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ABSTRACT
In this work, implementation of Convolutional Neural Network (CNN) for the purpose
of analysis of functional upper limb movement pattern was applied. The main aim of
the study was to comparemotion of selected activities of daily living of participants after
stroke with the healthy ones (in similar age). The optical, marker-basedmotion capture
systemwas applied for the purpose of data acquisition. There were some attempts made
in order to find the existing differences in themotion pattern of the upper limb. For this
purpose, the motion features of dominant and non-dominant upper limb of healthy
participants were compared with motion features of paresis and non-paresis upper
limbs of participants after stroke. On the basis of the newly collected data set, a new
CNN application was presented to the classification of motion data in two different
class label configurations. Analyzing individual segments of the upper body, it turned
out that the arm was the most sensitive segment for capturing changes in the trajectory
of the lifting movements of objects.

Subjects Neuroscience, Cognitive Disorders, Kinesiology, Neurology, Data Mining and Machine
Learning
Keywords Convolutional neural network, Hyperparameters, Functional motion analysis, Stroke,
Lifting movements, Optical motion capture

INTRODUCTION
The human pose tracking is also known as motion capture (MoCap) and has been studied
for decades and is still a very active and challenging research topic, (Xiao, Wu &Wei, 2018;
Ganapathi et al., 2012). Currently a specialized computer vision and marker-based MoCap
technique, called Optical Motion Capture is being used and constitutes the gold-standard
for accurate and robust motion capture, (Guerra-Filho, 2005; Merriaux et al., 2017; Samy
et al., 2020).

The Artificial Neural Networks (ANNs) are powerful tools and they are more and more
frequently used to analyze motion data. It has been proven that ANN is effective tool for
kinematics analysis, (Gomi & Kawato 1993; Meadmore et al. 2014). Kinematic analysis is
the study of the motion of the body, limbs, and joints, which occurs during movement.
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This method of analysis provides a non-invasive means of collecting objective information
on joint and limb motion from humans.

The captured motion data is used in many analyses, such as inter alia: classification
of motion capture human gait data (Switonski, Josinski & Wojciechowski, 2019; Szczesna et
al., 2018), identifying the presence of deterministic chaos in motion capture human gait
data (Piorek et al., 2017; Szczęsna, 2019), template generation and comparing based on
motion capture data of karate athletes (Hachaj, Piekarczyk & Ogiela, 2017).

This work concerns analysis of upper limb motion data of patients after stroke. The
traditional methods used for the upper limb rehabilitation assessment purposes usually
consisted of paper functional scales, such as e.g., Fugel-Meyer (FMA),WolfMotor Function
Test (WMFT), Action Research Arm Test (ARAT), (Rech et al., 2020; Turtle, Porter-
Armstrong & Stinson, 2020). These are unfortunately subjective tools. The studies provided
evidence that upper limb kinematics change after stroke compared to the control group.
Kinematic differences between participants with and without stroke showed consistent
patterns despite the variety of tasks and participants. Themeta-analysis (Collins et al., 2018)
shows that individuals with stroke perform reach-to-grasp tasks with lower peak velocity,
longer movement time, decreased movement smoothness, increased curvature of reach
path ratio, greater trunk displacement and less elbow extension than control participants.
All these kinematic features are therefore potential clinical goals of rehabilitation therapy.
The kinematic differences between participants with stroke and control remain constant
during reach-to-grasp in the central and ipsilateral workspace for velocity and movement
time.

Smoothness, jerk, speed, trajectory of upper limbs are used as criteria for the
rehabilitation status of upper limbs assessment. In addition, fluidity and continuity of
upper limb movements are also considered, as they can reflect the current functional
status of patients and assess the progress of ongoing rehabilitation in an objective manner.
For these reasons, researchers are developing new methods and technologies in order
to make the rehabilitation process more effective, faster and more convenient for the
patient (Goffredo et al., 2008).

The main purpose of this study was application of the Convolutional Neural Network
(CNN) for upper limb functional motion analysis during selected ADLs (activities of daily
living) based on this same motion acquisition procedure as in previous work (Blaszczyszyn
et al., 2018). This is new application of CNN for classification of motion data. Based on
classification accuracy results in two classification tasks, the most important skeleton
segments (based on marker position) in classification of upper limb functional motion
were defined.

Related work
The class of ANN covers several network architectures including Convolutional Neural
Networks (CNNs). The CNNs due to implementation of local connectivity patterns
efficiently with shared weights, have quickly become a state-of-the-art method for image,
video, and natural language processing etc. They are even frequently applied for the purpose
of biomedical signals’ processing such as inter alia ECG, (Xu & Liu 2020).
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TheCNNenable local patterns recognition and is used in order to identify human actions
from the temporal variation of these features, which are distorted due to the inconsistency
in the execution of actions across observations and subjects, (Ijjina & Mohan, 2014).

Research presented byGuo, Gok & Sahin (2018) focused on implementation of the CNN
model for prediction of the short-term dynamics of qualified forelimb movements based
on neural signals in multiple animals. In Panwar et al. (2019), the effective classification
of three upper arm movements is presented. The ANN methods were used to assess
rehabilitation based on Cao et al. (2019), assess the progress of rehabilitation under the
influence of a computer game (Bai, Song & Li, 2019) and analysis of the myoelectric signal
during movement of upper limbs (Mukhopadhyay & Samui, 2020).

The CNNs achieved an almost perfect classification on physical activities, especially
very similar ones which were previously perceived to be very difficult to classify. The
CNNs outperform other state-of-the-art data mining techniques in HAR (Human Activity
Recognition) (Ronao & Cho, 2016; Cho & Yoon, 2018).

The CNN is very efficient in image recognition, in which local spatial dependencies do
exist, (Islam, Wijewickrema & OLeary, 2019). The same advantage can be usefully inmotion
analysis where the input data is organized into array represented with some snapshots of
motion in form of activity image (Liu et al., 2016; Ijjina & Mohan, 2014).

Recently, CNNs have emerged as the 3D full-body human pose estimation from
a marker-less monocular RGB (Red-Green-Blue) image sequence, (Zhou et al., 2018).
In Ma, Sun & Sun (2018), the cascade CNN was used to upper limb estimation of joints
position based on RGB-D quad channels image (color and depth information). These two
approaches prove the usefulness of the CNNs in motion data analysis but are intended for
a marker-less motion data acquisition systems. In the proposed application, the input is
data from an optical marker-based system.

This work presents application of the general motion patterns, which are an upper
limb lifting movements. The carried out analysis concerns some functional differences in
motion. The thorough literature studies have proven that upper limb kinematics change
as a result of stroke in comparison to the healthy ones from the control participants. The
differences identified between individuals affected with stroke and those healthy can be
used to advance interventions targeted at the underlying movement deficits. One way
of improving our understanding of the time course of recovery may be to proceed by
investigating the factors, which allow to predict the pattern of functional recovery as
a function of time. The way the stroke affected patients try to control their functional
movements is consistent in accordance with the Bernstein’s theory of human movement
behavior. The most fundamental solution to the problem of controlling co-ordination
functional movements consists of reducing the number of independent elements to be
controlled. These changes enable patients to control functional tasks with more accuracy
and less energy by reducing the number of degrees of freedom (Latash & Anson, 1996;
Kwakkel, Kollen & Lindeman, 2004; Collins et al., 2018).
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MATERIALS & METHODS
Motion data are markers placed on human body segments motion trajectories in 3D space
captured by an optical motion data acquisition system. The performed analysis concerns
the generalization of upper limb lifting movements in healthy elderly participants and
post-stroke patients. The data was recorded during each hand lifting (left and right ) to the
head height of Small Cylinder (SC) and Large Cylinder (LC). It also involved analysis of
Drinking Operation (DG), where the glass lifting has also been performed, although only
to the mouth level.

The main task was to check the most significant body segment in kinematic chain for
classification accuracy. The main aim of this work involved two tasks defined for the CNN.
One of them was classification to distinguishing between types of upper limb (3 classes)
and second one to differentiate patients’ condition (2 classes) upon his/her upper limb
movements. This study is based on already collected data.

During the studies—two types of problem were considered, based on the collected data:
1. upper limb class recognition (three classes: healthy participant’s upper limb / paresis

participant’s upper limb after stroke / non-paresis upper limb of participant after
stroke);

2. recognition of the participant’s class (two classes: healthy participant’s upper limb /
upper limb of the participant after the stroke).
Suitable for the carried out tasks CNN models were proposed and the prepossessing of

data and features’ calculation was described in this work. Also the hyperparamterization
of the applied model was presented. Based on the obtained results, the segments of the
kinematic chain (skeleton), which were most relevant to the specific classification task,
were identified.

The captured motion trajectory signals represented a kinematic chain of the upper limb
(a set of markers placed on upper limb segments). Based on that the first defined task
concerns possibility to identify the most sensitive segments for the trajectory disturbances
of the lifting movement of upper limb. The aim of the second task of the carried out
experiments was to show bilateral disorder in people after stroke, this is in line with the
theory, which assumes that after damage to certain areas of the brain it is possible to notice
some changes in motor functions also in non-affected areas (side). The obtained results
confirmed the need for application of bilateral therapies.

Conducted experiments
A total number of 54 participants were recruited to this study, including 35 patients of the
stroke group (G1) and 19 healthy subjects (control group, G2).

Among the 35 affected with the ischemic stroke participants there were 16 women and
19 men (mean age 67±8.9 years). These patients were 3–16 months after the first stroke,
20 of them were with right-hand paresis and 15 with left-hand paresis.

The control group (G2) consisted of 19 recruited healthy participants, whose age-
matched the post-stroke patients and included 14 women and 5 men (mean age: 64±9.0
years).

Szczęsna et al. (2020), PeerJ, DOI 10.7717/peerj.10124 4/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.10124


The below criteria were met for the stroke group of participants (G1): spasticity ≤ 2
in accordance with the modified Ashworth scale, who were able to stretch the affected
arms out; no apraxia or shoulder pain that may interfere with task accomplishment; no
any neuromuscular or orthopaedic disorders or major visual attention problems, major
perceptual or cognitive deficits and ability to provide informed consent, disturbances of
cognitive functions measured by Mini–Mental State Examination (MMSE ≥ 24); NIHSS
(National Institutes of Health Stroke Scale) total score: median 4 (2 –5); Fugl-Meyer Motor
Assessment (FMA –upper limb ): 44±8.2.

All participants have received detailed information regarding the experimental
procedure, which was going to be carried out and all of them gave their written consent
for the study participation. The research project’s protocol was approved by the Bioethics
Committee at the Opole Medical Chamber No. 215, on 25th March 2015 and the study
was performed in accordance with the Helsinki Declaration’s recommendations for clinical
trials on humans.

Motion data acquisition
For the purpose of 3D trajectory segments acquisition the optical motion analysis system
based on passive, reflective markers with eight infrared cameras, was used (OptiTrack
system, NaturalPoint, Inc. https://optitrack.com/). The motion acquisition frequency was
100 Hz.

The procedure was the same as in Blaszczyszyn et al. (2018)where only forward and back
transporting phases of a cylinder movement were taken into account. The third performed
task was drinking, where the first phase was to reach out for the glass from the starting
position and then to grasp and move the glass forward to the mouth to drink and to place it
back to the the table behind a marked line; and finally—to return to the initial position in
accordance with the drinking phase definition inMurphy, Willén & Sunnerhagen (2011).

The markers were located on both upper limbs (right –R and left –L) on the following
locations: clavicular sternal (CLAVR/L), acromion process (ACRR/L), middle part of the
humeri (MPHR/L), lateral epicondyle (LEPR/L), radial styloid (RSR/L), ulnar styloid
(USR/L), index finger nails (FNR/L) (Fig. 1). For presented application only trajectory of
four markers ACRR/L (shoulder segment), MPHR/L (arm segment), LEPR/L (forearm
segment) and FNR/L (hand segment) was applied.

The protocol describes following functional activities as follows: drinking from glass
(DG), lifting a small cylinder (SC), lifting a large cylinder (LC).

The motion activities were measured with the OptiTrack system during the above
defined tasks. The presented analysis was based on the 3D trajectory of the markers placed
on the upper limb skeleton segments.

Convolutional neural network model
The CNNs are a specialized kind of neural network for processing data that has a known,
grid-like topology. Classification using grid-like topology in case of motion data allows to
process whole motion (lifting and lowering the hand) without split into windows. Also
the motion of skeleton segments (markers) are treated in a correlated way. The proposed
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Figure 1 Upper bodymarker schema during lifting the large cylinder with right hand.
Full-size DOI: 10.7717/peerj.10124/fig-1

solution is a new application of the CNN based on the collected motion data of upper limb
movement.

The convolutional layers used in the network are characterized by the learning of local
patterns. This behavior makes these networks to have two key properties of the convolution
networks: it allows to find patterns, regardless of their displacement and distortion; it has
the ability to create a hierarchy of patterns. They take advantage of the hierarchical pattern
in data and assemble more complex patterns using smaller and simpler patterns learned
by previous layers.

This paper presents a solution for analysis of human functional motion during ADLs
based on the implementation of the CNNs, which allows local patterns recognition by
translation of invariance characteristics. Due to the fact that the position and scale of
learned pattern is not important—it allows to find differences in movement pattern of the
upper limb lifting movement.

The proposed CNN model consists of the following layers (Fig. 2) with the following
hyperparameters:
• First convolution layer, where the input samples were processed using set numbers of
filters (hyperparameter fConv1). The convolution layers used in the proposed network
use a 3×3 kernel. The Rectified Linear Unit (ReLU) was used as an activation function.
• In the next stage, the processed data goes to the scaling layer, which performs the
max-pooling operation with 2×2 window size.
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Figure 2 The CNNmodel for four markers (four input layers) and three output classes.
Full-size DOI: 10.7717/peerj.10124/fig-2

• The third layer is convolution layer with set of filters (hyperparameter fConv2) and 3×3
kernel. The Rectified Linear Unit (ReLU) is used as an activation function.
• In the next stage, the processed data goes to the scaling layer, which performs the
max-pooling operation with 2×2 window size.
• Next is a flattening layer.
• Dense layer with the Rectified Linear Unit (ReLU) used as activation function.
• Next is a dropout layer. This layer is applied between the last hidden layer and the
output layer. The dropout rate is hyperparameter dDrop1.
• Second dense layer with 3 or 2 outputs (depends on numbers of output classes). The
activation function is softmax.

The Rectified Linear Unit (ReLU) is used as the activation function for hidden layers
as it is default recommendation for CNN in (Goodfellow, Bengio & Courville, 2016). The
ReLU function overcomes the vanishing gradient problem, allowing models to learn faster
and perform more efficiently.

Classification accuracy is the total number of correct predictions divided by the total
number of predictions made for a data-set. It is so, because for presented class definition
unbalance occurs the AUC (area under the receiver operating characteristic curve) metric
was used as a performance measure.

For the training purpose of the proposed CNN model the Adam optimizer were used.
The loss value, which will be minimized by the model, was multi-class cross-entropy.

Data prepossessing
The Table 1 presents the summary of all input data with numbers of recordings (input data
files). One recording consists of one functional motion (for example lifting and lowering
the large cylinder). The G1 is group of participants after stroke and G2 is a control group
of elderly participants. Dataset was splitted into training and validation set in ratio 80% to
20%. The given results are evaluation results of the validation data.

During the study, two classification tasks were proposed and tested. The first one was
based on the upper limb type with the three following classes:

• HUL (Healthy Upper Limb) for upper limb of G2 participants (healthy control group),
and contains all activities performed by participants form G2 (114 input data sets);
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Table 1 Numbers of recordings (input data sets). G1 is group of participants after stroke, G2 is a con-
trol group of elderly participants.

Participants group Upper limb Activity

LC SC DG

G1 non-paresis 35 35 35
paresis 35 35 35

G2 left 19 19 19
right 19 19 19

• NPUL (Non-Paretic Upper Limb) for non-paresis upper limb of G1 participants,
contains activities performed by participants from G1 with non-paresis limb (105 input
data sets);
• PUL (Paretic Upper Limb) for paresis upper limb of G1 group, contains of activities
performed by paresis limb are labeled as class PUL (105 input data sets).

Second classification task is based on type of participant group, where:

• class G1 is for all data sets of participants after stroke in G1, regardless of the type
(paresis/non paresis) of arm (210 input data sets);
• class G2 contains all data sets (left and right upper limb) of participants form control
group G2 (114 input data sets).

Each plane (XY, YZ, XZ) of motion was analyzed separately, the input signal is the
coordinate value in 3D space. The data prepossessing steps are following:

• Cut out the signal represented coordinates regardingmovement in every plane. Rejection
of insignificant data from the beginning and the end of signals (Fig. 3). In Fig. 3
positions of the FNL marker (marker on left index finger) when lifting a small cylinder
were presented. It illustrates the coordinate signal clipped from the beginning of the
movement (marked with green border) to the end (marked with red border) for each
plane independently.
• Unification of the motion side, all left limb movement signals has been transformed
(reflected) to the form of right limb movement. After this unification, the marker
symbols are given without the last letter denoting the body side.
• Resampling of the input signals in meaning of change the sample rate. Regardless of
the signal length (duration), trajectory signals have been resampled to fixed numbers of
samples by linear interpolation. The predefined samples number was set to 32.
• Based on clipped coordinate signal consisting ofN+1 samples, pk = (px,k,py,k,pz,k),k ∈
[0,N ], features based on 3D trajectory in each plane are determined: displacement
(dx , dy , dz), velocity (vx , vy , vz), acceleration (ax , ay , az) and jerk (jx , jy , jz).
Displacement is the Euclidean distance between the subsequent markers positions
for each dimension dx|y|z,i= |px|y|z,i−px|y|z,i−1|. Velocity feature is vector of temporal
velocities vx|y|z,i=

dx|y|z,i−dx|y|z,i−1
T , where T is sampling interval. Similarly the acceleration

feature is obtained ax|y|z,i=
vx|y|z,i−vx|y|z,i−1

T . Jerk is the rate of acceleration changes with
respect to time. Jerk can be expressed as the first time derivative of acceleration, second
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Figure 3 Trajectory coordinates of the FNLmarker when lifting a small cylinder. Signal clipped from
the beginning of the movement (green border) to the end (red border) for each plane independently: (A)
X coordinate, (B) Y coordinate, (C) Z coordinate.

Full-size DOI: 10.7717/peerj.10124/fig-3
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Figure 4 Input data format.
Full-size DOI: 10.7717/peerj.10124/fig-4

time derivative of velocity, and third time derivative of position jx|y|z,i=
ax|y|z,i−ax|y|z,i−1

T ,
where i∈ [1,N ].
• Input data normalization by min-max normalization to [0,1] range using following
equitation f ′= f−min

max−min , where f
′ is normalized feature value f .

After cutting out the motion data from the raw input signal, being in the form of
trajectory coordinates in three-dimensional space, the values of features (dx , dy , dz , vx , vy ,
vz , ax , ay , az , jx , jy , jz) were calculated. Then they were converted to a multidimensional
representation, depending on the number ofmarkers used, but with fixedwidth (predefined
32 samples), height (4 features for each plane gives 12). The depth is based on the number
of markers used.

The obtained features were arranged in an array, where the rows represented one
feature and the columns contain next time feature samples. The obtained data is a result of
calculations for separate markers, which were placed in subsequent layers of this array. The
following set of 4 markers placed on upper limb was used in experiments: FN, LEP, MPH
and ACR. The names after unification of side are without (L/R). The input data format
was illustrated with the Fig. 4.

This representation of the data could be seen as an image, respectively: grey scale image
(one channel represents 1 marker), two channel image (two channels for 2 markers), three
channel image (RGB image, three channels for 3 markers), four channel image (RGBA
image, four channels for 4 markers, Figs. 5 and 6).

The obtained data is based on four markers representing four segments of upper limb:
hand (FN), forearm (LEP), arm (ACR) and shoulder (ACR). Such data allows to carry
out analysis regarding which segment or segment configuration gives better classification
results. Such sensitive location analysis is based on results’ accuracy concerning markers
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Figure 5 RGBA image (32× 12× 4) represents the FN (red channel), LEP (green channel), MPH (blue
channel) and ACR (alpha channel) marker data of participant form G1 group.

Full-size DOI: 10.7717/peerj.10124/fig-5

Figure 6 RGBA image (32× 12× 4) represents the FN (red channel), LEP (green channel), MPH (blue
channel) and ACR (alpha channel) marker data of participant form G2 group.

Full-size DOI: 10.7717/peerj.10124/fig-6

configuration. Firstly only onemarker data was used, where depth of input array equals one
(grey scale image). Next based on the best results the model obtained from two markers
(depth equals 2), three (RGB image) and four markers (RGBA image) were tested.

Hyperparameter optimization finds a tuple of hyperparameters yielding an optimal
model which minimizes a predefined loss function on the given data. In the proposed
application of the CNN model the following set of hyperparametres was defined: learning
rate (lr), number of epochs to train the model (ep), number of filters used in first
convolution layer (fConv1), number of filters used in second convolution layer (fConv2),
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the dropout rate of dropout layer (dDrop1), the batch size of the output space for first dense
layer (outDense1).

Bayesian optimization using Gaussian processes was applied in order to find values
of defined hyperparameters to obtain model with the highest metric AUC value on
the validation set. Number of calls to find the minimum of (1−AUC) was set to 40.
Optimization was run for each experiment independently.

Implementation
For the development purposes the authors decided to use the Microsoft Visual Studio
2019. For the implementation Python 3.7 (Millman & Aivazis, 2011) was applied with the
following most important libraries: Kreas as a high-level neural networks programming
interface with TensorFlow backend (Erickson et al., 2017; Gulli & Pal, 2017 and Chollet,
2015); Scikit-Optimize for hyperparameters optimization; NumPy for the input data
structure preparation as a multidimensional array (Van Der Walt, Colbert & Varoquaux,
2011 and Oliphant, 2006).

RESULTS
With the implementation of the CNN the following research scheme was planned. The first
goal was to find the appropriate marker configuration, which had the greatest impact on
the classification of the healthy participants’ upper limb movement (group G2) and those
affected with stroke (group G1). Initially the authors of this work proposed division of data
into three classes (HUL, NPUL, PUL) based on upper limb type. The next step covered
division into classes (G1, G2), which was proposed based on the participants group and
not on the upper limb type (condition). Based on the conguration with the best accuracy,
a combination of markers was proposed, which enabled significant improvement of the
nal results (Table 2).

The classification applied in both tasks gives satisfactory results. In the two-class problem
the higher accuracy was obtained, which is partly due to impact of imbalance of class labels.
Therefore, precision and recall are also greater. The most important conclusion is that
on the basis of the collected data divided into two classes by type of participant (G1/G2)
obtained classification results mostly above 90%.

Classification results for the same defined tasks have also been checked for the classifiers:
Random Forest (RF) with 100 trees in the forest and maximum depth of the tree equals
10 (Breiman, 2001), Linear Support Vector (LSV ) (Boser, Guyon & Vapnik, 1992) and
Logistic Regression (LR) (Bishop, 2006). In general, classifiers had an average accuracy KF
of 9.8%, LSV of 8.4% and LR of 7.5% lower in a classification with three classes and KF
of 5.9%, LSV of 13.4% and LR of 8.75% lower for two classes. Similar relationships in the
classification results for different segments in the participant type classification (G1/G2)
were noticeable, but not so pronounced. The best results were for LR for four segments
configuration FN, LEP, MPH and ACR in three class task - 86%. For two classes the best
results were obtained for RF for two segment configuration LEP and MPH - 99%. Detailed
results comparison was presented in Table 3.
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Table 2 Hyperparameters optimizations results.

Markers Upper limb type (three classes) Participants group (two classes)

Hyperparameters CNNmetrices Hyperparameters CNNmetrices

FN lr = 0.00017 lr = 0.0011
ep= 100 AUC = 85.54% ep= 224 AUC = 94.53%
fConv1= 77 Accuracy = 69.23% fConv1= 83 Accuracy = 88.5%
fConv2= 10 Precision= 20% fConv2= 100 Precision= 88.5%
dDrop1= 0.25 Recall = 65.38% dDrop1= 0.2484 Recall = 88.5%
outDense1= 100 outDense1= 30

LEP lr = 0.00037 lr = 0.00026
ep= 100 AUC = 89.53% ep= 216 AUC = 93.62%
fConv1= 20 Accuracy = 80.77% fConv1= 51 Accuracy = 92.6%
fConv2= 10 Precision= 80.77% fConv2= 10 Precision= 92.6%
dDrop1= 0.1931 Recall = 80.77% dDrop1= 0.0638 Recall = 92.6%
outDense1= 72 outDense1= 11

MPH lr = 0.00023 lr = 0.00004
ep= 100 AUC = 96.18% ep= 261 AUC = 99.5%
fConv1= 100 Accuracy = 87.50% fConv1= 87 Accuracy = 99%
fConv2= 79 Precision= 90.91% fConv2= 51 Precision= 98%
dDrop1= 0.25 Recall = 83.33% dDrop1= 0.1054 Recall = 98%
outDense1= 44 outDense1= 19

ACR lr = 0.01 lr = 0.0026
ep= 300 AUC = 83.98% ep= 202 AUC = 99.20%
fConv1= 12 Accuracy = 58.33% fConv1= 50 Accuracy = 96%
fConv2= 54 Precision= 60.87% fConv2= 100 Precision= 96%
dDrop1= 0.004 Recall = 58.33% dDrop1= 0.2435 Recall = 96%
outDense1= 10 outDense1= 26

LEP, MPH lr = 0.00006 lr = 0.0064
ep= 300 AUC = 94.62% ep= 300 AUC = 99.5%
fConv1= 75 Accuracy = 87.5% fConv1= 100 Accuracy = 99%
fConv2= 26 Precision= 89.47% fConv2= 10 Precision= 98%
dDrop1= 0 Recall = 70.83% dDrop1= 0.1797 Recall = 98%
outDense1= 98 outDense1= 10

FN, LEP, MPH lr = 0.00012 lr = 0.00003
ep= 300 AUC = 90% ep= 300 AUC = 98.4%
fConv1= 100 Accuracy = 72% fConv1= 95 Accuracy = 92%
fConv2= 10 Precision= 75% fConv2= 10 Precision= 92%
dDrop1= 0 Recall = 72% dDrop1= 0.25 Recall = 92%
outDense1= 10 outDense1= 100

LEP, MPH, ACR lr = 0.00005 lr = 0.00017
ep= 296 AUC = 83.11% ep= 164 AUC = 89.41%
fConv1= 62 Accuracy = 68% fConv1= 100 Accuracy = 86.9%
fConv2= 87 Precision= 68.11% fConv2= 78 Precision= 86.9%

(continued on next page)
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Table 2 (continued)

Markers Upper limb type (three classes) Participants group (two classes)

Hyperparameters CNNmetrices Hyperparameters CNNmetrices

dDrop1= 0.0845 Recall = 68.11% dDrop1= 0.0126 Recall = 86.9%
outDense1= 72 outDense1= 85

FN, LEP, MPH, ACR lr = 0.00019 lr = 0.000074
ep= 300 AUC = 96.33% ep= 290 AUC = 99.7%
fConv1= 10 Accuracy = 77.27% fConv1= 22 Accuracy = 99%
fConv2= 65 Precision= 77.27% fConv2= 39 Precision= 98.5%
dDrop1= 0.25 Recall = 77.27% dDrop1= 0.2491 Recall = 98.5%
outDense1= 100 outDense1= 99

Table 3 Classification accuracy results for classifiers: Random Forest (RF), Linear Support Vector
(LSV) and Logistic Regression (LR).

Markers Upper limb type
(three classes)

Participants group
(two classes)

FN RF = 65% RF = 88%
LSV = 65% LSV = 77%
LR= 60% LR= 88%

LEP RF = 61% RF = 89%
LSV = 54% LSV = 85%
LR= 61% LR= 85%

MPH RF = 67% RF = 96%
LSV = 62.5% LSV = 79%
LR= 67% LR= 83%

ACR RF = 62.5% RF = 80%
LSV = 67% LSV = 80%
LR= 62.5% LR= 84%

LEP, MPH RF = 71% RF = 99%
LSV = 71% LSV = 83%
LR= 71% LR= 92%

FN, LEP, MPH RF = 60% RF = 92%
LSV = 60% LSV = 84%
LR= 60% LR= 84%

LEP, MPH, ACR RF = 68% RF = 74%
LSV = 77% LSV = 83%
LR= 73% LR= 83%

FN, LEP, MPH, ACR RF = 68% RF = 91%
LSV = 77% LSV = 78%
LR= 86% LR= 87%

The carried out studies concerned the configuration of markers for the upper limb
model. It was attempted to identify the most sensitive locations of the movement trajectory
disorders during lifting objects. The first adopted hypothesis assumed the activity of the
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distal part of limb. But the obtained results proved that the marker on the finger (marker
FN) and forearm segment (marker LEP) were not sensitive enough, here in two class
classification accuracy was 88.5% (FN) and 92.6% (LEP). Therefore a second hypothesis
was made concerning proximal limb parts with marker placed on the shoulder (marker
ACR) and in the middle of the arm (marker MPH). In this case the gathered results were
satisfying for the marker located in the middle of the arm (marker MPH, accuracy about
99%) and with combinations with forearm (LEP, MPH, accuracy about 99%) and all upper
limb markers (FN, LEP, MPH, ACR, accuracy about 99%). The same trend was visible in
two classification variant based on upper limb type and participants group. The definite
and worst results were achieved for movement of shoulder (ACR marker) in upper limb
type classification (accuracy 58.33% in three classes classification). In classification of type
of participant the worst results were for finger (marker FN) with accuracy about 88.5%.

DISCUSSION
This type of research can contribute to the development of an objective tool for qualification
of the patient for rehabilitation and gives the opportunity tomonitor rehabilitation progress
and also enables to program task-based rehabilitation (Bai, Song & Li, 2019). On the other
hand it contributes to the identification of the most sensitive places in the kinematic chain,
which are the most suitable for sensors placement.

The obtained results show that the most prone to detection of the trajectory disturbances
body segment is arm. Thus, it proved that the proximal body segment and not the distal
one turned out to be the most sensitive to the studied changes. This may seem to contrary
to the results of studies, which prove that the hand movement and the gripping function
are the most forecasting for prediction of the functional state after stroke.

The second aspect of the carried out study concerned bilateral activities. The proposed
CNNs model for classification of upper limb movement based on participant type
(healthy/after stroke) gives very good results. So that the proposed features strongly
differentiate the movement between G1 and G2 group, without distinguishing the
affected/not affected side for stroke participants (G1).

Therefore, despite maintaining the correct anatomical structure of movement, the
general condition of movement patterns changes after stroke. The bilateral movements are
required inmany daily activities and, as observations showed, bilateral training can bemore
benecial for the daily activities for people after stroke (Lee et al., 2017). Motor changes in
the non-paresis limb are not manifested in parameters commonly assessed with the clinical
scales, such as mobility ranges. But they are visible in the spatio-temporal parameters of the
assessed movement, which are difficult to capture during visual assessment. They require
usage of additional equipment and analysis. These include used in that study features like:
jerk, acceleration, velocity and traveled distance of body segments during the movement.
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CONCLUSIONS
The study on the CNN model applied for the purpose of upper limb kinematics analysis
can give accurate and objective information regarding human movement and is therefore
a powerful tool for both clinical and research domains.

In this paper—the analysis of the upper limb lifting movement data was made based on
the CNN model. The accuracy of the obtained results indicated that the most significant
segment in the classification is a marker paced in themiddle of arm (MPHmarker). For this
study purposes—the two and three class classification have been checked. The proposed
methodology has the potential to be used for functional analysis of movement, which can
be base for research on model for detailed and accurate monitoring of functional status
after stroke, and for qualification for rehabilitation, and for tracking ADLs progression
after stroke.

The presented method can be extended to give the ranges of classification accuracy (or
differentmetric) based onmultiple runs of proposed training and validation in classification
tasks with different dataset splitting. This can produce wider information about influence
of particularly upper limb segment to lifting object movement.

Main limitation of this study is that the analysed data is rather small for the CNNmodels.
In the future this model should be checked on bigger dataset. Next limitation concerns
its rather expensive implementation. The system requires installation in the laboratory
and is therefore not mobile. The presented method in the future should be checked on
data obtained from low-cost motion capture systems based on inertial sensors (Held et
al., 2018; Pérez et al., 2010) or depth cameras (Chakraborty et al., 2020; Dolatabadi, Taati
& Mihailidis, 2017; Bei et al., 2018).
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