and a resource used by at least one farm animal including, but not limited to, food, water and space
- 3. Characterise and establish the type of, or risk factors for, direct or indirect contact between wildlife and livestock, as defined above.

Quality Appraisal Criteria

- 1. The study has clear aim(s) or objective(s)
- 2. One aim or objective is to investigate contact between livestock and wildlife
- 3. Direct or indirect contact is defined
- 4. Contacts are observable, not simply implied or alluded to
- 5. The power of the study is considered
- 6. Level of uncertainty of results are acknowledged
- 7. Conclusions are robust and are directly derived from the results

Table 2(on next page)

Definitions of direct contact from a systematic review of studies of livestock and wildlife.

Parameters are listed in ascending order of distance between animals. Definitions that have been used for both direct and indirect contacts are shaded grey.

1

'Direct Contact' definition	Number (%) of publications using this definition	% Cumulative	References
At least two individuals making physical contact	9 (16)	16	[33, 56-63]
Individuals close enough to inhale expired breath	1 (2)	17 📮	[64]
Individuals within one metre of the same location within one second of each other	1 (2)	19	[15]
Individuals within two metres of each other	5 (9)	28	[9, 40, 65- 67]
Individuals within five metres of each other	3 (5)	33	[8, 68, 69]
Individuals within the same camera image	5 (9)	42 =	[35, 70-73]
Individuals within 20 metres of each other	1 (2)	45	[74]
Individuals within 20 metres of the same location within 15 minutes of each other	1 (2)	47	[39]
Individuals within same farm building	1 (2)	48	[34]
Individuals within holding (farm) boundary	1 (2)	50	[75]
Individuals within 100 metres of each other	2 (4)	54	[76, 77]
Individuals within 120 metres of each other	1 (2)	56 =	[78]
Studies that reported the frequency of, types of, or risk factors for, direct contacts without first defining them	25 (44)	100	[13, 22, 25, 26, 29, 30, 41, 79-96]
Total	56 (100)		

Table 3(on next page)

Definitions of indirect contact from a systematic review of studies of livestock and wildlife.

Parameters are listed in ascending order of distance and time. Definitions that have been used for both direct and indirect contacts are shaded grey.

1

;			
'Indirect Contact' definition	Number (%) of publications using this definition	% Cumulative	References
Individuals within the same camera image	2 (2)	2	[73, 97]
Two individuals photographed by the same camera trap within a specific time interval	1 (1)	3	[35]
Latrine (faecal pits) visits	5 (4)	7	[9, 65, 98- 100]
Individuals visiting the same food and water sources at unspecified time intervals	13 (11)	18	[15, 27, 56, 63, 66, 68, 70, 89, 90, 101-104]
Individuals visiting the same food or water source at the same time	2 (2)	20	[25, 62]
Individuals in the same space at different times	3 (3)	22	[31, 58, 105]
Individuals in the same space at the time	2 (2)	24	[106, 107]
Individuals in the same space at unspecified time interval	3 (3)	27	[10, 12, 69]
Individuals using the same food or water source within 6 hours	1 (1)	28	[40]
Individuals within 20 metres of the sallocation within 6 hours of each other	1 (1)	28	[39]
Individuals within 30 metres of livestock or feed	1 (1)	29	[108]
Presence in farm buildings at unspecified time interval	5 (4)	34	[26, 33, 59, 109, 110]
Individuals within 50 metres of each other	1 (1)	34	[85]
Individuals within 52 metres of the same location within one hour of each other	1 (1)	35	[111]
Individuals within 120m of each other	1 (1)	36	[28]
Individuals using the same space with 7 = days of each other	2 (2)	38	[24, 72]
Individuals using the same space within	1 (1)	39	[74]

'Indirect Contact' definition	Number (%) of publications using this definition	% Cumulative	References
15 days of each other			
Presence on pasture at the same time	5 (4)	43	[49, 64, 91, 95, 96]
Presence on pasture at unspecified time interval	8 (7)	50	[30, 34, 36, 67, 112-115]
Presence on pasture at different times	1 (1)	51	[116]
At holding boundary and on pasture at unspecified time interval	1 (1)	52	[117]
Presence on farm at unspecified time interval	12 (10)	62	[42, 43, 50, 54, 88, 94, 118-123]
At holding (farm) boundary	3 (3)	65	[60, 61, 124]
Individuals within 120 metres of the same location at different times	1 (1)	66	[78]
Individuals within 300 metres of the same location within 15 days of each other	2 (2)	67	[125, 126]
Individuals within 500 petres of the same location within 6 weeks of each other	1 (1)	68	[93]
Individuals within 500m nom holding (farm) boundary	2 (2)	70	[75, 76]
Individuals within 50 kilometres of the same location within 3 ments of each other	1 (1)	71	[51]
Studies that reported the frequency of, types of, or risk factors for, indirect contacts without first defining them	34 (29)	100	[22, 23, 29, 32, 37, 41, 79-84, 89, 92, 127-146]
Total	116 (100)		

Table 4(on next page)

Summary of the frequency and types of contact reported between livestock and wildlife, and the method(s) used to observe contacts, from a systematic review of 122 studies.

1 **Reported frequency of Direct Reported frequency of Indirect** Type of contact contacts# contacts# Method(s)* References Livestock Wildlife Number of Studies Number of Studies Median Range Median Mean Range Mean Multiple (d,k,q) [51] Camelid Antelope Shared space use 1 Direct observation [79] Mixed grazing 0 0 0 and shared Camelid Multiple (a,d) [130] forage Activity signs [129] Shared space Direct observation [145] use, grazing and 6 Antelope Model [92] 0 0 0 1 6 6 water 1 Multiple 💷 q) [51] [93] Questioning [98] Activity signs Nose to nose [54, 58, 73, contact, and Camera F 102, 104, 119, being within two Cattle 146] metres of each Direct observation [64] other. [42, 107, 114] GPS Cattle Model [99, 100] 471.6 investigating or Multiple (a,c,m) [66] grazing at badger Multiple (a,c,r) 16.6 2.5 0-135 10 154 12-2099 17 Badger [109] latrines and setts Multiple (a,q) [12] on pasture. Multiple (a,c) [43] Badgers visiting Multiple (d,c,r) [124] farms and farm Multiple (c,g) [33] buildings, and Multiple (c,q) [94] shared use of [67] Multiple (c,r) feed and water Multiple (c,l) [110] troughs. Proximity logger [8, 9, 65] 85 Camera [127] Predation 1 6 6 85 4-166 2 Big cat GPS [95, 121]

Livestock	o)	*(s	ses	Reported frequency of Direct contacts#				Reported frequency of Indirect contacts#				Type of contact
	Wildlife	Method(s)*	References	Mean	Median	Range	Number of Studies	Mean	Median	Range	Number of Studies	
Cattle		Multiple (a,c) [9	6]									Visits to farm and pastures
	Buffalo	14 Model [7	.35]	0	0	0	1	89	89	6-172	2	Young buffalo joining cattle herd Contact between cattle and buffalo Within 100m of each other Shared grazing and water source
	Camelid	Direct observation [7	.28] [9, 86] .30]	0	0	0	1	0	0	0	1	-
	Canine	Camera [5: GPS [8: Multiple (a,d) [1 Radio-telemetry [1	9] 12, 84, 115] 17] 13, 120]	2.5	2.5	0-5	2	102.6	19	0-422	5	Within two metres of each other Excreting on stored feed, visits to pasture and buildings and hunting
	Deer	Camera [3. 90 Direct observation [4 91	1] 2, 108, 123] 8]	24.2	1	0-216	11	123	4545	0-40105	11	Aggression, being within five metres of cattle, being at water points at the same time. Sharing feed and

*	a)	*(s	S S S S S S S S S S S S S S S S S S S	Repo		equency o	f Direct	Reported frequency of Indirect contacts#				Type of contact
Livestock	Wildlife	Method(s)*	References	Mean	Median	Range	Number of Studies	Mean	Median	Range	Number of Studies	
Cattle	Deer	Multiple (g,q) Proximity logger Questioning Radio-telemetry	101, 137]									water and salt licks and visiting feed stores and pasture at different times to cattle. Damage on farm. Licking cattle urine.
	Elephant	GPS	[31, 144]	-	-	-	-	-	-	-	-	Home range overlaps with cattle grazing. Using water sources when cattle not present
	Hyena	Multiple (d,r)	[81]	0	0	0	1	-	-	-	-	Foraging around bomas but not entering them. Predation events
	Kangaroo	Radio-telemetry	[122]	_	_	-	-	_	-	-	-	Presence on farms
	Not specified		[24, 26, 116] [22] [25, 27-29, 106]	28	28	0-55	2	200	90	21-600	4	Close contact with cattle. Sharing water

*	a)	*(s	Ses	Repo		equency o	of Direct	Repo	rted fred	Type of contact		
Livestock	Wildlife	Method(s)*	References	Mean	Median	Range	Number of Studies	Mean	Median	Range	Number of Studies	
Cattle	Not specified	Radio-telemetry	[23]									sources and grazing at the same and different times to cattle. Raccoon licking salt licks near cattle.
	Raccoon	Multiple (c,l,r)	[103]	-	-	-	-	284	284	284 💆	1	Shared water, food and space
	Sheep/Goat	Direct observation Multiple (g,m)	[74] [49]	150	150	150	1	690	690	690	1	Close proximity. Shared pasture
	Wild horse	GPS Multiple (a,d)	[31] [142]	-	-	-	-	-	-	-	-	Home range overlaps with cattle grazing and feeding in close proximity. Using water sources.
	Wild pig	Activity signs Camera GPS Multiple (c,g) Multiple (c,p) Multiple (g,l) Questioning	[36, 138] [35, 70, 73, 89, 90, 104] [10, 111] [71] [39] [40] 88, 93]	29	1	0-216	9	327	213	6-992	8	Using feeders and water trough at the same and in close proximity. Predation. Using food and water sources at different times, in buildings and on pasture.
Farmed deer	Big cat	Radio-telemetry	[140]	-	-	-	-	-	-	-	-	on pastare.

*	d)	*(s	ës	Reported frequency of Direct contacts#				Reported frequency of Indirect contacts#				Type of contact
Livestock	Wildlife	Method(s)*	References	Mean	Median	Range	Number of Studies	Mean	Median	Range	Number of Studies	
	Deer	Camera	[60, 61]	40	40	0-77	2	439	439	439	1	Sparring and moving together along fence line
Goat	Antelope	Multiple (d,k,q)	[51]				-				-	Shared space use
	Big cat	Camera Multiple (a,c)	[127] [96]	6	6	6	1	4	4	4	1	Predation Presence on pasture
	Camelid Camelid	Direct observation Multiple (a,d)	[79, 86] [130]	0	0	0	1	-	-		-	Mixed grazing and shared forage resources separated spatially and temporally
	Canine	Radio-telemetry	[120]	-	-	-	-	22	22	22	1	-
	Chimpanzee	Direct observation	-	0	0	0 =	1	-	-	-	-	-
	Deer	Camera	[90]	0	0	0	1	-	-	-	-	-
	Hyena	Multiple (d,r)	[81]	-	-	-	-	-	-	-	-	Foraging around bomas but not entering them. Predation events
	Not specified	Camera	[112]	-	-	-	-	-	-	-	-	Presence on pasture
	Wild pig	Camera Questioning	[90] [88]	0	0	0 =	1	-	-	-	-	-
Not specified	Big cat	GPS	[37]	-	-	-	-	-	-	-	-	-
F	Sheep/Goat	Direct observation		-	-	-	-	-	-		-	Shared space and food resources
	Wild horse	Multiple (c,g)	[97]	-	-	-	-	30	30	30	1	Within photographing distance

*	o.	*(s	Ses	Repo		equency o	of Direct	Repoi		quency of In ntacts#	direct	Type of contact
Livestock	Wildlife	Method(s)*	References	Mean	Median	Range	Number of Studies	Mean	Median	Range	Number of Studies	
Pig	Canine	Camera	[34]	165	165	165	1	672	672	672	1	Approaching and entering farrowing huts and taking piglets Presence on pasture
	Deer	Camera Multiple (g,l)	[35, 90] [40]	75	8	0-216	3	352	352	80-624	2	Shared food and water
	Wild pig Wild pig	Camera GPS Multiple (a,c,g) Multiple (c,c,q) Multiple (c,m) Multiple (c,q) Multiple (g,l) Multiple (m,q) Multiple (p,r)	[35, 90] [141] [105] [118] [72] [40] [134] [75] [76] [52, 63, 78, 88]	29	1	0-489	8	581	104	0-2907	11	Contact through fences, close proximity, mating, fighting and predation. Shared food and water resources, around farms and near fence lines. Shared space at different times.
Sheep	Antelope	Multiple (d,k,q)	[51]	-	-	-	-	-	-	-	-	Shared space use
	Badger	GPS	[42]	-	-		-	6	6	6 =	1	Farm visits
厚	Big cat	Radio-telemetry	[87, 140]	109	109	109	1	-	-	-	_	Predation
Sheep	Camelid	Direct observation	[79, 86]	0	0	0	1	-	-	-	-	Mixed grazing and shared forage resources separated

*Some studies used multiple methods combining variations of activity signs (a), cameras (c), direct observation (d), GPS (g), literature review and expert knowledge elicitation (k), models (m), pathogen monitoring (p), proximity loggers (l), questioning (q) and radio-telemetry (r).

#The average frequencies of direct and indirect livestock-wildlife contacts are displayed along with the number of studies reporting raw (un-extrapolated) data. Studies that only reported extrapolated data (e.g. annual rates) or summarised frequency values were excluded from the calculations in this table.

In some cases no data were reported (-).

2

4

5