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ABSTRACT
The SARS-CoV-2 coronavirus is wreaking havoc globally, yet, as a novel pathogen,
knowledge of its biology is still emerging. Climate and seasonality influence the
distributions of many diseases, and studies suggest at least some link between
SARS-CoV-2 and weather. One such study, building species distribution models
(SDMs), predicted SARS-CoV-2 risk may remain concentrated in the Northern
Hemisphere, shifting northward in summer months. Others have highlighted issues
with SARS-CoV-2 SDMs, notably: the primary niche of the virus is the host it
infects, climate may be a weak distributional predictor, global prevalence data have
issues, and the virus is not in population equilibrium. While these issues should be
considered, we believe climate’s relationship with SARS-CoV-2 is still worth exploring,
as it may have some impact on the distribution of cases. To further examine if there is a
link to climate, we build model projections with raw SARS-CoV-2 case data and
population-scaled case data in the USA. The case data were from across March 2020,
before large travel restrictions and public health policies were impacting cases across
the country. We show that SDMs built from population-scaled case data cannot be
distinguished from control models (built from raw human population data), while
SDMs built on raw case data fail to predict the known distribution of cases in the U.S.
fromMarch. The population-scaled analyses indicate that climate did not play a central
role in early U.S. viral distribution and that human population density was likely
the primary driver. We do find slightly more population-scaled viral cases in cooler
areas. Ultimately, the temporal and geographic constraints on this study mean that we
cannot rule out climate as a partial driver of the SARS-CoV-2 distribution. Climate’s
role on SARS-CoV-2 should continue to be cautiously examined, but at this time
we should assume that SARS-CoV-2 will continue to spread anywhere in the U.S.
where governmental policy does not prevent spread.

Subjects Biogeography, Ecology, Virology, Epidemiology, Data Science
Keywords Climate, Coronavirus, COVID-19, SARS-CoV-2, Species distribution modeling, US

How to cite this article Harbert R, Cunningham SW, Tessler M. 2020. Spatial modeling could not differentiate early SARS-CoV-2 cases
from the distribution of humans on the basis of climate in the United States. PeerJ 8:e10140 DOI 10.7717/peerj.10140

Submitted 7 May 2020
Accepted 19 September 2020
Published 26 October 2020

Corresponding authors
Robert Harbert,
rharbert@stonehill.edu
Michael Tessler, mtessler@sfc.edu

Academic editor
Farzin Shabani

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj.10140

Copyright
2020 Harbert et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.10140
mailto:rharbert@�stonehill.edu
mailto:mtessler@�sfc.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.10140
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


INTRODUCTION
SARS-CoV-2 and climate overview
In March 2020, the USA had the most reported cases of COVID-19, the disease caused by
the coronavirus SARS-CoV-2 (CDC NCIRD, 2020). While we are now coming to
understand the global and US-level distributions of this virus, we are only starting to learn
how abiotic variables affected its geographic distribution, particularly before policy seemed
to become the principal driver of the virus. With over two months of SARS-CoV-2
records across U.S. counties by the end of March 2020, the role of abiotic variables had
become easier to examine, especially as multiple sources began compiling data and making it
public (The New York Times, 2020;Dong, Du&Gardner, 2020; The COVID Tracking Project,
2020).

Organisms are distributed within their environment based on both direct and indirect
interactions with biotic and abiotic variables (Elith & Leathwick, 2009)—SARS-CoV-2 is
no exception. As this virus is primarily distributed by human hosts, it is constrained by
human distributions and interactions (i.e., biotic variables). There are numerous
documented cases on local and global scales of individual human sources for new
outbreaks (Holshue et al., 2020; KCDC, 2020). Still, many other viruses, including other
coronaviruses, display marked seasonality and are affected by local climatic conditions
(Price, Graham & Ramalingam, 2019; Fisman, 2012; Lofgren et al., 2007; Gaunt et al.,
2010). This has prompted researchers to begin looking globally at how weather and climate
(i.e., a subset of abiotic variables) may relate to the presence and abundance of the virus.

Modeling the SARS-CoV-2 viral distribution from the early part of the outbreak in
relation to climate and other abiotic variables could help refine our understanding of its
spread, hopefully adding to the knowledge gleaned from studies on human transmission
dynamics (Kucharski et al., 2020; Chinazzi et al., 2020), which appears to explain much of
the viral distribution. Climate can also be compared directly to biotic variables, such as
human population density, to disentangle their relative importances. More dense human
populations can have elevated communicable disease spread, as there is more person-to-
person contact (Fang et al., 2013)—the principal way SARS-CoV-2 is known to spread
(Rothan & Byrareddy, 2020). Still, identification of abiotic variables with suitably large
effect size on the distribution and spread of SARS-CoV-2 might help prevent viral spread
by identifying higher-risk regions and projecting seasonal variation in the risk of
transmission. However, it is important to make clear that the models presented here, and
in other recent studies (Araújo & Naimi, 2020; Bariotakis et al., 2020), are influenced by
the variability of input parameters, the variables explored, and the restrictions inherent in
modeling any complex system (Elith et al., 2011). We present this study to serve as a
baseline in our understanding, given the available data, rather than as a definitive model.

SARS-CoV-2 and climate research
Early studies suggest that transmission of SARS-CoV-2 may have, at a minimum, a loose
association with climatic features. There have been numerous reports showing a
correlation of case incidence with cool temperatures and low humidity (Wang et al., 2020;
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Ficetola & Rubolini, 2020; Bannister-Tyrrell et al., 2020; Araújo & Naimi, 2020; Chen et al.,
2020; Alvarez-Ramirez & Meraz, 2020; Notari, 2020; Paez et al., 2020). Furthermore,
studies that controlled for case growth rate or demographic factors found that weather was
still a significant factor in the success of SARS-CoV-2 outbreaks (Bukhari & Jameel, 2020;
Chen et al., 2020; Sajadi et al., 2020). Unfortunately, none of these studies provide a
mechanism for how abiotic variables like temperature might limit or promote the person-
to-person transmission of the virus. Still, lipid-enveloped viruses (including coronaviruses)
may be more stable outside of the host in lower humidity and cooler temperatures,
conditions that are common in temperate areas in late winter and early spring (Price,
Graham & Ramalingam, 2019). Recent studies have also indicated that SARS-CoV-2
transmission rate may be negatively correlated with temperature and humidity (Qi et al.,
2020; Wu et al., 2020; Ahmadi et al., 2020; Rosario et al., 2020; Sagripanti & Lytle, 2020).
However, the mechanism causing these correlations could be indirect, as humans behave
differently in different seasons (Bedford et al., 2015; Wesolowski et al., 2017). Recent
epidemiological models have also highlighted that weather may not play a large role when
most people lack immunity during the pandemic phase, but indicate that weather has the
potential to play a larger role once the endemic phase is reached (Baker et al., 2020).

Biologists often employ species distribution models (SDMs; alternatively called
ecological niche models) to predict geographic ranges of species. SDMs employ
environmental data (typically climate) to predict if geographic space is suitable for a given
species or population (Peterson, 2001; Peterson et al., 2011). These models have proven
useful in a wide variety of applications, such as invasion biology, climate change, zoonotic
diseases, and speciation (Elith & Leathwick, 2009; Guisan & Thuiller, 2005). SDMs built
to predict the spread of viral pathogens often do so by modeling the potential distribution
of known vectors or alternate hosts (Miller et al., 2012; Larson et al., 2010; de Almeida et al.,
2019; Richman et al., 2018), but some base the models directly on pathogen occurrence
data (Machado-Machado, 2012; Belkhiria, Alkhamis & Martínez-López, 2016; Pigott et al.,
2014a; Messina et al., 2015; Bhatt et al., 2013). Efforts to model global disease distribution
within an ecological framework frequently draw on known or hypothesized environmental
variables correlated with disease occurrence to predict suitability for transmission. Output
from these models can be extrapolated into areas where a disease has not yet been reported,
but where suitable environmental variables correlated with its occurrence exist (Elith &
Leathwick, 2009).

Researchers early in the pandemic created SDMs of SARS-CoV-2 using climatic
variables (Araújo & Naimi, 2020; Bariotakis et al., 2020). These studies suggested that the
virus is strongly constrained by global climate patterns (Araújo & Naimi, 2020; Bariotakis
et al., 2020). Preliminary models also suggested that the virus would continue to be
concentrated in the Northern Hemisphere, shifting northwards throughout the summer and
then back towards its spring distribution in the fall and winter (Araújo & Naimi, 2020).

However, a research group put forth a strong rebuttal (Chipperfield et al., 2020) to some
of this modeling work (Araújo & Naimi, 2020). Their main criticism asserts that basic
assumptions underlying SDMs are violated when modeling SARS-CoV-2, due to the
mode of transmission, current population disequilibrium, and failure to incorporate
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epidemiological data (Chipperfield et al., 2020). Furthermore, they highlight issues
pertaining to input data for global records, such as: missing data, omitted data, and single
localities representing many thousands of reported cases (hospital coordinates or political
centroids) across an entire country (Araújo & Naimi, 2020). This is exacerbated as
many countries are reporting records based on varied criteria, such as multiple types of
molecular tests and tests using computed tomography scans (Lippi, Simundic & Plebani,
2020). The rebuttal additionally suggested that model evaluation and justification were
insufficient. An updated draft of the original paper (Araújo & Naimi, 2020) addressed
some of these issues, and produced reasonable arguments to some others. While we agree
with many arguments from the rebuttal, we believe SDMs have the potential to be useful
for modeling in a number of instances, if done carefully, and have been effective when
used for other diseases (Pigott et al., 2014b, 2015; Carlson, Dougherty & Getz, 2016) and
other instances when data are limited or incomplete (Galante et al., 2018; Barbet-Massin
et al., 2018;Katz & Zellmer, 2018; Pearson et al., 2006; Fois et al., 2018;Hernandez et al., 2006;
Kiedrzy�nski et al., 2017).

Still, the climate-based SDMs for SARS-CoV-2 presented recently may, to at least some
extent, reflect the climatic preferences of their host. Careful consideration of host
availability (human population density) and pathogen ecologies (abiotic variables related
to transmission) may be necessary to frame analyses modeling global distributions
(Johnson, Escobar & Zambrana-Torrelio, 2019), and may help to better ensure that
projected distributions are not simply the result of environmental variables related to
human population density.

SARS-CoV-2 in the US
COVID-19 was first detected in the U.S. on 20 January 2020 (Holshue et al., 2020), has
since been detected in all 50 states, and continues to spread rapidly (Chinazzi et al., 2020).
Quality county-level data are also publically available (The New York Times, 2020; The
COVID Tracking Project, 2020; Dong, Du & Gardner, 2020). As of 22 July 2020, SARS-
CoV-2 has caused just under 145,000 deaths in the U.S. (Murray & IHME COVID-19
team, 2020). However, like much of the world, the case distribution is rapidly changing,
and the case numbers continue to rise and fall. Public policy decisions appear to be the
main mitigating factor against this coronavirus (Leonhardt, 2020).

Here we develop a suite of data visualizations, SDMs and comparative niche overlap
analyses using both climate and human population data to determine whether the effect of
climate can be appropriately disentangled from other drivers of SARS-CoV-2
transmission, given early records for the virus in the U.S. We feel that examining a
relatively early time-point of the pandemic in the U.S. is useful, as it in part (probably
largely) predates the impact of major shifts in public health policy for the U.S.

MATERIALS AND METHODS
Code and results deposition
The code and results developed in this study are deposited under a CC-BY-NC 4.0 License
on GitHub (https://github.com/rsh249/cv19_enm/releases/tag/v0.0.5). All analysis code
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was written using R 3.6.2 (R Core Team, 2019). Plots for Figs. 1–3, Figs. S1 and S2 were
produced using the “ggplot2” package (Wickham, 2009).

Data acquisition
SARS-CoV-2 case data for U.S. counties (one record per county, with a total sample size of
1,883 counties that had available reports) were collected from the New York Times
database (The New York Times, 2020) on 31 March 2020, for the 30 March 2020 data
release. County-level data on human population densities were acquired from the 2010
United States Census through the R “tidycensus” package (Walker, Eberwein & Herman,
2020). Georeferencing to county centroids was performed by referencing county and state
names in the GeoNames database (https://www.geonames.org/). While exact virus case
geolocations or even town-level data would provide finer scale resolution to our analyses,
these data are likely the best curated dataset for the U.S. for this time period.

Climate data
Interpolated climate data averaged from 1970 to 2000 for the month of March were
accessed through the WorldClim v2.1 database (Fick & Hijmans, 2017). The seven climate
parameters examined for the month of March were average monthly temperature, average
monthly minimum temperature, average monthly maximum temperature, average
monthly precipitation, average daily solar radiation, wind speed and water vapor pressure
(a measure related to humidity). These climate parameters are consistent with possible
correlates of SARS-CoV-2 transmission in several recent studies (Qi et al., 2020; Sagripanti &
Lytle, 2020; Ahmadi et al., 2020; Rosario et al., 2020; Wu et al., 2020). Climate data were
extracted from these layers for each georeferenced county record using the average from
a 5 km buffer around each county centroid coordinate. These local averages should represent
the county generally as climate is correlated over short distances, but these averages may
not be the best representation in counties that have a large area or highly clustered
population centers. While county centroids may not be ideal in all circumstances, our view is
that county centroids plus this buffer will average the climate relative to many cases in
the area. More precise case georeferencing is not possible without high levels of individual
case and movement tracking to identify the source of infection.

Climate distribution visualization
Total cumulative positive case data for SARS-CoV-2 in each reporting county on 30 March
2020, were used to extract data for the seven abiotic variables listed above. Probability
density distributions for SARS-CoV-2 were produced to characterize the likelihood of case
occurrence given the available range of climate values. These distributions are calculated
from case occurrences and corresponding climate data using a Gaussian Kernel Density
Estimator and standard bandwidth estimation. These distributions can be interpreted
similarly to histograms, but are normalized to be comparable between different sample
sizes. Raw case data (i.e., total cases per county) were scaled to reflect virus cases in each
county unit by dividing total cases by the county population from the 2010 U.S. Census.
These population-scaled viral cases (cases/population) were used as probability density
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Figure 1 Probability densities of SARS-CoV-2 coronavirus cases (using population scaled data; curves in red) compared to the probability
densities of human populations (curves in blue) in each US county for each of seven climate variables (A–C) Average Temperature (C);
(D–F) Max Temperature (C); (G–I) Minimum Temperature (C); (J–L) Precipitation (mm); (M–O) Solar Radiation (kJ m-2/day); (P–R)
Wind Speed (m/s); and (S–U) Water Vapor Pressure (kPa) at three time periods (March 3, 2020; March 16, 2020; March 30, 2020). Prob-
ability density curves are standardized to an area of one. Full-size DOI: 10.7717/peerj.10140/fig-1
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weightings, and resulting curves were standardized to an area of one. Probability densities
were also calculated with raw case count data and county-level population as weightings.
Probability density estimation and visualization was done with the R “ggplot2” package
(Wickham, 2009). To test whether the SARS-CoV-2 cases and human population data
were correlated, we applied Spearman tests “cor.test(method = “spearman”)”.

Species distribution models
Occurrence data for raw (i.e., total viral cases) SDMs were generated by expanding each
county climate record by multiplying that occurrence by the total SARS-CoV-2 case count

Figure 2 The relationship in the US between human population size and SARS-CoV-2 coronavirus
cases, using (A) total viral cases and (B) population scaled viral cases. New York City, an outlying
point, has been excluded for clearer visualization. Full-size DOI: 10.7717/peerj.10140/fig-2
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for each county. Occurrence data for population-scaled SDMs were generated the same
way as for the raw SDMs except that county climate records were multiplied by the total
case count divided by the county population. Then population-scaled values were
multiplied by an expansion factor of 100,000 so that all counties with at least one case were
represented. More explicitly: raw data = total viral cases; population-scaled data = total
viral cases/human population × 100,000 (the expansion factor for our data). Viral host
availability (i.e., total humans per county) was modeled to serve as a null distribution to be
used as a control comparison for viral SDMs.

Maxent, an algorithm for presence-only distribution models (Elith et al., 2011),
parameters relating to model complexity were tested by building a suite of SDMs for SARS-
CoV-2 distribution data with occurrences generated from raw reported virus case values
and population-scaled case values. Maxent model testing and cross validation was
performed using the ENMeval package (Muscarella et al., 2014) considering linear and
quadratic feature classes (constraints on model fit) and regularization multipliers
(penalties on complexity) of 0.5, 1, 1.5, 2, 2.5 and 3. Optimal model parameters were
chosen by maximizing the average test AUC calculated with cross validation using the
spatial “block” partitioning method, and minimizing AICc in the case of ties. All models

Figure 3 (A) Species distribution model of the SARS-CoV-2 coronavirus (using population scaled
data) for 30 March 2020. (B) Human population distribution model for the US from 2010.

Full-size DOI: 10.7717/peerj.10140/fig-3
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were built using the Maxent algorithm implemented in the “maxnet” R package (Phillips,
2017), including those tested within ENMeval. Operational models using the optimal
model parameters were then built for SARS-CoV-2 using all population-scaled data, raw
virus data, and for the human population using the county population data (Phillips, 2017).
Of the seven WorldClim variables, the three temperature variables are not independent.
Accordingly, we only used maximum temperature, as higher temperatures have been
hypothesized to lower the viral distribution. Models built using all temperature variables
made similar models, but are not further reported on. Reducing correlated variables is
generally preferable to avoid extrapolation issues that arise from local covariance between
variables (Araújo et al., 2019).

Given recent critiques, it has become clear that when using SDMs in relation to
SARS-CoV-2, it is worth documenting how close a study may come to the gold standards
set for this type of modeling (Araújo et al., 2019). The mode rank for our SDMs is bronze
(Table 1), largely as data from an emerging disease are inherently imperfect. Our SDMs
rely on incomplete (limited or underreported data) observational data that reports only
positive tests for the continental United States. The SDMs also only model over climate
averages for the month of March (averaged from 1970 to 2000), which may result in a
truncated climate envelope. However, despite imperfect data the SDMs reported here fulfill
the silver or gold standard methodology for model complexity, treatment of bias and
model evaluation (Table 1).

Niche overlap and similarity tests were conducted with the “ecospat” library (Di Cola
et al., 2017; Broennimann et al., 2012; Warren, Glor & Turelli, 2008) to compare the
climatic niche of SARS-CoV-2 and humans. The niche overlap test considers whether
there is a greater than expected overlap between the climate space occupied by two
population models (human total vs. SARS-CoV-2 positive) than would be expected given a
null distribution sampled from both populations. The niche similarity test considers the
degree of similarity between the density of occurrence between two population models
relative to the same null distribution (Warren, Glor & Turelli, 2008). A significant overlap
between SARS-CoV-2 and total human population models indicates that the virus’
distribution is not necessarily constrained by climate (i.e., that the full range of human
occupied climate is accessible to the virus).

RESULTS
Climate distribution visualizations
The human population climate curves are visually similar compared to the
population-scaled SARS-CoV-2 climate curves for all seven abiotic variables for March 30
(Fig. 1). There do appear to be modest differences in the population-scaled viral curves
towards cooler temperatures and lower water vapor pressure compared to the human
population curves. The raw density of SARS-CoV-2 cases (Fig. S1) is visually different
from the population-scaled data (Fig. 1). Population-scaled SARS-CoV-2 data appear
to become better fitted to the human population data over time (i.e., these curves better
match on March 30 than they did on March 2 or 16, 2020; Fig. 1), whereas the raw
SARS-CoV-2 case data become more and more fixed on a narrow range of values for all
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climate variables (Fig. S1). The latter (fixed and narrow) range presumably has to do with a
few virus hotspots.

There is a highly significant positive relationship (Spearman’s r = 0.75, p < 2E−12);
between the number of humans in a county and the number of viral cases; however, the
population-scaled viral cases do not have a strong relationship (Spearman’s r = 0.05,
p = 0.03) with human populations (Fig. 2). Although the latter p-value is significant, this is
often not all that meaningful for large datasets, whereas the weak r value better illustrates
the relationship for the population-scaled data.

Species distribution models
Model testing for SARS-CoV-2 population-scaled case model identified a Maxent model
with linear and quadratic feature classes and a regularization multiplier of 0.5 as the best
model, with a reasonably high model fit and transferability under block resampling

Table 1 Evaluation of our species distribution modeling practices against the best practices that have been proposed for this field (Araújo
et al., 2019).

Guideline Standard Justification

Response
variables

(A) Sampling: bronze Best data available; municipalities, local governments, and states choose who to test. Positive tests
only reported

(B) Identification: gold Assuming best practices in testing and reporting

(C) Spatial accuracy: bronze County assignments provide a rough georeference for each record, but do not precisely describe
where transmission of the virus occurred. Spatial accuracy unknown. Occurrences limited to
identifiable county level localities

(D) Environmental extent:
deficient

Limiting the study area to the continental U.S. is unlikely to adequately test environmental
boundaries

(E) Geographic extent: bronze Study area to include current range in the U.S.

Predictor
variables

(A) Selection of candidates:
bronze/deficient

Unclear and not well documented correlations between SARS-CoV-2 transmission and climate.
At best, distal variables with weak, indirect control on the distribution

(B) Spatial and temporal
resolution: deficient

Variables sampled from a 2.5 arcminute grid for all cells within 5km of each occurrence point. Mean
value used for modeling. Monthly climate averages as predictors for end of March occurrence data

(C) Uncertainty: bronze Temporal and spatial uncertainty in occurrence data has unquantified potential effects on the model
output.

(A) Model Complexity: silver ENMeval for model testing and selection (maximize testing AUC and minimize AICc in the case of
ties) using internal cross validation through the block resampling method

(B) Treatment of response bias:
silver

Internal cross validation to evaluate bias effects in different models

(C) Treatment of collinearity:
bronze

“Approximate methods are applied” — Predictor variables hand selected from monthly climate data
available to avoid collinearity (i.e., used only Tmax and not Tavg or Tmin)

(D) Uncertainty: bronze Multiple Maxent model parameters tested, but only the optimal model presented

Model
evaluation

(A) Evaluation of model
assumptions: gold/silver

Select robust models from all tested models with ENMeval

(B) Evaluation of model outputs:
silver

Evaluated against multiple, non-independent, geographically structured sub-samples

(C) Measures of model
performance: silver

Suite of model performance metrics performed via ENMeval

Summary Mode of the scores: bronze Model building and testing is generally robust, but data and geographic scope are incomplete at this
time

Harbert et al. (2020), PeerJ, DOI 10.7717/peerj.10140 10/21

http://dx.doi.org/10.7717/peerj.10140/supp-1
http://dx.doi.org/10.7717/peerj.10140
https://peerj.com/


(Avg. Test AUC = 0.82; Test AUC variance = 0.0002). Population-scaled case and human
population models built using these optimal model parameters appear to be highly
similar, with areas of high suitability predicted for much of the West Coast and most
of the eastern half of the U.S. (Fig. 3). There are some differences; for instance, the
population-scaled model output for SARS-CoV-2 (Fig. 3A) suggests Florida is less suitable
than it is in the map for human population (Fig. 3B).

Model testing for the SARS-CoV-2 raw case dataset identified a Maxent model with
linear and quadratic feature classes and a regularization multiplier of 1.5 as the optimal
model with a high model fit (Avg. Test AUC = 0.88), but with a slightly lower model
transferability evidenced by higher AUC variance (Test AUC variance = 0.007) than the
population-scaled model. The SDMs of the raw virus cases (Fig. S2) fail to reconstruct
the known distribution of viral cases in much of the U.S. with strong bias towards the
Pacific Northwest and Northeastern United States. The SDMs for humans (Fig. 3; Fig. S2)
do not exactly match current human distribution for the U.S. However, this was expected,
because the goal of the model is to match climates that are correlated with the places
where most people live (i.e., it is not simply a map of current human populations). We did
this as our ultimate goal was comparing a viral model to a human model.

The niche overlap and similarity tests both find that the models of SARS-CoV-2
(population-scaled viral case data) and human population have significantly higher
overlap (p < 0.01) than would be expected by chance (Fig. 4), confirming the visual
similarities between these maps. The raw data showed less overlap: the similarity test was
significant, but an order of magnitude less so than for the population-scaled data
(p = 0.02), while the overlap test was insignificant (p = 0.20), as seen in Fig. S3.

DISCUSSION
Main findings
Our results suggest that population-scaled SARS-CoV-2 coronavirus cases from March
2020 were highly linked with the human populations in the U.S. and that any influence
of climate is hard to disentangle for SARS-CoV-2 cases for the U.S. during this time
period (Figs. 1–4). Furthermore, this link was strengthening over the duration of March
(Fig. 1). This indicates that caution should be used when dealing with climate modeling
of SARS-CoV-2, at least on a national scale. Our results, while broadly similar to what
was found in the U.S. for global-scale models (Araújo & Naimi, 2020; Bariotakis et al.,
2020), indicate that the pattern we observed is simply reflecting human population density.
Based on this, at least human population density should be compared or incorporated in
any modeling exercises for SARS-CoV-2. Accordingly, the current global results from
other studies (Araújo & Naimi, 2020; Bariotakis et al., 2020) should not be taken at face
value without a critical comparison to human distributions. Furthermore, this is in line
with current knowledge that public policy is the main driver for coronavirus spread in the
U.S. (Leonhardt, 2020). It is also in line with modeling efforts that have combined
epidemiological variables with climate (Baker et al., 2020).

It is also noteworthy that our models using the raw viral case data (Fig. S2), as opposed
to population-scaled data (Fig. 3), performed poorly: the raw SDMs did not highlight
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most of the known March range of SARS-CoV-2 in the U.S. Other distribution modeling
studies have only used raw values as inputs (Araújo & Naimi, 2020; Bariotakis et al., 2020),
which our model shows to be at risk of overfitting and low model transferability to
novel regions. Similarly, our analysis of raw SARS-CoV-2 case data shows that over time
the probability density curves focus on a narrower range of climate as more data comes
from the areas most affected by the outbreak (Fig. S1). In contrast, adjusting for population
size with the population scaling results in SARS-CoV-2 climate curves more closely
approaches that of the human population curves over time (Fig. 1). Furthermore,
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Figure 4 (A) Niche overlap and (B) similarity tests for Maxent species distribution models built with
population scaled SARS-CoV-2 coronavirus data compared to one built with human population
density as occurrence data; actual model overlap indicated by a red marker in both plots. Sig-
nificant p-values correspond to greater niche overlap or similarity than expected by random models.

Full-size DOI: 10.7717/peerj.10140/fig-4
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county-level human population numbers only appear to be strongly correlated with raw
cases, rather than population-scaled cases (Fig. 2). Together these observations suggest that
SARS-CoV-2 was highly successful in a few areas in March (e.g., New York City), but when
scaled for the available human population in each county we can infer a much broader
geographic and climatic range was available.

Again, our data provide a few indications that climate may have had some relevance for
SARS-CoV-2 distributions in March. Viral probability densities were slightly higher in
cooler locales (Fig. 1; Fig. S1). The population-scaled data were particularly compelling,
even if the climate difference is smaller, as they are less driven by the current SARS-CoV-2
hotspots. Furthermore, our population-scaled viral SDMs, while statistically indistinguishable
from our human SDMs, had lower suitability for the virus in Florida and the
southwestern border (Fig. 3). Whereas in reality, Florida had >5,000 cases in March.

Avoiding a presumably faulty prediction
Given that our SDMs for humans and the virus had significant niche overlap and similarity
(Fig. 4), we do not believe that a future projection of our SARS-CoV-2 SDMs in the
U.S. using only climate data would be trustworthy at this point in time, and therefore
we do not present one. A model based on March data would likely have suggested the
SARS-CoV-2 prevalence would have shifted northward during the summer, which would
be congruent with another early global modeling study (Araújo & Naimi, 2020). However,
given that humans do not move northward in large numbers in the U.S. during the
summer, our predictions would be based on faulty presumptions about host resources
(i.e., that there are sufficient humans in the north to harbor the bulk of cases). Most
importantly, we now know that the virus has spread across much of the southern U.S.
during the summer. One could imagine this counterintuitive spread was, in addition to
inadequate public health policy, due in part to people in the southern states staying indoors
more in the summer, replicating the behavior found in the northern states during the
winter. Still, it is possible that a future model projection would turn out to be correct using
updated datasets, and there could be at least some residual predictive power that is not fully
encompassed by human population patterns.

Modeling counterarguments
Here are some of the main arguments that have been put forward against SARS-CoV-2
SDMs, followed by our opinion on the subject. (1) Issue: the virus is spreading and the
population was not in equilibrium with climate or any other putative niche dimension in
March, let alone today. Our thoughts: it was not in equilibrium and that is imperfect;
however, SDMs have been useful for a number of non-equilibrium systems, like species
invasions during their spreading phase (Václavík & Meentemeyer, 2009), and waiting for
equilibrium will mean predictions are no longer as useful to conduct (i.e., would only be
helpful for a next outbreak of this virus). (2) Issue: the virus may have been spreading
heavily or underreported in the Global South as of March. Our thoughts: surely this was
partially true, but this may not completely explain observable climatic correlations. Even if
we are working with incomplete data, it is hard to know if adding those data will
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significantly change conclusions based on preliminary models (i.e., will the SARS-CoV-2
model still be indistinguishable from a human population model). Still, to mitigate this
problem we focused on the more consistent US-level data. (3) Issue: papers applying SDMs
must strive for best practices to avoid common errors. Our thoughts: yes, we agree that best
practices are indeed worth pursuing, even if not everyone agrees on what best practices
may be. We have done our best to achieve the somewhat aspirational standards that have
been put forth (Araújo et al., 2019). We explicitly document this and summarize
shortcomings that are inherent with a newly spreading system (Table 1). (4) Issue: caution
should be taken in claims and dissemination of research that could impact public health
policy. Our thoughts: yes, caution is advisable in terms of studies on dire subjects like
SARS-CoV-2; however, cross pollination between disciplines has been important for many
breakthroughs and advances in science.

It has now been argued that SDMs of SARS-CoV-2 can help to predict where the virus
may generally be found now and in the future (Araújo & Naimi, 2020; Bariotakis et al.,
2020), as well as why it might be a fool’s errand to conduct these analyses in the first place
(Chipperfield et al., 2020). Specifically, caution towards distribution modeling
methodology for SARS-CoV-2 in recent review literature highlights the likely limited effect
climate has on a pathogen spread via direct transmission, and thus concludes that this tool
is inappropriate in this situation (Carlson et al., 2020a, 2020b). Important confounding
variables such as human interactions, public policy and microclimate may mask any effects
climate plays on this virus (Carlson et al., 2020b; Chipperfield et al., 2020). Due to this,
epidemiological studies are more suited to understand patterns of transmission (Carlson
et al., 2020a, 2020b; Chipperfield et al., 2020). Importantly, given these problems with SDMs
of SARS-CoV-2, there is concern that these studies may negatively affect public policy
(Chipperfield et al., 2020; Carlson et al., 2020a, 2020b). Others continue to highlight the
possible connections between climate and SARS-CoV-2 and advocate for continued
research in this area (Araújo, Mestre & Naimi, 2020).

Caveats and unknowns
There are individuals who regularly go undetected for SARS-CoV-2 (e.g., those who lack
symptoms or have mild symptoms)—currently estimated at up to 25% (Mandavilli, 2020).
This is of course an issue for all studies of SARS-CoV-2, but was likely especially true
for March when testing was less widely available in the U.S. Obviously it is not ideal for
modeling and forecasting; however, it is inherent in any study. In fact, we have far more
data available for SARS-CoV-2 than we will ever have for the vast majority of viruses
and biodiversity generally.

Our results are based on data for a single, large country. While conducting an analysis
on global data would have been ideal, we avoided this because this type of global analysis
is known to have certain issues and inconsistencies (Chipperfield et al., 2020). While it
may somewhat hobble our ability to forecast viral distributions at other time points, as
there are surely non-analogous weather systems to come (i.e., no place in the U.S. in March
was as hot as Death Valley, California is during full summer heat), we feel it was a
worthy trade-off. Policy, social factors and a variety of other variables were not included in
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this study, despite their obvious, known, or potential importance (Maier & Brockmann,
2020; Leung et al., 2020;Miller et al., 2020); other variables such as wearing masks are also
surely important for global patterns (Maier & Brockmann, 2020; Leung et al., 2020).
Unfortunately, data on these variables are often lacking in public databases. Our goals were
to focus on a rather macro scale, which may be harder to do with policy data that can vary
substantially from county to county, state to state, and, for a global study, country to
country. While policies in the U.S. probably had not been implemented for long enough to
tell their impact in March data, these changes (e.g., self-isolation and mask wearing) clearly
and strongly influenced the trajectory of the virus after March.

Data accessibility and mobilization
We believe the New York Times (The New York Times, 2020) providing robust
county-level data in an accessible repository with an open license for the U.S. sets an
excellent standard that should be repeated by governments, academics and other media
organizations for other parts of the world so that this type of study may be better repeated
in any country or globally. In a similar vein, we have made our analytical and modeling
pipeline (along with figures) available (https://github.com/rsh249/cv19_enm/releases/
tag/v0.0.5). We believe it is imperative for all pipelines and scripts to be made available
for any SARS-CoV-2 research to ensure that models can be improved upon and any
errors can be more quickly uncovered and resolved.

Future directions
There are many avenues to pursue regarding SARS-CoV-2 modeling and predictions.
We are excited to see researchers from a variety of fields extending their toolkits towards
understanding this virus. We hope that ecological studies like this and others can play a
role without overcomplicating the research efforts put forth by epidemiologists. Still,
studies should familiarize themselves with current critiques of SDMs for SARS-CoV-2
modeling and be cautious of their inputs and conclusions.

With improving data, we feel that future studies should better be able to examine
the system globally while considering human populations and public policy efforts at
curbing the virus. We also believe that it will at some point, in the U.S. and elsewhere,
be worth examining death rates across different areas, as it would be helpful to know if
climate or other abiotic variables might impact this statistic. Coupling regularly updated
data with automated online resources would also be particularly helpful in learning how
this virus may spread.

CONCLUSIONS
Species distribution models from SARS-CoV-2 population-scaled cases did not appear to
be distinguishable from human population density for an early point in the pandemic for
the U.S. Future studies looking at climate’s impact on this virus should, wherever possible,
take into account human population density in any analyses.
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