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Under physiological conditions, retinal pigment epithelium (RPE) is a cellular monolayer
composed of mitotically quiescent cells. Tight junctions and adherens junctions maintain
the polarity of RPE cells, and are required for cellular functions. In proliferative
vitreoretinopathy (PVR), upon retinal tear, RPE cells lose cell-cell contact, undergo
epithelial-mesenchymal transition (EMT), and ultimately transform into myofibroblasts,
leading to the formation of fibrocellular membranes on both surfaces of the detached
retina and on the posterior hyaloids, which causes tractional retinal detachment. In PVR,
RPE cells are crucial contributors, and multiple signaling pathways, including SMAD-
dependent pathway, Rho pathway, MAPK pathways, Jagged/Notch pathway, and Wnt/β-
catenin pathway, are activated. These pathways mediate the EMT of RPE cells, which play
a key role in the pathogenesis of PVR. This review summarizes the current body of
knowledge on the polarized phenotype of RPE, the role of cell-cell contact, and the
molecular mechanisms underlying the RPE EMT in PVR, emphasizing key insights into
potential approaches to prevent PVR.
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28 Abstract

29 Under physiological conditions, retinal pigment epithelium (RPE) is a cellular monolayer 

30 composed of mitotically quiescent cells. Tight junctions and adherens junctions maintain the 

31 polarity of RPE cells, and are required for cellular functions. In proliferative vitreoretinopathy 

32 (PVR), upon retinal tear, RPE cells lose cell-cell contact, undergo epithelial-mesenchymal 

33 transition (EMT), and ultimately transform into myofibroblasts, leading to the formation of 

34 fibrocellular membranes on both surfaces of the detached retina and on the posterior hyaloids, 

35 which causes tractional retinal detachment. In PVR, RPE cells are crucial contributors, and 

36 multiple signaling pathways, including SMAD-dependent pathway, Rho pathway, MAPK 

37 pathways, Jagged/Notch pathway, and Wnt/β-catenin pathway, are activated. These pathways 

38 mediate the EMT of RPE cells, which play a key role in the pathogenesis of PVR. This review 

39 summarizes the current body of knowledge on the polarized phenotype of RPE, the role of cell-

40 cell contact, and the molecular mechanisms underlying the RPE EMT in PVR, emphasizing key 

41 insights into potential approaches to prevent PVR.

42

43 Introduction

44 Proliferative vitreoretinopathy (PVR) is a complex blinding disease that occurs after 

45 rhegmatogenous retinal detachment (RRD), surgical interventions, or ocular trauma. As a 

46 prolonged and exaggerated scarring process, PVR is characterized by the formation of contractile 

47 fibrocellular membranes in the vitreous cavity and on the inner and outer surfaces of the retina 

48 (Committee 1983; Mudhar 2020; Tosi et al. 2014). At present, surgical interventions, including 

49 vitrectomy, membrane peeling, pneumatic retinopexy, and scleral buckle, remain the mainstay of 

50 treatment in PVR. Although work in recent decades has led to advancements in surgical 

51 techniques and management, PVR cannot be effectively treated and is still the most common 

52 cause of failure to reattach the retina (Coffee et al. 2014; Khan et al. 2015; Mitry et al. 2012; 

53 Wickham et al. 2011). In addition, in spite of successful anatomic reattachment, the visual 

54 function of such cases cannot be improved, due to the retinal damage resulting from the 

55 mechanical contraction of fibrous membranes. Therefore, in order to improve postoperative 

56 visual function and reduce the incidence of this serious complication, it is particularly important 

57 to explore new prophylactic and therapeutic approaches based on a deeper understanding of the 

58 pathogenesis of PVR. 
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59 A growing body of evidence indicates that the mechanisms of PVR are orchestrated by 

60 multiple elements (Idrees et al. 2019; Jin et al. 2017; Pastor et al. 2016), such as growth factors 

61 (Charteris 1998; Ni et al. 2020; Pennock et al. 2014; Wubben et al. 2016), cytokines (Bastiaans 

62 et al. 2018; Harada et al. 2006; Limb et al. 1991), extracellular matrix proteins (Feist et al. 2014; 

63 Miller et al. 2017) and various cells (Eastlake et al. 2016; Pennock et al. 2011; Shu & Lovicu 

64 2017). According to the histopathology of PVR, the fibrocellular membrane of PVR is composed 

65 of excessive extracellular matrix (ECM) and multiple types of cells, and retinal pigment 

66 epithelial (RPE) cells have been indicated as the most consistently present and the most abundant 

67 (Amarnani et al. 2017; Ding et al. 2017; Hiscott et al. 1989; Machemer & Laqua 1975), proving 

68 that the RPE cell plays a crucial role in PVR. Under physiological condition, the polarized RPE 

69 cell is non-proliferative by cell-cell contact. However, when the eye suffers from a retinal break 

70 or trauma, RPE cells are exposed to various growth factors and cytokines that are produced by 

71 activated immune cells, leading to the disruption of junctional complexes in RPE cells. 

72 Subsequently, activated RPE cells detach from Bruch’s membrane, migrate through the defect of 

73 the retina, proliferate, and transform into myofibroblasts, forming fibrotic membranes (Chen et 

74 al. 2015; Morescalchi et al. 2013; Palma-Nicolás & López-Colomé 2013). In an analogous 

75 process to exaggerated wound healing response, these membranes can attach to the retina and 

76 contract, resulting in further retinal detachment and poor vision (Chiba 2014; Garweg et al. 

77 2013). It is noteworthy that due to the loss of cell-cell contact, RPE cells undergo epithelial-

78 mesenchymal transition (EMT), which is pivotal in the development of PVR. During EMT, RPE 

79 cells transdifferentiate into mesenchymal cells that are characterized by increased motility, and 

80 enhanced ability to proliferate, resist apoptosis and produce extracellular matrix proteins, thus 

81 participating in PVR (Tamiya & Kaplan 2016; Zhang et al. 2018c). These indicate that in-depth 

82 knowledge of EMT may provide insight into potential approaches to prevent PVR. Therefore, 

83 this review focuses on the polarized phenotype of RPE and molecular mechanisms of RPE cell 

84 EMT, discussing the role of RPE cells in PVR.

85 Survey methodology

86 We used the PubMed database to search available literature based on keywords including 

87 “proliferative vitreoretinopathy(PVR)” and “retinal pigment epithelial cell”. To include more 

88 information on the polarity of RPE, we also searched articles about the structure and function of 

89 cell-cell junctions in RPE cells that explored the role of cell-cell contact in EMT. 

90 1. The Polarized Retinal Pigment Epithelial Cell

91    The human RPE cell achieves terminal differentiation at four to six weeks of gestation and 

92 subsequently remains mitotically quiescent (Lutty & McLeod 2018; Stern & Temple 2015). The 

93 RPE, which is situated between the photoreceptors and the choroid, plays many complex roles 
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94 indispensable to the health of the neural retina and the choroid. These roles include recycling of 

95 components of the visual cycle, absorption of light to protect from photo-oxidative stress, 

96 production of essential growth factors, immunological regulation of the eye, phagocytosis of 

97 photoreceptor outer segments generated during daily photoreceptor renewal, and transportation 

98 across the blood retina barrier (BRB) (Ferrington et al. 2016; Fields et al. 2019; Mateos et al. 

99 2014; Naylor et al. 2019; Strauss 2005; Vigneswara et al. 2015). In order to maintain these 

100 multiple functions, RPE cells display a highly specialized structural and functional polarity.

101 Similar to other epithelia, the RPE displays three characteristics of the epithelial phenotype: 

102 apical plasma membrane, junctional complexes, and basolateral domain. RPE cells display 

103 structural polarity, with apical microvilli and melanosomes, and basal microinfolds. The 

104 abundant melanin granules in RPE cells absorb stray light, a process that is essential for visual 

105 function (Strauss 2005). In a polarized cell, the distributions of surface proteins on the apical and 

106 basal plasma membranes are different, contributing to the performance of cellular functions 

107 (Khristov et al. 2018). However, a highly polarized distribution of ion channels, transporters and 

108 receptors in RPE is different from that observed in conventional extraocular epithelia (Lehmann 

109 et al. 2014). For example, Na, K-ATPase(Sonoda et al. 2009) and monocarboxylate transporters 

110 (MCT) 1(Deora et al. 2005) are localized to the apical aspect of RPE cells, while chloride 

111 transporter CFTR(Maminishkis et al. 2006) is basally located. On the apical plasma membrane, 

112 RPE cells phagocytize the photoreceptor outer segments, which are regulated by polarized 

113 receptors. Bulloj et al. (2018) found that binding of Semaphorin 4D (sema4D) to RPE apical 

114 receptor Plexin-B1 suppresses outer segment internalization, contributing to the maintenance of 

115 photoreceptor function and longevity. The RPE also transports fluid out of the subretinal space, 

116 and regulates bidirectional nutrient transport between the outer retina and the choroid, in a 

117 manner dependent on the polarized distribution of membrane channels and transporters(Strauss 

118 2005). The RPE basolaterally secretes extracellular matrix components and factors, which 

119 participate in ECM remodeling and maintain the outer BRB (oBRB) function (Caceres & 

120 Rodriguez-Boulan 2020). Therefore, the polarized phenotype of the RPE is vital to both the 

121 oBRB and is the basis of the homeostasis of the outer retina (Caceres & Rodriguez-Boulan 2020; 

122 Lehmann et al. 2014). The disruption of RPE polarity contributes to the development of several 

123 retinal diseases, such as PVR and age-related macular degeneration (AMD). A comprehensive 

124 understanding of the way in which this polarity is achieved may provide insights into the 

125 pathogenesis of PVR. 

126 However, most available data on RPE polarity is contributed by studies performed on RPE-

127 immortalized cell lines that show partial preservation of the RPE phenotype, and were 

128 extrapolated from data obtained from the prototype Madin-Darby Canine Kidney (MDCK) cell 

129 line (Lehmann et al. 2014). The detailed mechanisms that determine RPE polarization remain 
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130 unclear. Some scholars believe that junctional complexes, including adherens junctions (AJs) 

131 and tight junctions (TJs), are essential for building epithelial cell polarity and maintaining the 

132 integrity of epithelial layers such as RPE (Niessen 2007; Pei et al. 2019; Tamiya & Kaplan 

133 2016). 

134 Tight junctions are complex cell-cell junctions formed by transmembrane proteins 

135 interactions with peripheral cytoplasmic proteins (Fig 1). Transmembrane proteins include 

136 occludin, members of the claudin family, and junctional adhesion molecules (JAMs). Peripheral 

137 cytoplasmic proteins, such as zonula occludens (ZOs), form bridges between transmembrane 

138 proteins and the actin filament cytoskeleton and play a key role in the assembly and organization 

139 of TJs (Bazzoni & Dejana 2004; Bazzoni et al. 2000; Naylor et al. 2019). 

140 The RPE tight junctions regulate the paracellular movement of solutes via size and charge 

141 selectivity (Benedicto et al. 2017; Caceres et al. 2017; Naylor et al. 2019).Occludin and claudins 

142 determine the permeability and semi-selectivity of the TJs, and as such play critical roles in the 

143 oBRB (Balda et al. 2000; Fields et al. 2019; Furuse et al. 1998; Günzel & Yu 2013; Rosenthal et 

144 al. 2017). JAMs regulate TJ assembly and function by recruiting other proteins to the TJ and play 

145 an important role in the barrier property of TJs (Balda & Matter 2016; Orlova et al. 2006; Shin et 

146 al. 2006). In patients with RRD, damage to TJs elicits the breakdown of oBRB and promotes the 

147 penetration of growth factors and cytokines, aggravating PVR. As well as having a barrier 

148 function, TJs define the physical separation between apical and basal domains of the plasma 

149 membrane, to maintain RPE cell polarity (Campbell et al. 2017; González-Mariscal et al. 2014; 

150 Sluysmans et al. 2017). The two extracellular loops of occludin mediate adhesion of adjacent 

151 cells and block the movement of plasma components. The C-terminal domain combines directly 

152 with ZOs, subsequently interacting with the actin cytoskeleton, which is essential to organizing 

153 and maintaining cell polarization (Balda & Matter 2016; Furuse et al. 1994; Shin et al. 2006; 

154 Tarau et al. 2019). Feng et al. (2019) demonstrated that during EMT, the breakdown of TJs 

155 resulting from loss of claudin-1 causes ARPE-19 cells to lose their epithelial phenotype and 

156 transform into fibroblasts, promoting the development of PVR. TJs are involved in the regulation 

157 of signaling pathways that govern various cellular functions such as proliferation, migration, and 

158 differentiation (Bhat et al. 2018; Shi et al. 2018; Sluysmans et al. 2017). Vietor et al. (2001) 

159 found that decreased amounts of occludin can cause up-regulation and translocation of the 

160 adhesion junction protein β-catenin, which interacts with the transcription factor lymphoid 

161 enhancer-binding factor (LEF)/T cell factor (TCF) in the nucleus, leading to a loss of the 

162 polarized epithelial phenotype in EpH4 cells. ZOs, adaptor proteins within the TJ complex, 

163 exhibit dual localization at TJs and in the nucleus. Under injury or stress, the disruption of TJs 

164 increases ZO-2 nuclear accumulation, driving its interaction with transcription factors, and 

165 inducing MDCK epithelial cell proliferation (Islas et al. 2002; Shi et al. 2018; Traweger et al. 
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166 2003). In differentiated RPE cells, the interaction between ZO-1 with ZO-1-associated nucleic 

167 acid-binding protein (ZONAB) maintains cell-cell contact by sequestering ZONAB at the TJ or 

168 in the cytoplasm, maintaining cells dormancy. However, when damage to TJs decreases ZO-1 

169 levels, ZONAB is translocated into the nucleus, leading to the up-regulation of cyclin D1 (CD1) 

170 and subsequent cell proliferation (Balda et al. 2003; González-Mariscal et al. 2014). Therefore, 

171 TJs provide a structural foundation for the maintenance of cell-cell contact. Georgiadis et al. 

172 (2010) demonstrated that the overexpression of ZONAB or knockdown of ZO-1 could result in 

173 increased RPE proliferation and the development of EMT. Recent research has confirmed that 

174 during EMT, ZO-1 is decreased in ARPE-19 cells, and the knockdown of either ZO-1 or AJ 

175 protein E-cadherin leads to the downregulation of the other protein, indicating the existence of an 

176 interaction between the two junctional complexes (Bao et al. 2019). Due to the importance of TJs 

177 in the maintenance of integrity and functionality of epithelial cells, several researchers have 

178 focused on novel factors that stimulate the formation of TJs, such as nicotinamide (Hazim et al. 

179 2019) and lysophosphatidic acid (Lidgerwood et al. 2018). Studies into these factors may 

180 produce well-differentiated RPE cell lines and a platform to enable the rapid expansion of our 

181 understanding of many RPE functions and retinal pathologies. This approach could be conducive 

182 to finding novel therapeutic interventions for PVR. 

183 Besides the TJ complex described above, another type of junctional complex called AJs 

184 plays a key role in the maintenance of the integrity of epithelial cells and cell-cell contact (Fig 1). 

185 Cadherins, the major proteins of AJs, belong to the glycoprotein superfamily, of which there are 

186 more than 20 members. The cytoplasmic domain of cadherins regulates interactions between 

187 cadherins and catenins, including β-catenin, α-catenin, and p120-catenin, and other scaffolding 

188 proteins such as ZO-1, to maintain cell shape and modulate cell proliferation (Aberle et al. 1994; 

189 Nelson & Nusse 2004; Wheelock & Johnson 2003). In quiescent adult RPE cells, epithelial 

190 cadherins (E- and/or P-cadherin) sequester β-catenin at the AJs to maintain cell-cell contact. 

191 Reduction of cadherin levels or dissociation of AJs allows β-catenin to translocate into the 

192 nucleus, where it interacts with the transcription factor LEF, and activates the transcription of 

193 various genes, including Snail and cyclin D1, which participate in RPE cell EMT via the 

194 canonical Wnt/β-catenin signaling pathway (Gonzalez & Medici 2014; Lamouille et al. 2014; 

195 Nelson & Nusse 2004; Yang et al. 2018) . Tamiya et al. (2010) suggested that the loss of P-

196 cadherin causes the loss of cell-cell contact and initiates RPE cell migration and EMT. These 

197 events coincide with a switch in cadherin isoform expression from P- to N-cadherin. In addition, 

198 hepatocyte growth factor (HGF) and its receptor c-Met can destabilize cell-cell adhesion and 

199 elicit nuclear translocation of β-catenin, resulting in RPE cell migration (Lilien & Balsamo 2005; 

200 Liou et al. 2002). Jin et al found that HGF induces loss or redistribution of junctional proteins 

201 ZO-1, occludin, and β-catenin in RPE explants, potentially damaging barrier function and 
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202 increasing the migration of RPE cells, resulting in retinal detachment(RD) and PVR (Jin et al. 

203 2002; Jin et al. 2004). Given the importance of HGF in the interruption of RPE junction, HGF 

204 may be a potential target for the prevention and treatment of PVR. However, this possibility 

205 needs further study.

206 Under physiological conditions in the eye, TJs and AJs maintain the specialized structural 

207 and functional polarity of RPE cells and play a pivotal role in the maintenance of cell-cell 

208 contact; they sequester EMT signaling effectors ZONAB and β-catenin at the junction or 

209 cytoplasm to prevent cells from responding to mitotic factors, causing cells to leave the cell-

210 cycle (Fig 1). Thus, normally, RPE cells form a cobblestone-like monolayer of immotile, 

211 polarized, and mitotically quiescent cells. However, once junctional complexes break down, RPE 

212 cells undergo EMT, which is an important contributor to proliferative vitreoretinopathy. In this 

213 pathological process, RPE cells lose their structural and functional polarity and transdifferentiate 

214 into mesenchymal cells, which proliferate, resist apoptosis, possess migratory ability, and 

215 produce abundant ECM, leading to the formation of an aberrant scar-like fibrocellular 

216 membrane.

217 2. De-differentiated RPE and Fibrocellular Membrane

218    Proliferative vitreoretinopathy is characterized by the formation of fibrocellular membranes 

219 composed of proliferative and migratory cells and excessive, aberrant ECM. Histopathological 

220 analysis of PVR has demonstrated that PVR membranes have contractile activity and strain the 

221 retina, leading to tractional retinal detachment (TRD), which is responsible for blurring vision.

222 Several studies (Feist et al. 2014; Takahashi et al. 2010) have found that the cellular 

223 components of PVR membranes include RPE cells, myofibroblasts, fibroblasts, glial cells and 

224 macrophages, and that myofibroblasts are critical for the formation and contractile activity of 

225 fibrocellular membranes. Based on the indirect immunofluorescence evaluation of human PVR 

226 membranes, Feist et al. (2014) showed that myofibroblasts originate principally from RPE cells 

227 through EMT. Myofibroblasts are characterized by increased expression of alpha-smooth muscle 

228 actin (α-SMA) and incorporation of α-SMA into newly formed actin stress fibers, which 

229 enhances their contractile properties. Myofibroblasts also secrete excessive matrix and pro-

230 fibrogenic factors, promoting the contraction of PVR membranes that ultimately cause 

231 irreversible loss of vision (Gamulescu et al. 2006; Hinz et al. 2001; Shu & Lovicu 2017; Tamiya 

232 & Kaplan 2016; Tomasek et al. 2002).

233 In addition to myofibroblasts, abnormally increased ECM reinforces the continuous 

234 contractile tension of PVR membranes, and this mechanical tension, together with specialized 

235 ECM proteins, regulates myofibroblast differentiation and its function, contributing to PVR. In 

236 PVR membranes, the primary components of ECM are collagen and fibronectin. The majority of 
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237 collagen fibrils are type Ⅰ collagen, which is synthesized by RPE cells and Müller cells. 

238 Collagen fibrils provide tensile strength to the ECM, and activate Rho, resulting in the 

239 translocation of myocardin-related transcription factor (MRTF) into the nucleus and promoting 

240 RPE cell EMT (Guettler et al. 2008; Miralles et al. 2003). Fibronectin may also play a significant 

241 role in PVR. During pathological ECM remodeling, fibronectin is one of the earliest ECM 

242 components recruited, serving as a scaffold for other ECM proteins (Kadler et al. 2008; Miller et 

243 al. 2017; Miller et al. 2014). Extra domain (ED)-A fibronectin, a splice variant of fibronectin, is 

244 increased in TGF-β2-induced RPE cells and induces myofibroblast differentiation, participating 

245 in PVR (Khankan et al. 2011).

246 Under normal conditions, ECM breakdown by proteases such as matrix-metalloproteases 

247 (MMPs) plays a crucial role in ECM remodeling and the release of growth factors, maintaining 

248 tissue homeostasis in cooperation with ECM synthesis, reassembly, and chemical modification 

249 (Bonnans et al. 2014; Craig et al. 2015; Lindsey et al. 2016). As mentioned above, the polarized 

250 RPE is able to basolaterally secrete the extracellular matrix components fibronectin and 

251 collagens, MMP and tissue inhibitors of MMPs (TIMPs), which participate in ECM remodeling. 

252 However, under pathological conditions such as inflammation and retinal injury, RPE cells lose 

253 their apical-basal polarity, undergo EMT and abnormally secrete MMPs, TIMPs and ECM 

254 proteins, leading to dysregulated ECM remodeling (Greene et al. 2017). Such ECM has aberrant 

255 composition and organization and mechanical properties, and enhances matrix stiffness and 

256 strain, which disrupts the normal structure and function of the retina, exacerbating the 

257 progression of PVR.

258 3. RPE and Epithelial-mesenchymal Transition

259 3.1 EMT of RPE Cell

260    Epithelial-mesenchymal transition is an important biological process, in which epithelial 

261 cells transdifferentiate into mesenchymal cells. Although EMT can occur in normal embryonic 

262 development and wound healing, it also participates in pathological processes such as fibrosis, 

263 cancer progression, and PVR. There are three distinct subtypes of EMT: type 1 occurs during 

264 tissue and embryo development, type 2 is involved in wound healing and organ fibrosis, and type 

265 3 is associated with cancer progression and metastasis (Dongre & Weinberg 2019; Kalluri & 

266 Weinberg 2009). This review focuses on type 2 EMT, which is crucial to PVR. During EMT, 

267 due to junctional complexes damage, RPE cells relinquish their apical-basal polarity, reorganize 

268 their cytoskeletal architecture, and convert into spindle-shaped cells (Fig 1). These cells 

269 downregulate the expression of epithelial proteins such as E-cadherin and ZO-1, and increase 

270 expression of mesenchymal drivers including N-cadherin, vimentin, α-SMA and fibronectin (Li 

271 et al. 2020). This mesenchymal transdifferentiation of RPE cells can increase the directional 
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272 motility of individual cells, confer resistance to apoptosis, and facilitate cell proliferation and 

273 dysregulated ECM remodeling, eventually leading to the formation of PVR membranes. 

274 3.2 Transcription Factors of EMT

275   The details of the molecular mechanisms that drive RPE cell EMT and lead to PVR remain to 

276 be clarified. Emerging evidence suggests that diverse extracellular inductive signals, including 

277 soluble cytokines and growth factors, and ECM components, can modulate the expression and 

278 activity of EMT­associated transcription factors and act together to control the initiation and 

279 progression of EMT in responding epithelial cells (Yang et al. 2020). Among the various 

280 transcription factors involved in the induction of EMT, core transcription factors including Snail 

281 1, Snail 2(also known as Slug), Twist 1 and zinc-finger E-box-binding (Zeb) 1 have been 

282 identified as important regulators of RPE cell EMT. These factors impact the expression of genes 

283 that control repression of the epithelial phenotype and activation of the mesenchymal phenotype 

284 (Boles et al. 2020; Feng et al. 2019; Li et al. 2019; Li et al. 2014; Liu et al. 2009; Palma-Nicolás 

285 & López-Colomé 2013). For example, thrombin can repress the expression of E-cadherin by 

286 stimulating Snail 2 expression and promote the expression of N-cadherin by phosphoinositide 3-

287 kinase (PI3K)/PKC-ζ/mTOR signaling in Rat RPE cells (Palma-Nicolás & López-Colomé 2013). 

288 During RPE dedifferentiation in primary culture, Zeb1 is overexpressed and binds to the MITF A 

289 promoter to repress the cyclin dependent kinase inhibitor, p21CDKN1a, resulting in RPE cell 

290 proliferation and EMT (Liu et al. 2009). These EMT transcription factors often act in concert, 

291 functionally cooperating at target genes by the convergence of signaling pathways. However, the 

292 molecular details of how these transcription factors contribute to EMT are still elusive 

293 (Lamouille et al. 2014; Stone et al. 2016).

294 3.3 Epigenetic Factors of EMT

295    Due to the importance of epigenetic regulation of EMT, epigenetic modifiers have attracted 

296 increasing attention. Unlike transcription factors, epigenetic modifications are more stable/long-

297 term. However, evidence has shown that epigenetic modifiers work in concert with transcription 

298 factors at different molecular layers to regulate the EMT process (Skrypek et al. 2017). Several 

299 epigenetic factors have been described including DNA methylation, histone modification and 

300 non-coding RNA. Because of the specific machinery utilized for EMT activation, these 

301 modifications are characterized by cell type specificity. In RPE cells, Methyl-CpG-binding 

302 protein 2 (MeCP2), a DNA methylation reader, plays a crucial role in the induction of EMT, and 

303 DNA methylation may participate in the pathogenesis of PVR (He et al. 2015; Li et al. 2020). He 

304 et al. (2015) found high levels of expression of MeCP2 in all human PVR membranes, and 

305 concluded that MeCP2 mediates α-SMA expression through Ras GTPase activating protein 

306 (RASAL1). Furthermore, DNA methylation inhibitor 5-Aza-2' deoxycytidine (5-AZA-dC) 
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307 reportedly inhibits the expression of TGF-β-induced α-SMA and FN in human fetal RPE cells. It 

308 appears that 5-AZA-dC may have therapeutic value in the treatment of PVR. However, the 

309 mechanisms underlying the blockade of α-SMA and FN expression are complex, and further 

310 investigation is warranted. 

311 Recently, the role of histone modifications associated with EMT has been assessed in RPE 

312 cells. However, there has been little research into the regulation of RPE cell EMT by histone 

313 modification. Boles et al. (2020) reported that TGF-β1 and TNF-a co-treatment (TNT) induces 

314 an EMT program in adult human RPE stem cell (RPESC)-RPE cells, involving an apparent 

315 reorganization of H3K27ac and H3K4me1 patterns at distal enhancers. The regions that gain 

316 H3K27ac tend to have a high H3K4me1/H3K4me3 ratio, indicating that they have enhancer 

317 activity and are associated with upregulated genes. Xiao et al. (2014) found that the expression 

318 of histone deacetylases (HDACs) in TGF-β-induced EMT of RPE cells was increased, and that 

319 Trichostatin A (TSA), a class I and II HDAC inhibitor, attenuated TGF-β2-induced EMT by 

320 inhibiting the canonical SMAD pathway and the non-canonical signaling pathways, including 

321 Akt, p38MAPK, ERK1/2 pathways and Notch pathway. Therefore, histone modifications may 

322 participate in the regulation of RPE cell EMT, and HDAC inhibitors may have potential as drugs 

323 for the prevention and treatment of PVR.

324 The study of EMT mechanisms at the RNA level has provided new perspectives on the 

325 treatment of PVR (Kaneko & Terasaki 2017; Wang et al. 2016). MicroRNAs (miRNAs) are 

326 small noncoding RNAs that contribute to cellular processes by regulating gene expression. In 

327 differentiated RPE cells, microRNA-204 is highly expressed, and represses the expression of 

328 type Ⅱ TGF-β receptors and Snail 2, maintaining epithelial structure and function. In contrast, 

329 low expression levels of miR-204 and anti-miR-204 promote RPE cells proliferation, 

330 participating in EMT (Wang et al. 2010). MicroRNA-194 overexpression can also suppress RPE 

331 cell EMT by attenuating the expression of Zeb1 (Cui et al. 2019). In addition to miRNAs, long 

332 non-coding RNAs (lncRNAs) contribute to the regulation of RPE EMT (Zhang et al. 2019). In 

333 RPE cells treated with PVR vitreous or TGF-β1, MALAT1 expression is increased, and 

334 knockdown of MALAT1 attenuates the phosphorylation of SMAD2/3 and the expression of 

335 Snail, Slug, and Zeb1, preventing cell migration and proliferation (Yang et al. 2016). In patients 

336 with PVR, MALAT1 is increased in the blood, and is reduced after surgery. Thus, MALAT1 

337 may be a potential prognostic and diagnostic indicator for PVR (Zhou et al. 2015).

338 3.4 Signaling Pathways of EMT

339    During RPE cell EMT, extracellular signals change the expression of genes encoding 

340 epithelial and mesenchymal proteins and mediate cellular behavior such as cell migration, 

341 proliferation, and apoptosis through a network of interacting signaling pathways that contribute 
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342 to the development of PVR (Chen et al. 2014a; Chen et al. 2014b; Lee-Rivera et al. 2015). 

343 Among these, transforming growth factor-β (TGF-β) and its intracellular cascades play a key 

344 role in the EMT of RPE cells.

345 TGF-β induces EMT of RPE cells via two pathways: the classical SMAD-dependent 

346 pathway and the SMAD-independent pathway (Fig 2) (Cai et al. 2018; He et al. 2017; Heffer et 

347 al. 2019; Ishikawa et al. 2015; Takahashi et al. 2015; Yao et al. 2019; Zhang et al. 2017; Zhang 

348 et al. 2018b; Zhou et al. 2017). In the SMAD dependent pathway, TGF-β binds to cell surface 

349 receptor complexes, and activates type Ⅰ TGF-β receptors, which phosphorylate SMAD2 and 

350 SMAD3. The activated SMADs combine with SMAD4 to form a SMAD complex, which then 

351 enters the nucleus and combines with regulatory elements to regulate the expression of key genes 

352 associated with EMT. In addition to SMAD-dependent signaling, TGFβ induces EMT through 

353 SMAD independent signaling pathways including Rho GTPase-dependent pathways (Lee et al. 

354 2008), PI3K/Akt pathway (Huang et al. 2017; Yokoyama et al. 2012), mitogen-activated kinase 

355 (MAPK) pathways (Chen et al. 2017; Lee et al. 2020; Matoba et al. 2017; Schiff et al. 2019) and 

356 Jagged/Notch signaling pathway (Zhang et al. 2017). The MAPK signaling pathways include 

357 extracellular signal-regulated kinase(ERK) MAPK pathway, p38 MAPK pathway, and JUN N-

358 terminal kinase (JNK) pathway (Parrales et al. 2013; Schiff et al. 2019; Xiao et al. 2014; Zhang 

359 et al. 2018a). 

360 The Rho pathway has been reported to regulate the assembly and organization of the actin 

361 cytoskeleton and associated gene expression, and may be essential for the fibrotic response of 

362 RPE cells in PVR. In TGF-β1-treated ARPE-19 cells, activated RhoA or its downstream effector 

363 Rho kinase (ROCK) increase the kinase activity of LIM kinase (LIMK) which then 

364 phosphorylates cofilin. This phosphorylation attenuates the activity of cofilin, which promotes 

365 actin polymerization and reorganizes the actin cytoskeleton, leading to stress fiber formation 

366 (Lee et al. 2008). TGF-β-induced RhoA activation also facilitates cell migration and increases α-
367 SMA expression in primary RPE cells (Tsapara et al. 2010). Itoh et al. (2007) demonstrated that 

368 ROCK inhibitor Y27632 and RhoA inhibitor, simvastatin, suppress TGF-β2-induced type Ⅰ 

369 collagen expression in ARPE-19 cells, and confirmed the existence of crosstalk between the 

370 SMAD pathway and the Rho pathway. Some studies have suggested that activated SMAD3 

371 induces NET1 gene expression to regulate RhoA activation in RPE cells (Lee et al. 2010). 

372 Moreover, thrombin can activate Rho and ROCK, leading to myosin light chain (MLC) 

373 phosphorylation and actin stress fiber formation in EMT of RPE cells (Fig 3)(Ruiz-Loredo et al. 

374 2011). Therefore, ROCK inhibitor and RhoA inhibitor may be new potential therapeutic target 

375 drugs for PVR.
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376 The PI3K/Akt pathway mediates a broad range of cellular functions, such as cell 

377 transformation, migration, proliferation, apoptosis, and gene expression (Aguilar-Solis et al. 

378 2017; Liu et al. 2019). During PVR, binding of TGF-β to its receptor activates PI3K, resulting in 

379 the phosphorylation of Akt; activated Akt inhibits glycogen synthase kinase 3β (GSK-3β), 
380 promoting EMT in RPE cells (Shukal et al. 2020; Zhang et al. 2018a). Researchers have found 

381 that inhibition or knockdown of GSK-3β promotes cell migration and collagen contraction in 

382 ARPE-19 cells, while GSK-3β overexpression and PI3K/Akt inhibitor reverse these cellular 

383 responses (Huang et al. 2017). Some studies have shown that thrombin can activate PI3K, 

384 resulting in increased cyclin D1 expression and RPE cell proliferation, processes that are 

385 involved in the development of PVR through PDK1/Akt and PKCζ/mTORC signaling (Fig 3) 

386 (Lee-Rivera et al. 2015; Palma-Nicolás & López-Colomé 2013; Parrales et al. 2013).

387 In addition to the PI3K-AKT pathway, other kinase pathways contribute to EMT in 

388 cooperation with the SMAD-dependent signaling pathways. In human RPE cells, TGF-β 

389 activates TGF-β-activated kinase 1 (TAK1), which subsequently transduces signals to several 

390 downstream effectors, including p38 (Heffer et al. 2019), JNK (Kimura et al. 2015) and nuclear 

391 factor-κB (NF-κB) (Chen et al. 2016b), which participate in EMT. Dvashi et al. (2015) found 

392 that TAK1 inhibitor caused a reduction in both p38 and SMAD2/3 activity, attenuating cell 

393 migration, cell contractility and α-SMA expression in TGF-β1-induced RPE cells. Moreover, the 

394 ERK MAPK pathway plays a role in TGF-β-induced EMT and cooperates with other signaling 

395 pathways in the regulation of EMT in RPE cells. Recent studies (Chen et al. 2014b; Tan et al. 

396 2017; Xiao et al. 2014) have shown that blocking the ERK1/2 pathway inhibits the 

397 phosphorylation of SMAD2 and the Jagged/Notch pathway. Inhibition of the Jagged/Notch 

398 signaling pathway can alleviate TGF-β2-induced EMT by regulating the expression of Snail, 

399 Slug and Zeb1 (Fig 3); this also suppresses the ERK1/2 signaling (Chen et al. 2014b).

400    The contribution of growth factors other than TGF-β, such as HGF, fibroblast growth factor 

401 (FGF), epidermal growth factor (EGF) and platelet derived growth factor (PDGF) should also be 

402 factored in with regard to the induction of RPE EMT. These factors bind to and stimulate the 

403 autophosphorylation of transmembrane receptors on Tyr, subsequently participating in RPE cell 

404 EMT via PI3K/Akt pathway, ERK MAPK pathway, p38 MAPK pathway (Fig 3) (Chen et al. 

405 2016a; Ozal et al. 2020).Chen et al. (2012) explored the role of Wnt/β-catenin signaling in PVR, 

406 and found that when EGTA disrupted contact inhibition in RPE cells, EGF+FGF2 could activate 

407 Wnt signaling and increase nuclear levels of β-catenin, which interacts with TCF and/or LEF, 

408 leading to cell proliferation (Fig 3); and EGF+FGF2 cooperated with TGF-β1 to induce EMT 

409 through SMAD/Zeb1/2 signaling. Acting together, various inductive signals received by RPE 

410 cells from their niche can trigger the activation of EMT programs by individual intracellular 

411 cascades or the crosstalk of multiple intracellular signaling pathways.
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412 3.5 Interventions of RPE EMT

413    Therapeutic interventions against RPE EMT have largely been explored in mechanistic 

414 experiments using in vitro cell culture and in vivo animal models. To date, some promising drug 

415 candidates have been trialed in preclinical studies of PVR, including TGF- β receptor inhibitors, 

416 peroxisome proliferator-activated receptor (PPAR)-γ agonists, retinoic acid receptor-γ (RAR-γ) 
417 agonists and methotrexate (Shu et al. 2020; Zhou et al. 2020).Nassar et al. (2014) found that 

418 TGF-β receptor 1 inhibitor LY-364947 (LY) attenuates RPE cell transdifferentiation in vitro, and 

419 that intravitreal injection of LY completely prevents PVR and TRD in vivo. Evidence is 

420 emerging to show that the up-regulation of PPAR-γ expression may be beneficial for the 

421 treatment of fibrosis in several organs(Wang et al. 2019). Hatanaka et al. (2012) reported that 

422 PPAR-γ agonist pioglitazone could prevent TGF-β-induced morphological changes and the up-

423 regulation of EMT-related markers in primary monkey RPE cells, through inhibition of the 

424 SMAD pathway. Some drugs, including dichloroacetate (DCA)(Shukal et al. 2020), salinomycin 

425 (SNC)(Heffer et al. 2019), resveratrol(Ishikawa et al. 2015), protein kinase A inhibitor H89 (Lyu 

426 et al. 2020) and heavy chain-hyaluronan/pentraxin3(He et al. 2017), reportedly inhibit EMT in an 

427 in vitro EMT cell model and prevent PVR development by blocking the activation of theTGF-β 

428 pathway. Thus, inhibition of EMT by pharmacological agents may be an effective strategy to 

429 prevent PVR development. 

430 Conclusion

431   Clinical and experimental studies have shown that RPE cells play an important role in PVR. 

432 Junctional complexes are crucial for the maintenance of RPE polarity. Under the influence of 

433 growth factors and cytokines, RPE cells lose cell-cell contact and apical-basal polarity, and 

434 undergo EMT via multiple signaling pathways, which promote cell proliferation, migration, and 

435 ECM production. RPE cells further transform into myofibroblasts and form fibrocellular 

436 membranes that have contractile activity and strain the retina, leading to tractional retinal 

437 detachment in PVR. As a complex refractory blinding disorder, PVR involves multiple signaling 

438 pathways and factors. In addition, the specialized polarity of RPE cells is fundamental for retinal 

439 homeostasis, and RPE EMT plays a key role in the development of PVR. Nevertheless, further 

440 research into the mechanisms underlying RPE polarity and EMT is needed to prevent this 

441 devastating complication. A deeper understanding of RPE polarization is fundamental for 

442 elucidating the mechanism of EMT initiation and progression, and is essential to exploring the 

443 potential pharmacologic prophylactic and therapeutic approaches to PVR. Various factors, such 

444 as microenvironmental signals, transcription factors, and epigenetic factors, participate in the 

445 regulation of EMT at different molecular levels. Further studies about the detailed molecular 

446 mechanisms of EMT are needed to facilitate the development of therapeutic strategies for PVR.
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Figure 1
Role of cell-cell contact in health and PVR

(A)Tight junctions and adherens junctions maintain cell-cell contact and cell polarity in RPE
cells. Mature RPE cells with cell-cell contact remain dormant by sequestering EMT effectors to
prevent nuclear localization. ZO-1 sequesters nucleic acid-binding protein (ZONAB) at tight
junctions/cytoplasm, and adherens junctions sequester β-catenin by binding to epithelial
cadherins. Tight junctions have a barrier function that control the passage of solutes. (B)Loss
of cell-cell contact initiates EMT. Deconstruction of junctional complexes or reduction of
epithelial cadherins/ZO-1 elicits nuclear localization of ZONAB/β-catenin and activation of
their target genes, and disrupts the outer blood retinal barrier, facilitating the release of
growth factors and cytokines, which further aggravate PVR.
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Figure 2
Signaling pathways of TGF-β-induced RPE cells EMT

Transforming growth factor-β (TGF-β) activates various signaling pathways that cooperate to
cause EMT. Besides canonical SMAD-dependent signaling, TGF-β can activate the Rho,
PI3K/AKT, ERK MAPK, p38 MAPK, JUN N-terminal kinase (JNK) and nuclear factor-κB (NF-κB)
pathways.
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Figure 3
RTK, Wnt, Notch, and Thrombin signaling in RPE cells EMT

Growth factors (GFs) stimulate receptor tyrosine kinases (RTKs) and induce EMT through
PI3K-AKT and ERK MAPK signaling pathways. Thrombin activates PI3K and Rho signaling. PI3K
promote EMT through Akt and mTOR pathways. WNT signaling promotes EMT by inhibiting
glycogen synthase kinase-3β (GSK-3β) to result in nuclear localization of β-catenin, which
interact with the transcription factors lymphoid enhancer factor (LEF) /T cell factor (TCF) and
change genes expression. The intercellular interaction of Jagged ligands with Notch receptors
induces EMT through the cleavage and release of the Notch ICD, which then activate target
genes.
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