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ABSTRACT
Kidney renal clear cell carcinoma (KIRC) is the leading cause of kidney cancer-related
deaths. Currently, there are no studies in tumor immunology investigating the use
of signatures as a predictor of overall survival in KIRC patients. Our study attempts
to establish an immune-related gene risk signature to predict clinical outcomes in
KIRC. A total of 528 patients from The Cancer Genome Atlas (TCGA) database were
included in our analysis and randomly divided into training (n= 315) and testing sets
(n= 213). We collected 1,534 immune-related genes from the Immunology Database
and Analysis Portal as candidates to construct our signature. LASSO-COX was used to
find gene models with the highest predictive ability. We used survival and Cox analysis
to test the model’s independent prognostic ability. Univariate analysis identified 650
immune-related genes with prognostic abilities. After 1,000 iterations, we choose 14
of the most frequent and stable immune-related genes as our signature. We found
that the signature was associated with M stage, T stage, and pathological staging.
More importantly, the signature can independently predict clinical prognosis in KIRC
patients. Gene Set Enrichment Analysis (GSEA) showed an association between our
signature and critical metabolism pathways. Our research established a model based
upon 14 immune-related genes that predicted the prognosis of KIRC patients based on
tumor immune microenvironments.

Subjects Bioinformatics, Oncology, Urology, Data Science
Keywords Kidney renal clear cell carcinoma, Immune-related signature, Prognosis, Tumor
immune microenvironment

INTRODUCTION
Kidney cancer is one of themost commonurological tumorsworldwide,with approximately
403,262 new cases and 175,098 deaths associated with this form of cancer in 2018 (Bray et
al., 2018). Kidney renal clear cell carcinoma (KIRC) is the leading cause of kidney cancer
mortality and the most common type, accounting for 85% of kidney cancers (Siegel, Miller
& Jemal, 2017; Tseng, 2016). Considering the aging population of KIRC patients and the
rising expense of treatment, KIRC is gradually becoming the focus of geriatric cancer (Tan,
Filson & Litwin, 2015). Despite the rapid development of cancer treatments, mortality rates
in KIRC remain stagnant. With the progression of next generation sequencing and data
mining techniques, it is urgent that we explore prognostic biomarkers for KIRC, using
molecular characteristics and tumor immune environments to guide patient therapy.

How to cite this article Zou Y, Hu C. 2020. A 14 immune-related gene signature predicts clinical outcomes of kidney renal clear cell car-
cinoma. PeerJ 8:e10183 http://doi.org/10.7717/peerj.10183

https://peerj.com
mailto:chuanhuv@163.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.10183
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.10183


Over the past decade our understanding of immune components, including the impact
of tumor microenvironments on patient survival and therapy response (Chen & Mellman,
2017; Grivennikov, Greten & Karin, 2010), has increased. Some studies have found that
tumor-infiltrating immune cells are able to serve as either tumor suppressors or promoters
in microenvironments. For example, CD8+ T cells have been associated with improved
survival in cancer patients (Gajewski, Schreiber & Fu, 2013; Governa et al., 2017), while
tumor associated macrophages and regulatory T cells demonstrate the ability to promote
tumor development (Nishikawa & Sakaguchi, 2014; Noy & Pollard, 2014). Considering
the complexity and significance of tumor immune microenvironments, it is imperative
that we investigate immune-related biomarkers for KIRC patients. Recent studies have
provided insight into the KIRC immune signature (Geissler et al., 2015; Şenbabaoğlu et
al., 2016). Şenbabaoğlu et al. (2016) found mRNA signatures with the potential to be
immunotherapeutic biomarkers in KIRC. However, their investigations do not include
immune-related genes for analysis nor do they establish a systematic immune-related gene-
risk signature for KIRC patients. Khadirnaikar et al. (2019) utilized immune associated
lncRNA (long non-coding RNA) to construct prognostic subtypes in KIRC patients. Our
immune clusters were more robust and independent. Additionally, they concentrated on
lncRNA, not the overall immune-related genes. Smith et al. (2019) constructed endogenous
retroviral signatures for KIRC patients, but they did not investigate the prognostic ability
of the signature in different subtypes of patients. Therefore, it is essential that we explore a
systematic prognostic signature based on tumor immune environments in KIRC.

In our study, we used RNA-seq data from The Cancer Genome Atlas (TCGA) to find
immune-related genes with prognostic ability and to establish an immune-related risk
signature for KIRC. To assess the clinical potential of the signature, we investigated the
association between the signature, clinical parameters, and patient survival. Gene set
enrichment analysis (GSEA) was performed to explore the molecular characteristics of the
signature.

MATERIALS & METHODS
Patient cohort
The TCGA database from Xena browser was used to collect the clinical and RNA-seq data
of 528 KIRC patients (Goldman et al., 2019). We randomly divided the dataset into training
(n= 315) and test sets (n= 213). RNA-seq data was obtained to analyze the transcriptome
profiling of RNA expression and were measured using fragments per kilobase of exon
per million fragments mapped (FPKM). We performed a log2-based transformation to
normalize RNA expression profiles. To ensure detection reliability, genes with more than
half of their gene expression equal to zero were rejected in further investigations.

Immune-related genes
We downloaded a comprehensive list of over 1,534 immune-related genes from the
Immunology Database and Analysis Portal (ImmPort; https://immport.niaid.nih.gov;
(Bhattacharya et al., 2014). These genes cover a diverse range of functions in immune-
related pathways, including T cell receptor signaling pathways, B cell receptor signaling
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pathways, antigen processing and presentation, chemokine, interleukins, interleukin
receptors, chemokine receptors, cytokines, interferons, interferon receptors, cytokines
receptors, natural killer cell cytotoxicity, tumor necrosis factor (TNF) family members,
TNF family member receptors, transforming growth factor-b (TGF-b) family members,
and TGF-b family member receptors.

Establishment of immune-related gene signatures
We used the training set to establish an immune-related risk signature for KIRC and we
performed univariate Cox analysis to screen out immune-related genes with prognostic
properties (R package survival v2.42-6). After analyzing 1,534 immune-related genes, a
total of 650 genes were identified with prognostic abilities. To identify the best gene model
for predicting KIRC patient prognosis, genes with a P-value lower than 0.05 were evaluated
using the Cox proportional hazards model with a lasso penalty (log lambda = −2.641,
alpha = 1, iteration = 1,000, R package = ‘‘glmnet’’; (Friedman, Hastie & Tibshirani,
2010). We performed a 10-fold cross-validation to estimate the penalty parameter in the
training dataset. The gene model with the highest frequency in 1,000 iterations was chosen
as the immune-related risk signature for KIRC. Linear weighing was performed on gene
expression value and the Cox coefficient to determine the risk score (Shang et al., 2017).

Assessment of prognostic ability
We used Harrell’s c-index to estimate the predictive ability of the immune-related risk
signature in the training, testing, and total cohort (Harrell et al. 1982). The independent
prognostic ability of the immune-related risk signature was assessed using survival analysis
as well as Cox analysis (R package survival, v2.42). We performed multivariable Cox
regression to analyze the relationship between immune-related risk signatures and
clinicopathological factors.

Gene set enrichment analysis
To identify the biological functions and pathways between high- and low-risk groups,
we conducted GSEA to investigate potential biological mechanisms in the Molecular
Signatures Database (MSigDB; Subramanian et al., 2005). GSEA was performed using
GSEApy, a Python wrapper for gene enrichment (https://pypi.org/project/gseapy/). We
selected C2 and C5, including pathway databases and GO terms, from the MSigDB. The
gesa sub-command of GSEApy was used in GSEA with default parameters. Enriched gene
sets with a false discovery rate (FDR) of less than 0.25 and a P-value of less than 0.05 were
considered statistically significant.

Statistical analysis
Boxplots were created with the R package, ggplot2 (v3.0.0). The R package
ComplexHeatmap (v1.18.1) was used to create heatmaps (Gu, Eils & Schlesner, 2016).
We counted C-index with R packages ‘‘survcomp’’ (Harrell Jr et al., 1982; Schröder et
al., 2011). The student’s t -test was performed for statistical comparison. We chose R
to conduct statistical analysis (https://www.r-project.org/). P-values lower than 0.05
were considered statistically significant. The main code of analysis was pushed to github
(https://github.com/huchua/KIRC).
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Figure 1 The workflow of model construction.Our workflow constructing the model for risk-score sig-
natures.

Full-size DOI: 10.7717/peerj.10183/fig-1

RESULTS
Establishment and validation of the immune-related gene signature
in KIRC
Figure 1 illustrates the workflowwe used to develop an immune-related gene-risk signature.
The immune-related gene signature was constructed within the KIRC training data set,
while we applied the testing set to validate the signature. After 1,000 iterations, seven unique
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Figure 2 Establishment of the immune-related gene-risk signature for KIRC. (A) After 1,000 iterations,
seven gene model candidates for constructing the signature. The 14 immune-related gene-risk signature
ranked highest among all gene models. (B–C) Principle components analysis (PCA) using our risk signa-
ture in training and testing group. Red dots represent high-risk patients while blue dots represent low-risk
patients. (D) In training and testing cohort, the c-index is 0.7862 and 0.6534, respectively. (P < 0.001).

Full-size DOI: 10.7717/peerj.10183/fig-2

gene models were selected (Fig. 2A, Table S1). The model selected as the immune-related
gene-risk signature consisted of 14 genes and ranked the highest in frequency 282 times.
Parameter selection in the LASSO-cox model was log lambda =−2.641 and alpha = 1.
The univariate and multivariate Cox analysis of the 14 immune-related genes are shown
in Tables 1 and 2. The principle component analysis of the 14 immune-related gene
signature displayed a different distribution pattern between low- and high-risk groups
when comparing the training and testing (Figs. 2B–2C). This indicated that the low-
and high-risk groups had different immune phenotypes. In the training and testing, the
c-index was 0.7862 and 0.6534, respectively (P < 0.001; Fig. 2D). In a time-dependent
receiver operating characteristic curve (ROC) created for training and testing datasets, area
under the curve (AUC) values at 1, 3, and 5 years were 0.679, 0.63, 0.627 and 0.65, 0.596,
0.568, respectively (Fig. S2). The 14 immune-related genes are AR, BID, BMP8A, CCL7,
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Table 1 Univariate Cox analysis of 14 immune relate genes in all cohort.

Variable HR 95%CI p value

KLRC2 20.657 9.116–46.81 <0.001
CCL7 2.757 2.090–3.637 <0.001
SEMA3A 1.748 1.437–2.126 <0.001
SEMA3G 0.617 0.534–0.714 <0.001
CCR10 1.759 1.381–2.241 <0.001
BMP8A 1.813 1.298–2.532 <0.001
FGF17 7.335 3.202–16.803 <0.001
GDF1 1.483 1.062–2.070 0.021
IL4 109.106 34.328–346.781 <0.001
LHB 5.053 3.240–7.881 <0.001
TXLNA 2.329 1.500–3.618 <0.001
AR 0.548 0.463–0.649 <0.001
IL20RB 1.225 1.145–1.310 <0.001
BID 3.505 2.439–5.035 <0.001

CCR10, FGF17, GDF1, IL20RB, IL4, KLRC2, LHB, SEMA3A, SEMA3G, and TXLNA. K-M
(Kaplan–Meier) survival curves and gene expression of the 14 immune-related genes are
shown in Fig. 3 and Fig. S3. Because of the differences between the log-rank test and the
univariate cox analysis, the results of the univariate cox analysis of other genes except GDF1
are very consistent with the results of the K-M (Kaplan–Meier) survival curves.

Correlation between the signature of immune-related genes and
clinical parameters
Among the 14 immune-related genes, four genes (TXLNA, SEMA3G, AR, and BID) had a
high expression, and 10 genes (IL20RB, CCR10, BMP8A, SEMA3A, CCL7, GDF1, KLRC2,
LHB, FGF17, and IL4) had a low expression (Figs. 4A, 4B). The relationship between
the signature and clinical factors demonstrated that patients with advanced pathological
staging, M stage, and T stage had a higher risk score than those with early stage disease
(Figs. 4A, 4B; 5A, 5B, 5D). However, we did not find a correlation between the signature
and N stage (Figs. 4A, 4B; 5C).

Influence of the immune-related gene signature on patient prognosis
We then assessed whether this signature influenced KIRC patient prognosis. Survival
analysis showed that patients with a high-risk score were associated with poor survival
outcomes in the training and testing (Figs. 4C; 4E). We found that the signature also
predicted survival outcomes in subgroups of KIRC patients, including stage I-II (Fig. 6A),
stage III-IV (Fig. 6B),M0 stage (Fig. 6C),M1 stage (Fig. 6D),N0 stage (Fig. 6E), N1 (Fig. 6F),
T1 (Fig. 6G), T2 (Fig. 6H), T3 (Fig. 6I), and T4 (Fig. 6J). Multivariate Cox analysis revealed
that the risk signature was able to independently predict overall survival in KIRC patients
(Figs. 4D, 4F, Table 3).
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Table 2 Multivariate Cox analysis of 14 immune relate genes in all cohort.

AR 0.638 0.556–0.731 <0.001 IL20RB 1.268 1.102–1.46 0.001
age 1.352 1.143–1.599 <0.001 age 1.414 1.195–1.672 <0.001
stage 3.725 2.708–5.124 <0.001 stage 3.275 2.351–4.562 <0.001
gender 0.943 0.687–1.294 0.718 gender 1.025 0.744–1.412 0.879
BID 1.411 1.211–1.645 <0.001 IL4 1.458 1.294–1.643 <0.001
age 1.407 1.188–1.666 <0.001 age 1.39 1.171–1.651 <0.001
stage 3.173 2.284–4.41 <0.001 stage 3.426 2.484–4.725 <0.001
gender 1.039 0.755–1.43 0.814 gender 0.999 0.726–1.375 0.997
BMP8A 1.213 1.057–1.391 0.006 KLRC2 1.402 1.233–1.594 <0.001
age 1.454 1.229–1.721 <0.001 age 1.383 1.169–1.637 <0.001
stage 3.607 2.619–4.969 <0.001 stage 3.429 2.483–4.737 <0.001
gender 1.052 0.765–1.447 0.754 gender 0.958 0.694–1.322 0.792
CCL7 1.329 1.202–1.471 <0.001 LHB 1.285 1.168–1.414 <0.001
age 1.455 1.226–1.728 <0.001 age 1.393 1.178–1.647 <0.001
stage 3.485 2.529–4.802 <0.001 stage 3.519 2.55–4.854 <0.001
gender 1 0.726–1.377 1 gender 1.17 0.844–1.622 0.347
CCR10 1.235 1.111–1.372 <0.001 SEMA3A 1.214 1.107–1.33 <0.001
age 1.382 1.166–1.639 <0.001 age 1.445 1.218–1.715 <0.001
stage 3.844 2.793–5.292 <0.001 stage 3.549 2.572–4.898 <0.001
gender 1.034 0.751–1.424 0.836 gender 1.108 0.802–1.529 0.535
FGF17 1.235 1.112–1.372 <0.001 SEMA3G 0.652 0.549–0.775 <0.001
age 1.399 1.181–1.657 <0.001 age 1.379 1.164–1.633 <0.001
stage 3.722 2.705–5.121 <0.001 stage 3.29 2.384–4.539 <0.001
gender 1.109 0.806–1.525 0.527 gender 0.973 0.707–1.339 0.867
GDF1 1.086 0.975–1.211 0.135 TXLNA 1.285 1.098–1.505 0.002
age 1.411 1.191–1.672 <0.001 age 1.433 1.208–1.7 <0.001
stage 3.76 2.735–5.17 <0.001 stage 3.696 2.687–5.085 <0.001
gender 1.103 0.796–1.529 0.555 gender 1.212 0.87–1.688 0.255

Engagement of the immune-related gene risk signature in biological
pathways and functions
GSEA was used to investigate the signature’s biological pathways and functions. There were
177 KEGG pathways and 4,528 GO terms used in our investigation. Our analysis found
that the signature was able to engage in a total of 19 enriched KEGG pathways (FDR < 0.25;
Table 4). The low-risk signature was significantly correlated with 10 pathways, including the
citrate cycle (TCA cycle) pathway, fatty acid metabolism pathway, propanoate metabolism
pathway, butanoate metabolism pathway, peroxisome pathway, lysine degradation
pathway, valine leucine and isoleucine degradation pathway, proximal tubule bicarbonate
reclamation pathway, vasopressin regulated water reabsorption pathway, and the pyruvate
metabolism pathway (Table 4). Similarly, eight GO annotations were enriched in the
low-risk group (FDR < 0.25; Table 4).

DISCUSSION
Our study used the TCGA database and immune-related genes to establish a KIRC
signature consisting of 14 immune-related genes. We found that patients in the
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Figure 3 K–M survival curve analysis of the 14 immune-related genes. K–M survival curve analysis of
the 14 immune-related genes used to establish the signature for KIRC, including (A) AR, (B) BID, (C)
BMP8A, (D) CCL7, (E) CCR10, (F) FGF17, (G) GDF1, (H) IL20RB, (I) IL4, (J) KLRC2, (K) LHB, (L)
SEMA3A, (M) SEMA3G, and (N) TXLNA. (A, M) The patients with high expression of AR and SEMA3G
had better prognosis; (B-F, H-L, N) The patients with high expression of these gene had poor survival; (G)
There is no obvious correlation between the expression of GDF1 and the prognosis of patients.

Full-size DOI: 10.7717/peerj.10183/fig-3

high-risk group showed a positive association with M stage, T stage, and advanced
pathological staging. Additionally, the signature exhibited strong prognostic abilities
and independently predicted KIRC patient prognosis. Functional analysis highlighted
the significance of our signature based on its involvement in many important
pathways.

In our investigation, we used a total of 14 immune-related genes to construct our
signature. In the signature, CCL7 increased the peripheral blood mononuclear cell
recruitment in renal cell cancer through the inhibition of let-7d (Riihimaki et al., 2014).
Wyler et al. (2014) demonstrated the ability of CCL7 to recruit monocytes through
CCR2, promoting renal cell cancer metastasis to the brain. This indicates that CCL7
is a major factor in the development of KIRC in tumor immune microenvironments
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Figure 4 Analysis of the 14 immune-related genes and their predictive ability in both training and
testing cohorts. (A, B) As demonstrated by the heatmap, the expression distribution of the 14 immune-
related genes differed from each other in training and testing cohorts. Each column represents the same
patient and corresponds to the point below showing risk score distribution, survival status, and time in
KIRC patients. Each point represented one patient sorted by the rank of the risk score. Patients with high-
risk, low-risk, deceased, and alive were marked by red, blue, black, and grey, respectively. The advanced-
stage patients showed high-risk scores in training and testing cohorts without stratification. (C, E) Sur-
vival analysis showed that patients with high-risk scores correlated with poor survival outcomes. (D, F)
The multivariate Cox analysis in training and testing cohorts. The 14 immune-related gene signature was
able to serve as an independent prognostic factor for OS.

Full-size DOI: 10.7717/peerj.10183/fig-4
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Figure 5 The relationship between the risk score and clinical factors. The K–M survival curve of (A)
pathological staging, (B) M stage, (C) N stage, and (D) T stage. The boxplots demonstrated the relation-
ship between the risk score and (A) pathological staging, (B) M stage, (C) N stage, and (D) T stage. Those
with high levels of T, M stage, and advanced pathological staging presented a higher risk score.

Full-size DOI: 10.7717/peerj.10183/fig-5

and may be a potential immunotherapy target. Fibroblast growth factor receptor 17
(FGF17) is another immune-related gene in our signature. FGF17 demonstrates a
variety of functions in cancer development. Gauglhofer et al. (2011) found that FGF17
was involved in the paracrine and autocrine signaling of hepatocellular carcinoma
and promoted the neoangiogenesis of hepatocellular carcinoma. Heer et al. (2004)
showed that FGF17 was overexpressed in prostate cancer and participated in prostate
carcinogenesis. Our study showed that FGF17 plays an important role in KIRC based on
tumor immunology. However, the underlying mechanism of FGF17 in KIRC immune
microenvironments requires further investigation. In our signature, IL-4 is another
well-studied immune-related biomarker for KIRC. IL-4, released by immune cells,
controls the expression of B7-H1, thus altering T cell responses in KIRC (Quandt
et al., 2014). The investigation conducted by Chang et al. (2015) demonstrated that IL-4
expression can predict KIRC patient recurrence and survival outcomes. Collectively, these
investigations reinforce the significance of the 14 immune-related gene-risk signature in
KIRC.

Our signature is associated with the survival outcome of KIRC patients and
clinical parameters, including pathological staging, M stage, and T stage. No
correlation was found between the signature and N-stage, possibly due to a lack of
N-stage information for many patients. According to the immune-related gene-risk
signature, our study found that clinical cohorts in KIRC have different immune-
related risk factors. This signature also reflects differences in tumor immune
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Figure 6 The K–M analysis of the risk signature in subgroups of patients. The K–M analysis of the risk
signature in subgroups of patients with stage I–II (A), stage III–IV (B), M0 stage (C), M1 stage (D), N0
stage (E), N1 stage (F), T1 stage (J), T2 stage (H), T3 stage (I), and T4 stage (J).

Full-size DOI: 10.7717/peerj.10183/fig-6

microenvironments and predicts survival outcomes in KIRC patients; thus, demonstrating
the clinical significance of our signature and its possible use as a survival predictor in
KIRC.

Despite of the relatively low C-index of our testing set (0.6534), the C-index of the
testing set falls within a similar range as those of other related studies. For instance,
in the study of Bailiang Li et al., they developed an immune signature in non-small
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Table 3 Univariate andMultivariate Cox analysis of risk and clinical parameters in training and testing.

Variable Univariate Multivariate

HR 95%CI p value HR 95%CI p value

risk_score 4.484 3.508–5.732 <0.001 2.789 2.294–3.391 <0.001
age 1.028 1.011–1.045 0.001 1.334 1.080–1.648 0.007
stage 3.010 2.030–4.462 <0.001 1.567 1.021–2.405 0.040

training

gender 0.984 0.663–1.460 0.937 1.066 0.713–1.594 0.756
risk_score 2.010 1.490–2.711 <0.001 1.262 1.046–1.522 0.015
age 1.027 1.007–1.047 0.007 1.460 1.091–1.954 0.011
stage 5.954 3.396–10.439 <0.001 6.406 3.539–11.598 <0.001

testing

gender 0.867 0.520–1.445 0.584 0.682 0.401–1.161 0.159

cell lung cancer with the C-index of 0.64 (Li et al., 2017). Besides, our signature
achieved a similar C-index of testing set with the immune signature in ovarian cancer
(0.625) (Shen et al., 2019). More importantly, the C-index of our testing set showed
a similar accuracy with the C-index of clinical staging systems in renal cancer (0.62)
(Qu et al., 2018).

Our study expands on the signatures association with several important pathways,
especially the metabolism pathway. This may reflect the mutual interaction between
tumor metabolism and tumor immunology in KIRC. Pearce et al. (2013) showed that
metabolic reprogramming can influence the fate and function of T cells in tumors.
Our study further indicates the importance of metabolism pathways in KIRC immune
microenvironments.

We acknowledge the limitation of our evaluation scheme, including randomly dividing
the full data set into training and testing data set, which result in the inherent bias
for the specific study. Another limitation of our research is the lack of independent
validation data sets in our evaluation scheme. Therefore, our study should be further
validated through a prospective cohort data to further illustrate the robustness of
the model.

CONCLUSIONS
This investigation utilized RNA-seq data from the TCGA database to construct a 14
immune-related gene-risk signature with the ability to independently predict survival out-
comes in KIRC; thus, providing novel clinical applications and possible immune targets for
KIRC.
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Table 4 GSEA analysis.Gene set enrichment analysis for high- and low-risk groups, using 177 KEGG
pathways and 4,528 GO terms.

Type Term NES P-value FDR

Citrate cycle tca cycle −1.957 <0.001 0.076
Fatty acid metabolism −1.863 <0.001 0.079
Propanoate metabolism −1.883 <0.001 0.084
Butanoate metabolism −1.866 0.022 0.089
Peroxisome −1.913 <0.001 0.093
Lysine degradation −1.891 0.011 0.096
Valine leucine and isoleucine degradation −2.001 <0.001 0.110
Proximal tubule bicarbonate reclamation −1.958 <0.001 0.114
Vasopressin regulated water reabsorption −1.789 0.030 0.144
Pyruvate metabolism −1.802 0.012 0.146
Prostate cancer −1.763 <0.001 0.149
Terpenoid backbone biosynthesis −1.768 0.022 0.156
Endometrial cancer −1.729 0.011 0.162
Glycolysis gluconeogenesis −1.735 0.033 0.169
Glycosylphosphatidylinositol gpi anchor biosynthesis −1.701 0.031 0.181
Biosynthesis of unsaturated fatty acids −1.679 0.048 0.202
Epithelial cell signaling in helicobacter pylori infection −1.671 0.012 0.203
Tryptophan metabolism −1.654 0.032 0.215

KEGG

Adherens junction −1.622 0.052 0.250
Branched chain amino acid metabolic process −2.058 <0.001 0.160
Tricarboxylic acid metabolic process −2.036 <0.001 0.172
Myelin sheath −2.061 <0.001 0.178
Positive regulation of viral release from host cell −2.040 <0.001 0.183
Oxidoreductase activity acting on the aldehyde or oxo
group of donors nad or nadp as acceptor

−2.068 0.001 0.191

Lipid oxidation −2.012 0.003 0.219
Microbody membrane −2.070 0.001 0.233

GO

Microbody lumen −1.997 0.003 0.242
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