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Jatropha curcas L. belongs to Euphorbiaceae family, it synthesizes flavonoid and diterpene
compounds that have showed antioxidant, anti-inflammatory, anticancer, antiviral,
antimicrobial, antifungal and insecticide activity. Seeds of this plant accumulate phorbol
esters, which are tigliane type diterpenes, reported as toxic and, depending on its
concentration, toxic and non-toxic varieties has been identified. The aim of this work was
to establish the cellular dedifferentiated culture of toxic and non-toxic varieties of Jatropha
curcas L., and to analyze the chemical profile variation in extracts of seeds, leaves and
callus of both varieties. Callus induction was obtained using NAA (1.5 mg/L) and BAP (1.5
mg/L) after 21 d for both varieties. Thin layer chromatography analysis showed differences
in compounds accumulation in callus from non-toxic variety throughout the time of culture,
diterpenes showed an increase along the time, in contrast with flavonoids which
decreased. Based on the results obtained through microQTOF-QIll spectrometer it is
suggested a higher accumulation of phorbol esters, derived from 12-deoxy-16-hydroxy-

phorbol (m/z 365 [M+H]"), in callus of 38 d than those of 14 d culture, from both varieties.
Unlike flavonoids accumulation, the MS chromatograms analysis allowed to suggest lower
accumulation of flavonoids as the culture time progresses, in callus from both varieties.
The presence of 5 glycosylated flavonoids is also suggested in leaf and callus extracts
derived from both varieties (toxic and non-toxic), including: apigenin 6-C-a-L-

arabinopyranosyl-8-C-B-D-xylopyranoside (m/z 535 [M+H]"), apigenin 4'-O-rhamnoside
(m/z 417 [M+H]"), vitexin (m/z 433 [M+H]"), vitexin 4'-O-glucoside-2"-O-rhamnoside (m/z
741 [M+H]"), vicenin-2 (m/z 595 [M+H]"), and vicenin-2,6"-0-glucoside (m/z 757 [M+H]").
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Abstract

Jatropha curcas L. belongs to Euphorbiaceae family, it synthesizes flavonoid and diterpene
compounds that have showed antioxidant, anti-inflammatory, anticancer, antiviral, antimicrobial,
antifungal and insecticide activity. Seeds of this plant accumulate phorbol esters, which are tigliane
type diterpenes, reported as toxic and, depending on its concentration, toxic and non-toxic varieties
has been identified. The aim of this work was to characterize the chemical profile of the extracts
from seeds, leaves and callus of both varieties (toxic and non-toxic) of Jatropha curcas, to verify
the presence of important compounds in dedifferentiated cells and consider the possibility of using
these cultures for the massive production of metabolites. Callus induction was obtained using NAA
(1.5 mg/L) and BAP (1.5 mg/L) after 21 d for both varieties. Thin layer chromatography analysis
showed differences in compounds accumulation in callus from non-toxic variety throughout the
time of culture, diterpenes showed an increase along the time, in contrast with flavonoids which
decreased. Based on the results obtained through microQTOF-QII spectrometer it is suggested a
higher accumulation of phorbol esters, derived from 12-deoxy-16-hydroxy-phorbol (m/z 365
[M+H]"), in callus of 38 d than those of 14 d culture, from both varieties. Unlike flavonoids
accumulation, the MS chromatograms analysis allowed to suggest lower accumulation of
flavonoids as the culture time progresses, in callus from both varieties. The presence of 6
glycosylated flavonoids is also suggested in leaf and callus extracts derived from both varieties
(toxic and non-toxic), including: apigenin 6-C-a-L-arabinopyranosyl-8-C-f-D-xylopyranoside
(m/z 535 [M+H]"), apigenin 4'-O-rhamnoside (m/z 417 [M+H]"), vitexin (m/z 433 [M+H]"),
vitexin 4'-O-glucoside-2"-O-rhamnoside (m/z 741 [M+H]"), vicenin-2 (m/z 595 [M+H]"), and
vicenin-2,6"-O-glucoside (m/z 757 [M+H]").
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Introduction

Jatropha curcas L. (Euphorbiaceae) is a multipurpose plant native to Mesoamerica, it is important
because of its usefulness as raw material in biofuels production (Salvador-Figueroa et al., 2015),
as well as, in veterinary and human traditional medicine (Abdelgadir & Van Staden, 2013). Several
compounds with different biological activities have been isolated from different species of
Jatropha (Devappa, Makkar & Becker, 2012b). The identification of biologically active
compounds extracted from different organs of this plant has been reported (Prasad, Izam & Khan,
2012; Sharma, Dhamija & Parashar, 2012). Isolated compounds or whole plant extracts have been
studied because of their potential pharmacological activity (Cocan et al., 2018). Biological effect
of J. curcas includes antibacterial (Igbinosa, Igbinosa & Aiyegoro, 2009), antitumor (Lin ef al.,
2003), anti-inflammatory, and antifungal (Saetae & Suntornsuk, 2010; Srinivasan, Palanisamy &
Mulpuri, 2019). Most research on J. curcas have been done with toxic varieties; toxicity is referred
to phorbol esters content in seeds.

In Mexico, it has been identified a non-toxic variety of this species with very low or non-detectable
levels of phorbol esters (PEs) (Martinez-Herrera, Chel-Guerrero & Martinez-Ayala, 2004). The
highest accumulation of PEs is at the seeds. PEs are known as Jatropha factors because each one
of them has the same nucleus diterpene moiety, namely, 12-deoxy-16-hydroxy-phorbol (DHP)
which is coupled to unstables intramolecular diterpenes (named C,—Cg factors) (Hirota ez al., 1988;
Haas, Sterk & Mittelbach, 2002; Baldini et al., 2014; Nishshanka et al., 2016).

Plants are the most successful source of chemical compounds, which potential mode of action
makes them an alternative phytomedicinal drug, since several natural products have shown
benefits against human diseases (Briskin, 2000). Several compounds are tissue-specific
accumulated, and are usually structurally complex (Balunas & Kinghorn, 2005). Therefore it is
necessary the use of chemical analysis techniques to isolate and identify the extracted plant
metabolites. There are a few cases where the use of plant cell culture has allowed the production
of active compounds, even more biotechnological production either as pure compounds or as
standardized extracts, provides unlimited opportunities for new drug discoveries due to the great
chemical diversity (Karuppusamy, 2009).

Secondary metabolites are generally in complex matrices at very low concentrations in plant
organs, and lower in dedifferentiated cells. These compounds have a wide range of polarities,
therefore it is necessary the use of solvents with different polarity to obtain the extracts (Amita &
Shalini, 2014). The aim of this work was to characterize the chemical profile of the extracts from
seeds, leaves and callus of both varieties (toxic and non-toxic) of Jatropha curcas, to verify the
presence of important compounds in dedifferentiated cells and consider the possibility of using
these cultures for the massive production of metabolites.

Materials & Methods
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Plant material

Seeds and young leaves of Jatropha curcas were collected. Non-toxic variety samples from Centro
de Desarrollo de Productos Bioticos-IPN, Yautepec, Morelos, México (18°53'09"N, 99°03'38"W).
The toxic variety samples were collected from Campo Experimental Zacatepec, Instituto Nacional
de Investigaciones Agricolas y Pecuarias (INIFAP), Zacatepec, Morelos, México (18°39'23"N,
99°1128"W).

Callus obtaini
To induce cell dedifferentiation, two different explants were surface-sterilized according to
Vanegas et al., 2002. Leaf blade of approximately 0.25 cm? and petiole of approximately 3 mm in
length were cultured in MS medium (Murashige & Skoog, 1962) supplemented with sucrose (30
g.L'1), phytagel (3 g.L'") (Sigma-Aldrich®). Nine treatments, as result of the combination of three
concentrations (0.0, 1.5 and 3.0 mg.L-1) of both naphthaleneacetic acid (NAA) and 6-benzyl-
aminopurine (BAP) were evaluated (Verma, 2013), pH was adjusted to 5.7, media were sterilized
at 121 °C for 15 min. Ten explants per Petri dish with 3 repetitions per treatment were incubated
at 25 = 2 °C, photoperiod of 16 h light/8 h darkness for 35 d (Kumar et al., 2015). Explants
evolution was recorded every seven days using a stereoscopic microscope (Nikon, model SMZ
1500, Japan).

Sample preparation
Fresh washed leaves were indoors dried at 25 + 2 °C during 3 weeks. Seeds without tegument and

callus, were oven dried at 50 °C for 48 h, dried samples were ground with a mortar and sieved
through a mesh size 53 pm.

E btaini
20 mL of ethanol 80% (v/v) were added to 500 mg of biomass dry weight (dw) and sonicated at
40 £+ 5 °C during 30 min (Bransonic Ultrasonic Cleaner, 2510R-MTH, CT, USA) (Bazaldua et al.
2019), subsequently vortexed. Supernatant was filtered, concentrated to dryness at 25 + 2 °C, and
solubilized in 500 puL. of HPLC grade MeOH (Sigma-Aldrich®) for chromatographic analysis
(Saeed et al., 2006; Liu et al, 2013).

Phorbol esters (PEs) rich defatted extract

500 mg of dried sample were packed in a filter paper cartridge and defatted in a Soxhlet equipment
with petroleum ether (60-80 °C) (Sigma-Aldrich®) for 4 h. Petroleum ether (Fermont®) extract
was concentrated using rotary evaporator at 40 °C, 90 rpm, and 900 mbar. The methyl esters in the
resulting oil, were extracted with MeOH, later filtered and concentrated to dryness at 25 + 2 °C,
then solubilized in 500 pLL of HPLC grade MeOH for chromatographic analysis (Demissie & Lele,
2010).

Thin layer chromatography
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Extracts were applied on normal phase silica plates (Merck Millipore, 60 F,s4, Germany).
Chloroform-methanol (94:6 and 75:25) were used as mobile phase, reference standards were
paclitaxel (TX, Sigma-Aldrich®), and quercetin (Sigma-Aldrich®), both plates were revealed with
anisaldehyde (Kathiravan & Raman, 2010).

To analyze extracts obtained by sonication-ethanol 80% and Soxhlet-methanol a mobile phase
consisting of chloroform-methanol (97:3) was used. The reference standard was PMA, and the
plates were cerium sulfate-revealed, then observed at 366 nm, and white light. Retention factor
(Rf) and color from the spots were compared with chromatographic terpenes profiles described by
Reich & Schibli (2007).

MicrOTOF Q-II analysis

Electrospray ionization analysis (ESI) was performed using a micrOTOF-Q II mass spectrometer
(Bruker Daltonics, Bremen, Germany) according to Ledn-Lopez et al. (2015). Samples were
solubilized in 500 uL. of HPLC grade MeOH and filtered with a syringe filter (nylon membrane,
0.45 pm). The molecular ions related to the extracts were analyzed in positive ion mode (ESI*). 20
uL of sample were injected, capillary potential was -4.5 kV, gas temperature of 200 °C, drying gas
flow of 4 L min! and nebulizer gas pressure of 0.4 Bar. Detection was performed at 50-3000 m/z.
The predictive structures of the MS/MS partitioning profile were established utilizing the
Competitive Fragmentation Modeling for Metabolite Identification (CFM-ID. Version 3.0, 2019)
platform from Wishart-lab (http://cfmid3.wishartlab.com), which is referred to in the PubChem-
NCBI site.

Results
Establishment of callus culture

Dedifferentiation cell was not observed in leaf blade explants. Petiole explants showed tissue
dedifferentiation since seventh day of culture and complete process was evident at the day 21 (Fig.
1). Friable and light green callus was obtained on MS media added with both combinations: NAA
(1.5 mg.L"), BAP (1.5 mg.L!), and NAA (3.0 mg.L") and BAP (3.0 mg.L").

Thin layer chromatography (TLC) analysis

TLC showed differences in compounds accumulation during time culture (2, 6, 10, 14, 18, 22, 26,
30, 34 and 38 d). Regard diterpenes, spots with Rf of 0.76 and 0.24 showed higher intensity along
this period (Fig. 2A), unlike flavonoids in which spots with Rf of 0.84, 0.73 and 0.55, decreased
throughout the same culture period (Fig. 2B). These results suggest that the accumulation of
diterpenes and flavonoids was inversely related during callus development. To obtain diterpenes
the Soxhlet-methanol extraction was more efficient than sonication-ethanol 80%. TLC analysis of
extracts obtained by both methods evidenced differences in the size and intensity of spots in regard
to: extraction method, variety (toxic and non-toxic), and plant material (seeds, leaves and callus)
(Fig. S1).
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MicrOTOF Q-II and competitive fragmentation modeling for metabolite identification
platform (CFM-ID)

Phorbol esters (PEs) analysis

Fragmentation profile analysis from seeds extract from both varieties showed several highs signals
one of them with m/z of 365 [M+H]" corresponding to 12-deoxy-16-hydroxy-phorbol (DHP),
which is the fundamental structural core of the PEs. The MS/MS analysis of this molecular ion
showed fragments with m/z of 295, 276, 234, 203, 185 and 127 [M+H]" which is similar to the
fragmentation profile of DHP presented in CFM-ID platform (Fig. 3), this suggests the
identification of that molecular structure in all of the extracts obtained from seeds and callus of
both toxic and non-toxic varieties. Based on signals intensities from 14 d and 38 d callus extracts
from both varieties, it is suggested that the accumulation of DHP is time-dependent. Since, the
corresponding signal was higher in callus of 38 d than in those of 14 d. Furthermore, two signals
with m/z of 547 and 591 [M+H]" were observed, so it is proposed that they are related with the
fragmentation profile of the signal with m/z of 711 [M+H]* corresponding to any of the Jatropha
factors (C; or DHPB to C¢) which nucleus structure is DHP (Wink ef al., 2000; Haas, Sterk &
Mittelbach, 2002) (Fig. 4C).

Flavonoids analysis

On the other hand, the main group of compounds in Jatropha leaf extracts are flavonoids, among
them the apigenin, nevertheless, it is important to refer that the natural condition of flavonoids in
the plants is in glycosylated form. On this regard, another of the highest signals observed at the
chromatograms was the m/z of 381 [M+H]" ion, the MS-MS experiment of this signal and the
proposed structures obtained by CFM-ID platform allowed to relate that molecular ion (m/z 381
[M+H]") (Fig. 5) to the fragmentation profiles of apigenin 6-C-a-L-arabinopyranosyl-8-C-f-D-
xylopyranoside, and of apigenin 4'-O-rhamnoside (Fig. 6). Table 1 shows six tentatively identified
compounds by relating their molecular ion m/z of 381 [M+H]" with the fragmentation signals and
their corresponding predictive structure vitexin (m/z 433 [M+H]"), vitexin 4'-O-glucoside-2 "-O-
rhamnoside (m/z 741 [M+H]"), vicenin-2 (m/z 595 [M+H]"), and vicenin-2,6"-O-glucoside m/z
757 [M+H]* (Fig. S2). Inversely to observed on DHPB related signal (m/z 365 [M+H]"), the
intensity of the molecular ion related with flavonoids diminished, but there was not difference
between type of extracts, leaves or callus from both varieties.

Discussion

The highest callus induction (95.5%) was observed in petiole explants on MS medium added with
NAA (3.0 mg.L") and BAP (3.0 mg.L-"), the second best result (87.7%) was obtained with NAA
(1.5 mg.L") and BAP (1.5 mg.L-"), in contrast to reported by Nassar et al. (2013), who observed
dedifferentiation with NAA and BAP at 0.5 mg.L! of each one plant growth regulator. Explants
dedifferentiation reported in this work was similar to reported by Kumar et al. (2015). The follow
up of the explants dedifferentiation process, every 7 d showed callus formation on explants starting
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on the seventh day. Dedifferentiation began at the cutting sites because of the-high-response
capacity of cells as expected (Sujatha, Makkar & Becker 2005; Nogueira ef al., 2011; Ovando-
Medina et al., 2016). The callus obtained was light green and friable, similar to reported by
Hernéndez et al. (2015). It has been reported that high auxins concentrations could affect
production and accumulation of secondary metabolites (Kim et al., 2007), hence, according to our
results, it is suggested the use of the lowest effective concentration, 1.5 mg.L-! for both growth
regulators. Mufioz-Valverde ef al. (2003) concluded that BAP is determinant to induce callus
formation in foliar explants of J. curcas. Likewise, Sudrez & Salgado (2008) reported that-it-is
necessary—the presence of NAA in-theculture medium to induce callus formation in Stevia
rebaudiana, and that-this effect could be increased when adding eytekininslike BAP. On the other
hand, Solange et al. (2002) determined that the use of NAA and BAP in equal proportion induces
callus formation from leaf explants of Tridax procumbens. Coutifio-Cortés et al. (2013) reported
the callus induction in J. curcas leaf explants at 10 d of culture, and total explant-cell
dedifferentiation at 20 d using 2, 4-D, BAP and KIN, while in this;work petioles dedifferentiation
started at 7 d and total explant-cell dedifferentiation was achieved at 21 d. These results support
that synergy between NAA and BAP is essential to achieve a high dedifferentiation degree.

The PEs are responsible for the toxicity in the plant (Devappa, Makkar & Becker, 2011;
Abdelgadir & Van Staden, 2013; Sabandar ef al., 2013). There-are varieties of Jatropha curcas
denominated as toxic and non-toxic (Makkar et al., 1997). The non-toxic varieties have PEs
concentration lower than 0.86 mg/g of seed on dry basis (He ef al., 2011). Martinez-Herrera et al.
(2006) detected high levels of PEs in seed oil from the municipality of Coatzacoalcos, Veracruz,
Meéxico, but did not detect PEs in seeds from the municipality of Yautepec, Morelos, México. This
corroborates the differences between the seeds of the two varieties used in this study.

Regard, to TLC profile analysis, it has been reported that methanolic extraction from seed-oil
facilitates separation and availability of methyl ester type compounds, mainly phorbol esters (PEs)
(Demissie & Lele, 2010; Devappa, Bingham & Khanal, 2013). The identification by TLC of PEs
in seed methanolic extracts from toxic and non-toxic J. curcas varieties was reported (Devappa,
Makkar & Becker (2012a), they reported higher spots intensity from toxic variety than from non-
toxic, when plates were observed at 366 nm UV light, this result is similar to that observed in this
work (Fig. S1). Makkar & Becker (2009) identified higher PEs accumulation in seeds than in
leaves extracts. Similar results were obtained in this work, even with different method of
extraction. Nevertheless these results are different of that obtained by Martinez-Herrera, Chel-
Guerrero & Martinez-Ayala, 2004, because they reported 96% of PEs extraction through
hydroalcoholic extraction, while, i this work the intensity of the spots was higher on Soxhlet-
methanol extracts than hydroalcoholic extraction (Fig. S1).

On the other hand, Hirota et al. (1988) reported the identification of DHP as the fundamental
structural core which is derived from 12-deoxy-16-hydroxy-phorbol-4'-[12',14'-butadienyl]-6'-
[16',18',20"-nonatrienyl]- bicycle [3.1.0] hexane-(13-0)-2'- [carboxylate]- (16-O)-3'- [8'-butenoic-
10'late (DHPB or Jatropha factor C,), identified as DHPB-Na adduct m/z 733 [M+Na]*.
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Furthermore, DHPB m/z 711 [M+H]" and DHP m/z of 365 [M+H]* were also reported in J. curcas
seeds (Wink et al., 2000). Even more so, Haas, Sterk & Mittelbach, (2002) reported the
identification of diterpenes named Jatropha factors C, to C¢ through ESI-MS m/z 711 [M+H]" and
of DHP (m/z of 365 [M+H]"). Furthermore, Nishshanka et al. (2016) identified six phorbol esters
in J. curcas seeds by LC-MS, which have the same core (DHP), at the so named Jatropha factors
(Cl to C6)

Regard to PEs identification by ESI-MS analysis, Baldini ef al. (2014) identified six phorbol esters
in J. curcas seeds with m/z of 711 [M+H]*, which have the same fundamental structural core
(DHP) m/z of 365 [M+H]" which is coupled to diterpenes of 24 carbon structures named Jatropha
factors from C; (DHPB) to Cs. The relative intensity of the molecular ion m/z 365 [M+H]* was
higher in seeds extracts from toxic variety, than in seed extracts from non-toxic variety (Fig. 4A,
and 4B). While in callus, the relative intensity is higher in toxic and non-toxic varieties callus of
38 d of culture (Fig. 4E, and 4G), than in toxic and non-toxic varieties callus of 14 d of culture
(Fig. 4D, and 4F). These results could suggest the presence of PEs coupled to DHP in the samples
analyzed and that their accumulation is differential in regard to type of organ, variety, and in
cultures, throughout the time of culture. This results suggest that their accumulation of DHP is
time dependent. This ESI-MS analysis allowed to corroborate the results obtained by TLC (Fig.
2A). Nevertheless, the relative intensity of the signals observed in extracts from callus were lower
than that obtained from seeds extracts as reported by Demissie & Lele (2010).

By other hand, phenolic compounds are ubiquitously produced by plants (Boudet, 2007), the main
role of phenols in plants is to protect them from biotic or abiotic stress (Cl¢é et al., 2008). These
properties include antimicrobial, insecticidal, antiparasitic, antiviral, anti-ulcerogenic, cytotoxic,
antioxidant, anti-hepatotoxic, anti-hypertensive and anti-inflammatory activities (Oskoueian et al.,
2011; Papalia, Barreca & Panuccio, 2017). Flavonoids are recognized as polyphenols. Several of
them have been identified in Jatropha genus, such as apigenin glycosides, vitexin, and isovitexin
which have been considered as chemiotaxonomic compounds from the genus (Abdelgadir &Van
Staden, 2013; Huang et al., 2014).

The tentative identification of glycosylates-flavonoids through microQTOF-QII are similar to that
reported by Xie et al. (2003) who identified the apigenin 6-C-a-L-arabinopyranosyl-8-C-f-D-
xylopyranoside m/z 535 [M+H]*. Likewise, this result may be related to that obtained by Abd-Alla
et al. (2009) who identified apigenin and its aglycone as majoritarian flavonoids in J. curcas
leaves, as well as, that obtained by Reena, Nand & Sharma, (2008) who reported to apigenin as
major flavonoid in the same species. Those reports differ from that published by Papalia, Barreca
& Panuccio, (2017) who identified to vitexin and vicenin-2 as the majoritarian flavonoids.

The results obtained by microQTOF-QII of the molecular ion m/z 381 [M+H]" through the
MS/MS experiment, and the predictive structures obtained through the CFM-ID platform allowed
to suggest the relation of the structures from the molecular ion m/z 381 [M+H]" with the
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fragmentation profile from apigenin 6-C-a-L-arabinopyranosyl-8-C-f-D-xylopyranoside m/z 535
[M+H]*, which was identified through ESI-MS in Viola yedoensis (Xie et al., 2003) and apigenin
4'-O-rhamnoside m/z 417 [M+H]", which was identified in Olea europaea (Pieroni et al., 1996).

Based on the molecular ion, MS-MS fragmentation profile and the predictive structures obtained
by CFM-ID platform, it is suggested the tentative identification of vitexin m/z of 433 [M+H]",
vicenin-2 m/z of 595 [M+H]", and vitexin 4'-O-glucoside-2 "-O-rhamnoside m/z of 741 [M+H]" in
leaves and callus from both varieties. These results are similar to obtained by Huang et al. (2014)
who identified vitexin m/z of 433 [M+H]" in J. curcas leaves. This flavonoid was also identified
by ESI-MS in Vigna radiata and Luehea divaricata (Tanaka et al., 2005; Peng et al., 2008). In this
work it is also suggested the tentative identification of vicenin-2,6"-O-glucoside m/z 757 [M+H]"
which has not been reported to Jatropha curcas, but to Stellaria holostea (Bouillant et al., 1984)
(Fig. S2).

Interestingly it was observed that relative intensities signals related to PEs (m/z 365 [M+H]") in
callus of 38 d was higher than callus of 14 d, but the flavonoid related molecular ion m/z 381
[M+H]" decreased at same period.

Conclusions

During cell dedifferentiation NAA and BAP at the same concentration induced the highest amount
of callus in petiole explants from both toxic and non-toxic varieties of Jatropha curcas. The variety
of the species did not influenced the cell dedifferentiation. Soxlet-methanol extraction was more
efficient than sonication-ethanol 80% to obtain phorbol esters type compounds from seeds and
callus. Thin layer chromatography and mass spectrometry, suggest an inverse relationship between
phorbol esters and flavonoids accumulation in callus throughout the time of culture. The tentative
identification of diterpene type compounds such as 12-deoxy-16-hydroxy-phorbol and Jatropha
factors by ESI-MS in seed and callus (14 and 38 d) extracts of J. curcas, from both toxic and non-
toxic varieties, as well as, the presence of six flavonoids glycosides in leaf and callus, from both
toxic and non-toxic varieties, is suggested.
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Figures description

Figure 1. Cell dedifferentiation of petiole explants from both toxic and non-toxic varieties of
Jatropha curcas. (A-D) Explants from non-toxic variety throughout dedifferentiation experiment
(0, 7, 14, and 21 d, respectively), (E-H) Explants from toxic variety throughout dedifferentiation
experiment (0, 7, 14, and 21 d, respectively). Both induced on MS culture medium added with
NAA (1.5 mg.L') and BAP (1.5 mg.L").

Figure 2. Identification of both diterpenes-type (A), and flavonoids-type (B) compounds in
seeds, leaves, and callus of Jatropha curcas, through thin layer chromatography. Lanes from
2 to CNT correspond to extracts of: 2 — 38= Callus of non-toxic variety throughout 38 d of culture,
SNT= Non-toxic variety-seeds, ST= Toxic variety-seeds, CT= Callus (15 d culture) from toxic
variety, CNT= Callus (15 d culture) from non-toxic variety, Tx= paclitaxel (Sigma) reference
standard. A) The spots intensity increased throughout to culture time (Rfs 0.76, and 0.24), mobile
phase chloroform-methanol (94:6). B) The spots intensity decreased throughout to culture time
(Rfs 0.73, and 0.55), mobile phase chloroform-methanol (75:25). Plates were revealed with
anisaldehyde.

Figure 3. Spectrophotometrical analysis of phorbol esters in extracts of Jatropha curcas
seeds. MS/MS fragmentation profile of the molecular ion m/z 365 [M+H]" related to 12-deoxy-
16-hydroxy-phorbol, which is the structural core from Jatropha curcas-phorbol esters (referred as
Jatropha factors). Predictive structures obtained through CFM-ID platform from each ionized
fragment.

Figure 4. Mass spectra of seeds and callus extracts of J. curcas showing the relative intensity
of the molecular ion m/z 365 [M+H]" related to the structural core of the Jatropha-phorbol
esters. Seeds extracts of (A) toxic, and (B) non-toxic, varieties; (C) predictive structures related
to the structural nucleus of phorbol esters and their ionized fragments. Callus extracts from toxic
variety: (D) 14 d of culture; (E) 38 d of culture; non-toxic variety: (F) 14 d of culture, (G) 38 d of
culture.

Figure 5. Fragmentation profile (MS/MS) of the molecular ion m/z 381 [M+H]", observed in
leaves extracts, and related to fragmentation of two glycosylated apigenin (apigenin
(apigenin 6-C-a-L-arabinopyranosyl-8-C-f-D-xylopyranoside m/z 535 [M+H]", apigenin 4'-
O-rhamnoside m/z 417 [M+H]"). Structures predicted to each molecular ion (381, 355, 335, and
219 m/z), obtained from CFM-ID platform.

Figure 6. Mass spectra of callus extracts from both toxic and non-toxic varieties of J. curcas
at 14 and 38 d culture, showing the relative intensity of the molecular ion m/z 381 [M+H]|*
related to the fragmentation profile from two glycosylated apigenin. A, and C) Extracts of J.
curcas callus from J. curcas-toxic variety (14 and 38 d, respectively). B, and D) Extracts of J.
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curcas callus from non-toxic variety (14 and 38 d, respectively). The relative intensity from
molecular ion m/z 381 [M+H]* diminish throughout culture time.

Table 1 Tentative flavonoids identified by ESI-MS in hydroalcoholic extracts of leaves and
callus of Jatropha curcas.

Supplementary material description

Figure S1. Thin layer chromatogram of extracts obtained from seeds, leaves, and callus of
two J. curcas-varieties with two extraction methods for the identification of phorbol esters
(Rf’s 0.81, 0.53, and 0.38). The extracts obtained with ethanol 80% - sonication are referred
with numbers (1 — 8). The extracts obtained with Soxhlet — methanol are referred with letters (A
— H). PMA: Phorbol-12-myristate-13-acetate Rf 0.22 (Sigma, PE reference standard). Toxic
variety seed (1 and A), Non-toxic variety seed (2 and B), Toxic variety leaves (3 and C), Non-
toxic variety leaves (4 and D), Toxic variety-callus 14 d (5 and E), Toxic variety-callus 38 d (6
and F), Non-toxic variety-callus 14 d (7 and G), Non-toxic variety-callus 38 d (8 and H). Mobile
phase chloroform-methanol (97:3), cerium sulfate-revealed, observed at 366 nm UV light.

Figure S2. Predicted structures related with the fragmentation profile from six flavonoids
identified through ESI-MS from calluses extracts of non-toxic Jatropha curcas. It is included
the predictive structure corresponding to vicenin-2,6"-O-Glucoside m/z 757 [M+H]" which is not
reported to Jatropha curcas, but it is to Stellaria holostea.
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Figure 1

Cell dedifferentiation of petiole explants from both toxic and non-toxic varieties of
Jatropha curcas.

Cell dedifferentiation of petiole explants from both toxic and non-toxic varieties of
Jatropha curcas. (A-D) Explants from non-toxic variety throughout dedifferentiation
experiment (0, 7, 14, and 21 d, respectively), (E-H) Explants from toxic variety throughout

dedifferentiation experiment (0, 7, 14, and 21 d, respectively). Both induced on MS culture

medium added with NAA (1.5 mg.L?) and BAP (1.5 mg.L").
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Figure 2

Identification of both diterpenes-type (A), and flavonoids-type (B) compounds in seeds,
leaves, and callus of Jatropha curcas, through thin layer chromatography.

Identification of both diterpenes-type (A), and flavonoids-type (B) compounds in
seeds, leaves, and callus of Jatropha curcas, through thin layer chromatography.
Lanes from 2 to CNT correspond to extracts of: 2 - 38= Callus of non-toxic variety throughout
38 d of culture, SNT= Non-toxic variety-seeds, ST= Toxic variety-seeds, CT= Callus (15d
culture) from toxic variety, CNT= Callus (15 d culture) from non-toxic variety, Tx= paclitaxel
(Sigma) reference standard. A) The spots intensity increased throughout to culture time (Rfs
0.76, and 0.24), mobile phase chloroform-methanol (94:6). B) The spots intensity decreased
throughout to culture time (Rfs 0.73, and 0.55), mobile phase chloroform-methanol (75:25).

Plates were revealed with anisaldehyde.
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Figure 3

Spectrophotometrical analysis of phorbol esters in extracts of Jatropha curcas seeds.

Spectrophotometrical analysis of phorbol esters in extracts of Jatropha curcas

seeds. MS/MS fragmentation profile of the molecular ion m/z 365 [M+H]" related to 12-
deoxy-16-hydroxy-phorbol, which is the structural core from Jatropha curcas-phorbol esters
(referred as Jatropha factors). Predictive structures obtained through CFM-ID platform from

each ionized fragment.
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Figure 4

Mass spectra of seeds and callus extracts of J. curcas showing the relative intensity of

the molecular ion m/z 365 [M+H]" related to the structural core of the Jatropha-phorbol
esters.

Mass spectra of seeds and callus extracts of J. curcas showing the relative

intensity of the molecular ion m/z 365 [M+H]" related to the structural core of the
Jatropha-phorbol esters. Seeds extracts of (A) toxic, and (B) non-toxic, varieties; (C)
predictive structures related to the structural nucleus of phorbol esters and their ionized
fragments. Callus extracts from toxic variety: (D) 14 d of culture; (E) 38 d of culture; non-

toxic variety: (F) 14 d of culture, (G) 38 d of culture.
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Figure 5

Fragmentation profile (MS/MS) of the molecular ion m/z 381 [M+H]", observed in leaves
extracts, and related to fragmentation of two glycosylated apigenin (apigenin (apigenin
6-C-a-L-arabinopyranosyl-8-C-B-D-xylopyranoside [i]m/

Fragmentation profile (MS/MS) of the molecular ion m/z 381 [M+H]’, observed in
leaves extracts, and related to fragmentation of two glycosylated apigenin

(apigenin (apigenin 6-C-a-L-arabinopyranosyl-8-C-B-D-xylopyranoside m/z 535

[M+H]', apigenin 4'-O-rhamnoside m/z 417 [M+H]"). Structures predicted to each
molecular ion (381, 355, 335, and 219 m/z), obtained from CFM-ID platform.
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Figure 6

Mass spectra of callus extracts from both toxic and non-toxic varieties of J. curcas at 14

and 38 d culture, showing the relative intensity of the molecular ion m/z 381 [M+H]"
related to the fragmentation profile from two glycosylate

Mass spectra of callus extracts from both toxic and non-toxic varieties of J. curcas

at 14 and 38 d culture, showing the relative intensity of the molecular ion m/z 381

[M+H]" related to the fragmentation profile from two glycosylated apigenin. A, and
C) Extracts of J. curcas callus from J. curcas-toxic variety (14 and 38 d, respectively). B, and

D) Extracts of J. curcas callus from non-toxic variety (14 and 38 d, respectively). The relative

intensity from molecular ion m/z 381 [M+H]" diminish throughout culture time.
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Table 1(on next page)

Tentative flavonoids identified by ESI-MS in hydroalcoholic extracts of leaves and callus
of Jatropha curcas.
® The predictive structures related with vitexin, vicenin-2, and their glycosides are included as

supplementary material (Fig. S2). ® The predictive structures related to the fragmentation

profile from apigenin 6-C-alpha-L-arabinopyranosyl-8-C-B-D-xylopyranoside, and from

apigenin 4'-O-rhamnoside (m/z 381, 355, 335, and 219), are included at Figure 5.

Vicenin-2,6"-0O-glucoside has not been reported to Jatropha curcas, but to Stellaria holostea.
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Table 1. Tentative flavonoids identified by ESI-MS in hydroalcoholic extracts of leaves
and callus of Jatropha curcas.

Tentati
) °n 2.1 Ve Condensed m/z Fragments related to each
identified formul [M+H]+ IT nding fragmentation profile ?
fAavonoid ormula correspo g fragmentation profile
Apigenin 6-C-
alpha-L-
arabinopyranosyl_ C25H260]3 534 381 355 219
8-C-f-D-
xylopyranoside °
Apigenin 4-0- ) g0, 417 381 355 219
rhamnoside °
Vitexin C21H20010 433 415 401 397
Vitexin 4’-O-
Glucoside-2"-0O- C33H40019 741 723 577 561
Rhamnoside
Vicenin-2 C27H30015 595 565 503 445
Vicenin-2,6"-O-
C33H40020 757 729 695 621

glucoside ©

? The predictive structures related with vitexin, vicenin-2, and their glycosides are included
as supplementary material (Fig. S2).

® The predictive structures related to the fragmentation profile from apigenin 6-C-alpha-L-
arabinopyranosyl-8-C-f-D-xylopyranoside, and from apigenin 4'-O-rhamnoside (m/z 381,
355, 335, and 219), are included at Figure 5.

¢ Vicenin-2,6"-O-glucoside has not been reported to Jatropha curcas, but to Stellaria
holostea.
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