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Background: Advances in sequencing, assembly, and assortment of contigs into species-specific bins
has enabled the reconstruction of genomes from metagenomic data (MAGs). Though a powerful
technique, it is difficult to determine whether assembly and binning techniques are accurate when
applied to environmental metagenomes due to a lack of complete reference genome sequences against
which to check the resulting MAGs.

Methods: We compared MAGs derived from an enrichment culture containing ~20 organisms to
complete genome sequences of 10 organisms isolated from the enrichment culture. Factors commonly
considered in binning software - nucleotide composition and sequence repetitiveness - were calculated
for both the correctly binned and not-binned regions. This direct comparison revealed biases in sequence
characteristics and gene content in the not-binned regions. Additionally, the composition of three public
data sets representing MAGs reconstructed from the Tara Oceans metagenomic data was compared to a
set of representative genomes available through NCBI RefSeq to verify that the biases identified were
observable in more complex data sets and using three contemporary binning software packages.

Results: Repeat sequences were frequently not binned in the genome reconstruction processes, as were
sequence regions with variant nucleotide composition. Genes encoded on the not-binned regions were
strongly biased towards ribosomal RNAs, transfer RNAs, mobile element functions and genes of unknown
function. Our results support genome reconstruction as a robust process and suggest that
reconstructions determined to be >90% complete are likely to effectively represent organismal function,
however, population-level genotypic heterogeneity in natural populations, such as uneven distribution of
plasmids, can lead to incorrect inferences.
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17 ABSTRACT

18 Background: Advances in sequencing, assembly, and assortment of contigs into species-specific 

19 bins has enabled the reconstruction of genomes from metagenomic data (MAGs). Though a 

20 powerful technique, it is difficult to determine whether assembly and binning techniques are 

21 accurate when applied to environmental metagenomes due to a lack of complete reference 

22 genome sequences against which to check the resulting MAGs. 

23 Methods: We compared MAGs derived from an enrichment culture containing ~20 organisms to 

24 complete genome sequences of 10 organisms isolated from the enrichment culture. Factors 

25 commonly considered in binning software - nucleotide composition and sequence repetitiveness 

26 - were calculated for both the correctly binned and not-binned regions. This direct comparison 

27 revealed biases in sequence characteristics and gene content in the not-binned regions. 

28 Additionally, the composition of three public data sets representing MAGs reconstructed from 

29 the Tara Oceans metagenomic data was compared to a set of representative genomes available 

30 through NCBI RefSeq to verify that the biases identified were observable in more complex data 

31 sets and using three contemporary binning software packages.

32 Results: Repeat sequences were frequently not binned in the genome reconstruction processes, 

33 as were sequence regions with variant nucleotide composition. Genes encoded on the not-binned 

34 regions were strongly biased towards ribosomal RNAs, transfer RNAs, mobile element functions 

35 and genes of unknown function. Our results support genome reconstruction as a robust process 

36 and suggest that reconstructions determined to be >90% complete are likely to effectively 

37 represent organismal function, however, population-level genotypic heterogeneity in natural 

38 populations, such as uneven distribution of plasmids, can lead to incorrect inferences.
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39 INTRODUCTION

40 High-throughput sequencing has revolutionized microbiology by circumventing “the great plate 

41 count anomaly” (1) and allowing direct investigation of natural communities in a culture-

42 independent manner (2–8). One goal of metagenomics has always been to obtain organism-

43 specific, complete, genomic information from the complex mixture of sequence data generated 

44 from environmental samples. Having a complete genome sequence provides a platform for 

45 understanding the range of metabolic roles an organism can play within a community and the 

46 interactions it has with other organisms (9–11), and it can provide specific context for 

47 interpretation of transcriptomics and proteomics (12,13). Metagenome-assembled genomes 

48 (MAGs) are produced by segregating assembled contigs/scaffolds into organism-specific ‘bins’. 

49 This process of  genome reconstruction has benefitted from continuing advances in sequencing 

50 technologies, sequence assembly algorithms, and segregation methods (14). Early success 

51 assembling genomes from a simple community (15) has led to more recent studies reconstructing 

52 many organisms from complex environments (16–30). The accuracy of these techniques in the 

53 context of a complex environmental community is difficult to gauge, however, because most 

54 available complete microbial genome sequences that could serve as references are from cultured 

55 isolates, and these isolates are rarely present in environmental metagenomes. Techniques that 

56 have been developed to evaluate the accuracy of the binning process rely on conserved genes and 

57 consistency of nucleotide composition (31–35). These techniques, however, cannot make 

58 accurate determinations of how much sequence is missing or the functional potential of missing 

59 content. Genome reconstruction techniques have been tested using synthetic communities of 

60 cultured organisms (36) and simulated metagenomic datasets. Over time, increasingly 

61 sophisticated methods have been developed to simulate metagenomic read data sets, from the 
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62 earlier Grinder (37), MetaSim (38), GemSIM (39), BEAR (40), and NeSSM (41), to the more 

63 recent CAMISIM (42), which was developed as part of the community effort to address 

64 standards in metagenome analysis software development (43). Generally these simulators 

65 concern themselves with modeling community structure and sequencing attributes, such as read 

66 length and error rates, but are limited to presenting data generated from a reference genomic 

67 database, thus cannot model the genetic diversity found in most environments, although 

68 CAMISIM addresses this issue by implementing the genome evolution simulator sgEvolver (44). 

69 Because genetic variability within natural populations is, as yet, ill-defined (45), it is unlikely 

70 that such test data can accurately replicate the type and amount of variability found in natural 

71 communities, and the complications this variability causes.

72  Unicyanobacterial consortia (UCC) were developed as model systems to investigate the 

73 mechanisms of metabolic interaction between cyanobacteria and heterotrophs. These systems 

74 provide an opportunity to compare MAGs against a matching reference genome set and learn 

75 about potential gaps and pitfalls of current reconstruction processes. Two consortia, each 

76 containing a single unique cyanobacterial species and sharing an additional 18 heterotrophic 

77 species, were derived from a natural mat community (46). The communities have been 

78 sequenced, and genome reconstruction has been performed (47), yielding near-complete genome 

79 sequences revealing the presence and maintenance of microdiversity, such as might be found 

80 within an intact environmental sample. Thus, this system more accurately reflects in situ 

81 community diversity compared to synthetic communities constructed from isolated organisms. In 

82 parallel, isolates of 10 of the member species have also been sequenced (47,48). This paired 

83 genomic and metagenomic data set allows direct comparison of MAGs from diverse organisms 

84 against ‘ground truth’ genomic data. Previously, we have shown that common aspects of the 
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85 genome reconstruction process (assembly from a complex sequence space and segregation of 

86 contigs based on read depth profiles and sequence composition) to be both specific and sensitive 

87 (47). 

88 We have investigated the nature of genomic regions that under current standard genome 

89 reconstruction techniques are not recovered (herein referred to as not-binned regions, or NRs) 

90 to evaluate how these regions differ from recovered regions (correctly binned regions, or CRs), 

91 and to what extent the missing genomic information might impact conclusions drawn from 

92 analysis of MAGs. Two common elements of current sequence segregation protocols are 

93 analysis of sequence composition and comparison of coverage profiles between samples, so we 

94 compared the nucleotide content of NRs vs CRs, examining both %G+C and tetranucleotide 

95 content, and the redundancy of sequence information both within the individual genome (i.e., 

96 repetitiveness within the genome) and across the entire metagenomic data set (i.e., sequence 

97 shared between populations). To determine the impact on downstream functional analyses, the 

98 gene content was examined for biases in the cellular roles of genes found within NRs and CRs. 

99 To verify that the biases observed extended to more complex metagenomic datasets and across 

100 binning algorithms, the Tara Oceans metagenome, which has been binned by different groups 

101 using MetaBAT (22,49), Anvi’o (31,50), and BinSanity (21,51), was subjected to similar 

102 sequence and repeat compositional analysis.

103

104 MATERIALS & METHODS

105 Data and Code Availability.

106 The UCC MAG and genome data analyzed are available in the GenBank repository as listed in 

107 Table 1. The metagenomic data used to construct the UCC MAGs is available from the NCBI 
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108 SRA (accessions SRX1063989 and SRX1065184). MAGs reconstructed from the Tara Oceans 

109 metagenomic data (21,22) are available in the GenBank repository. MAGs from Delmont et al. 

110 (50) are available through figshare (doi: 10.6084/m9.figshare.4902923). A list of MAGs and 

111 corresponding identifiers are available in Supplemental Table 1. Complete bacterial and archaeal 

112 genomes were collected from NCBI RefSeq (52) (accessed Aug 2019) based on assignment as 

113 either “reference genome” or “representative genome” for the data column “refseq_category” 

114 and “Complete Genome” in the “assembly_level” column. A list of genomes used in the analysis 

115 are available in Supplemental Table 2. All analysis scripts are available at 

116 http://github.com/wichne/biases_in_genome_reconstruction.

117 Identification of CR and NR regions.

118 The UCC scaffolds comprising each MAG were searched against their cognate complete genome 

119 sequence using nucmer using the maxmatch option (53). Regions of the genomes that aligned 

120 end-to-end to MAG scaffolds at ≥99% identity were cataloged as CR regions. All other genome 

121 regions were considered NR regions.

122 Compositional analysis.

123 For the UCC MAGs and genomes, %G+C calculation and tetranucleotide frequency (TNF) chi-

124 square test were performed using custom Perl scripts (available at 

125 http://github.com/wichne/biases_in_genome_reconstruction). Compositional analysis was 

126 restricted to CR or NR regions longer than 1000 bp to ensure sufficient sequence for meaningful 

127 results. For TNF, the chi-squared statistic was calculated for each region using the TNF for the 

128 whole genome as the expected values, and the mean and standard deviation for the CR and NR 

129 pools calculated. For %G+C analysis, the mean %G+C for the CR and NR regions was 

130 calculated, and the absolute difference was calculated between each region and the genome 

PeerJ reviewing PDF | (2017:03:17041:1:1:NEW 4 Sep 2020)

Manuscript to be reviewed

data

data

data

data



131 average, and average differences determined for CR and NR pools. To estimate p-values for the 

132 %G+C and TNF analyses, one thousand random coordinate sets yielding the same number and 

133 length of fragments as in each genome’s CR or NR set were generated from the genome 

134 sequence and evaluated. 

135 For comparison of the UCC data set to the Tara Oceans MAGs and RefSeq genome data 

136 sets, sequence composition variance (i.e., deviation from the mean) was calculated for the %G+C 

137 and tetranucleotide frequency using a custom Python script. The %G+C was calculated for 2kb 

138 segments (sliding window of 500bp) for each MAG or genome. A genome-wide variance value 

139 was calculated for each MAG or genome based on the segments and plotted as a box plot per 

140 source data set. TNF was calculated for 10kb segments (sliding window 5kb) for each MAG or 

141 genome. Using the calculation described in Teeling (54), each segment had a Z-score calculated 

142 for each tetranucleotide based on the observed-vs-expected frequency of the tetranucleotide in 

143 the 10kb segment. A Pearson correlation was then calculated in a pairwise fashion for all 

144 segments. Variance of the Pearson correlation values within a MAG or genome was calculated 

145 and plotted as a box plot per source data set.

146 Repetitiveness analysis

147 To calculate intragenome sequence repetitiveness, we determined the fraction of each genome 

148 that was comprised of repeat sequence. Each genome sequence was searched against itself using 

149 nucmer v3.0 (53) with the maxmatch option, and the lengths of regions that aligned to another 

150 part of the genome/MAG with 97% identity were summed and divided by the length of the ≥

151 genome/MAG.

152 To determine the repetitiveness of sequences across the entire metagenomic data set, 

153 metagenome reads were searched against genome sequences using Bowtie2 (55). Per-base 
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154 coverage was calculated using the samtools (56) depth command, and average coverage values 

155 for the genomes, NRs and CRs were determined. One thousand sets of random coordinate 

156 regions of the same number and lengths as in each set were analyzed to estimate p-values. 

157 Results are reported as average coverage depth of NRs and CRs and the average difference from 

158 the genome depth-of-coverage.

159 Gene function analysis

160 UCC complete genome sequences were annotated by the IMG pipeline (57), which included 

161 COG assignment based on the December 2014 release of the 2003-2014 COGs (58). COGs 

162 assigned to more than one functional category were counted for each assigned category. Genes 

163 not assigned to a COG category were classified as ‘unassigned’. Ribosomal RNA (rRNA) gene 

164 features were identified by the IMG pipeline (59); transfer RNAs (tRNA) were identified with 

165 tRNAscan-SE (60); other non-coding RNAs (ncRNA) were identified using the Rfam database 

166 v11.0 (61) and infeRNAl v1.1 software (62). For each gene set, the category counts were 

167 normalized to the total feature counts. Principle component analysis was performed and biplot of 

168 gene categories was generated using R package bpca v.1.2-2 (http://cran.r-

169 project.org/web/packages/bpca/).

170 Statistical analysis.

171 Statistical tests were performed using modules within the Python package SciPy (63). The 

172 normality of the calculated variance distributions for each set of genomes was determined using 

173 the Shapiro-Wilk test (64). Genome sets with a normal distribution were compared to each other 

174 with the T-test for two independent variables (65). Genome sets without a normal distribution 

175 were compared to each other with the Mann-Whitney U test (66). p-values were adjusted for 
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176 multiple comparisons with the Benjamini-Hochberg procedure (67) correction with a false 

177 discovery rate of 25% (Supplemental Table 3).

178

179 RESULTS AND DISCUSSION

180 The power of metagenomics is that it allows exploration of diverse communities from which we 

181 cannot culture the component populations either because the proper growth conditions are 

182 unknown or difficult to replicate in a laboratory environment, or simply because there are too 

183 many organisms present to have the resources or time to pursue the effort. Because of this, there 

184 are very few examples of sequenced organisms isolated from the same sample from which 

185 metagenomic sequencing and binning has been done to generate MAGs. As such, a ‘gold 

186 standard’ for evaluation of MAG content has been difficult to come by. We have taken 

187 advantage of two enrichment cultures from which MAGs and isolate genomes have been derived 

188 to generate just such a ‘gold standard’ comparison framework. We have previously generated 

189 two unicyanobacterial consortial cultures (UCC) – enrichment cultures each containing a distinct 

190 cyanobacterial population and different, yet overlapping, communities of associated 

191 heterotrophs, each numbering <20 species – and performed metagenomic sequencing, assembly 

192 and binning.(47,48). Illumina 150 bp paired-end reads were generated from each community, 

193 and IDBA_ud was used to assemble the read sets separately and in co-assembly. The abundances 

194 of the organisms differed between the two communities, allowing us to bin the sequences by 

195 comparing sequence coverage values of contigs between the two UCCs in a predominantly 

196 manual process (inspired by the work of Dick, et al (68)). The resulting MAGs were manually 

197 curated to eliminate contaminating contigs and identify mis-binned contigs, correctly placing 

198 them when possible. In parallel, ten organisms were isolated from the UCCs and completely 
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199 sequenced. Comparison of the MAGs to the isolate genomes showed recovery of >90% of 

200 sequence for genomes with at least 10x coverage, with one exception, Halomonas sp. HL-93, 

201 which had 85% recovery from 11x coverage (Table 1). Co-linear sequence alignments indicated 

202 there were no assembly errors in the binned contigs (47, and data not shown). Based on the 

203 isolate-MAG comparisons, NRs were identified. Porphyrobacter HL-46 had the lowest 

204 metagenome coverage (3.6x). Its MAG comprised hundreds of short contigs and was determined 

205 to be ~40% complete. Thus, the NRs for HL-46 are assumed to be primarily caused by the 

206 random sampling of the shotgun sequencing methodology and not by any inherent content 

207 biases, allowing the HL-46 analyses to serve as a control.

208 To determine if NRs were not binned due to lack of assembly, we mapped the contigs from the 

209 assembly to the CR and NR regions of the genomes and looked at the contig coverage of the 

210 regions. As expected, the CRs showed an average contig coverage of 1.04±0.14, and most 

211 regions had only a single contig map to them (Fig S1). Many of the cases of multiple contigs 

212 mapping to a CR were due to short (<200 bp) contigs of repeat sequence which might be an 

213 artifact of the assembler (IDBA_ud). NRs show a strong positive correlation between region 

214 length and number of contigs mapping, with an average coverage of 0.94±0.71 (Fig S2). This 

215 suggests poorer assembly of the NRs and higher repeat content, but also indicates that most NR 

216 sequence is present in the contig set, and thus the binning process is the main determinant of 

217 NRs.

218

219 Nucleotide composition of NRs frequently differs from the genome average

220 Bacteria and Archaea have evolved to have a fairly consistent %G+C across their genome (69), 

221 so much so that it has been proposed as a metric of classification at higher taxonomic levels (70). 
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222 It is not uncommon, however, to observe regions within a genome that differ significantly from 

223 the genome average (71). This variation can be the result of selective pressure for structural 

224 properties in non-coding genes, for instance ribosomal RNAs and other functional RNAs have 

225 been shown to vary in nucleotide composition in correlation with optimal growth temperature 

226 (72). In other cases, divergent %G+C indicates a region which has been acquired recently (in 

227 evolutionary time) from a non-related source (i.e., horizontal gene transfer) (73). To investigate 

228 whether variant G+C confounds genome reconstruction, we compared the %G+C of NRs to that 

229 of CRs and the complete genome. 

230 The genomes in this study had a range of %G+C values, from 42% (A. marincola HL-49) 

231 to 68% (Erythrobacteraceae bacterium HL-111), with most skewing toward the higher values 

232 (Table 2). We determined the %G+C for each CR and NR ≥200 bp in length and compared them 

233 to the %G+C for the complete genome. For genomes with more than one genomic element, each 

234 molecule was considered separately since extrachromosomal elements may have distinct 

235 nucleotide composition. For seven of the genomes, the %G+C for the NRs differed significantly 

236 (p≤0.005) from the genome average, while the CRs generally reflected the genome average 

237 (Table 2). The %G+C averages for NRs from HL-48 and HL-111 were significantly lower 

238 (45.76% and 64.26%, respectively) than the genomes’ averages (58.98% and 68.12% 

239 respectively). Other genomes (HL-53, HL-55, HL-109) had some NRs with %G+C higher than 

240 the genome average and some NRs with lower values (Figure 1), despite having different 

241 average %G+C values (47.5%, 56.0% and 64.1% respectively). Extrachromosomal elements 

242 analyzed did not display a significant difference in the %G+C of their NRs from the molecule 

243 average. As expected, the values for the NRs and CRs of HL-46 showed no significant difference 

244 from the genome average (Table 2), however, HL-46’s CRs and NRs did not display identical 
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245 %G+C profiles (Figure 1). There was a slight bias toward higher %G+C for the NRs and lower 

246 %G+C in the CRs, which could reflect a bias in the assembly algorithm.

247 Tetranucleotide frequency (TNF) has been shown to be capable of distinguishing higher 

248 taxonomic classifications, up to species (54,68). This resolving power has been leveraged in 

249 binning protocols (15,74–76). To investigate whether genomic regions with divergent TNF are 

250 poorly recovered in genome reconstruction, we compared the TNFs of CRs and NRs to that of 

251 the cognate complete genome using chi-squared analysis. In most cases, the chi-squared statistic 

252 was an order of magnitude higher for NRs versus CRs, and the differences were significant for 

253 all chromosomal sequences except for HL-46, HL-109, HL-93 and the small chromosome of 

254 HL-91 (Table 3). 

255 One factor that could affect nucleotide composition effects on binning is the length of the 

256 region with divergent composition versus the length of the contig. If the variant region comprises 

257 most of the length of the contig being evaluated, the difference from the genome average will be 

258 pronounced, whereas if the divergent region is only a small percentage of the contig length, the 

259 signal will be muted. An examination of CR/NR length versus compositional variance (Fig. S3) 

260 revealed a strong, significant negative correlation between contig length and TNF chi square for 

261 CRs (R2=0.64, p-value<2.2x10-16) and a weaker relationship for NRs (R2=0.14, p-value=4.9x10-

262 12). Taken together, the %G+C and TNF results show that genomic regions with divergent 

263 nucleotide composition are more likely to be missed during binning, and this effect is stronger 

264 for short contigs. The most effective way to overcome this problem is to enhance assembly such 

265 that regions with unusual content are included in significantly longer contigs, or, through clone 

266 linkage, identify strong, unique connections to binned contigs.

267
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268 Repeated sequences segregate aberrantly

269 Sequence coverage profiles are frequently effective in discriminating contigs from different 

270 organisms (15). Samples taken under different conditions or at different times capture 

271 community states which have similar organismal composition but differing relative abundances. 

272 This difference translates to distinct coverage profiles for assembled contigs, and thus contigs 

273 with similar coverage profiles are assumed to originate from the same organism. In this data set, 

274 for example, we compared two cultures with near-identical heterotroph species composition, but 

275 different cyanobacteria acting as a conduit for energy and carbon (46,47). Other studies have 

276 compared samples taken at different times (75). Coverage analysis is more difficult for repeated 

277 regions of a genome, which will yield higher coverage values than the genome average and thus 

278 are more likely to be either not binned or binned improperly. Differential coverage analysis can 

279 mitigate this problem by identifying correlated changes in abundance of contigs with different 

280 coverage. Unlike nucleotide composition variance, however, unusual high-coverage signal due to 

281 repeat sequence is less likely to be diluted by incorporation into a larger contig because 

282 assemblers (especially standard de Bruijn graph assemblers using short-read data) tend to 

283 terminate contigs when repeats are encountered and/or assemble repeats into separate contigs 

284 (77).

285 To examine the impact of repeated sequences on genome reconstruction, we determined 

286 the repetitiveness of sequence information across CRs and NRs, determined from a self-versus-

287 self similarity search, and compared those values to the genome average. Correspondence of 

288 repeated regions and NRs was strong (Figures 2 and 3, Figure S4). In HL-111, all NRs save one 

289 were present in at least two copies (Figure 2). For all reconstructions, save HL-46, the CRs had 

290 repeat content equal to or lower than the genome average. 
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291 Another phenomenon that can affect contig coverage in metagenomic assembly is 

292 multiple organisms sharing identical regions of DNA. Some regions are highly conserved 

293 between related species, an example being the ribosomal RNA operon, which is known to 

294 confound assemblers and segregation strategies (78). Alternatively, mobile elements such as 

295 plasmids or transposons can have a broad host range and invade and inhabit closely or even 

296 distantly related organisms (79). Such regions, even if not repeated within a genome, will exhibit 

297 anomalous coverage and thus could be either excluded or mis-binned. We examined the 

298 metagenomic read coverage depth to determine if NRs had anomalous profiles relative to the 

299 whole genome and the CRs. For most reconstructions, the NRs’ coverage differed from the 

300 genome average and that of the CRs (Table 4, Fig 2, Fig S4). Only HL-46 and one of the HL-

301 109 molecules did not have significant differences. Most NRs displayed higher or equivalent 

302 coverage values, however, several NRs in HL-48 and the two small plasmids associated with 

303 HL-91 showed lower metagenomic coverage values (Figure S4). A likely explanation for this is 

304 the presence in the consortia of sub-populations of these organisms that lack the plasmids.

305

306 Functional assessment of NR genes

307 To determine the extent to which regions missing from reconstructions might affect downstream 

308 metabolic or functional analyses and predictions for organisms and communities, we examined 

309 the gene content of the NRs and the functional roles of those genes. COG categorization was 

310 used as a basis for comparison because of its ability to identify, in particular, genes associated 

311 with mobile elements such as plasmids, phage and insertion sequences. In addition, we evaluated 

312 the distribution of non-coding RNA genes since some are known to be repeated within genomes 
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313 (multiple rRNA operons, for example), and others (tRNAs) are commonly associated with 

314 mobile elements (80). 

315 For all the reconstructions, the gene content of the NRs differed from that of the CRs and 

316 complete genomes. Functional analysis of gene sequences shows that this difference was largely 

317 driven by genes encoding mobile element functions (COG category X) and RNA genes (Figure 

318 4). The mobile element genes in the NR regions were predominantly transposases with some 

319 contribution from bacteriophage and plasmid genes (HL-91; HL-93). Most of the identified 

320 rRNA genes fell within NRs, with only HL-48 and HL-53 each having one rRNA contained in a 

321 CR. In addition, the NRs, including the two entire plasmids from HL-91 which were not binned, 

322 contained a higher percentage of genes that were not assigned to a COG category.

323

324 Evaluation of a complex metagenomic data set and common automated binning tools

325 To verify that our conclusions of genome reconstruction bias in the highly curated UCC data set 

326 were extendable to more complex data sets and for alternate, widely-used binning tools, we 

327 applied similar analyses to MAGs generated from the Tara Oceans metagenomic data using 

328 distinct genome reconstruction protocols. For this comparison, 4,557 MAGs generated from the 

329 Tara Oceans microbial metagenomic data reconstructed using three complementary methods 

330 were collected and analyzed. Three different automated binning methodologies were employed 

331 to generate the MAG data set: MetaBat (v0.26.3) (22,49), BinSanity (v1.0) (21,51), and 

332 CONCOCT (with manual refinement in anvi’o) (31,50). All three automated binning algorithms 

333 utilized read coverage and TNF to identify congruent contigs, with the intended role of the 

334 algorithms to reconstruct high confidence environmental genomes while avoiding over-binning 

335 (i.e., removing elements that deviate from the mean values of the binned contigs). The MAGs 
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336 had a mean estimated completeness and contamination of 76.6% and 2.2%, respectively, as 

337 determined by CheckM v.1.1.1 (32). In comparison, 1,736 ‘representative’ and ‘reference’ 

338 complete genomes were collected from NCBI RefSeq.

339 Our results above predicted that the MAGs would have lower %G+C variance and TNF 

340 variance than the isolate complete genome data set. For the observed %G+C, MAGs tended to 

341 have lower variance (p < 0.001) than isolate genomes (Figure 5A). The exception was the Parks 

342 et al. MAGs, which had a much larger variance, even compared to the RefSeq genome set (mean 

343 vs mean, p < 0.001). This may be the result of the additional step applied to the MAGs by Parks 

344 et al., whereby related MAGs with <3% mean %G+C difference were merged into a single 

345 representative MAG (22). For the Tully et al. and Delmont et al. MAGs, the lower variance 

346 observed compared to the RefSeq genomes is likely due to removal of contigs with deviant 

347 %G+C values during binning (21,50). The MAGs also had lower variance with regards to TNF 

348 compared to the RefSeq genomes (p < 0.001) (Figure 5B), again, likely due to genomic elements 

349 that deviated from the average value of the binned contigs having been removed during the 

350 binning steps. These observations support our conclusions regarding genome regions having 

351 divergent nucleotide composition being underrepresented in MAGs.

352 The Tara and NCBI Refseq data sets were then evaluated for repeat sequence content. 

353 Each MAG and isolate genome was compared to itself using NUCmer to identify the fraction of 

354 the genome composed of repeat regions (regions with 97% sequence identity). MAGs ≥

355 universally had a smaller fraction of genomic information in repeat regions compared to isolate 

356 genomes (p < 0.01; Figure 6). The lack of repeat regions in MAGs is likely the result of repeated 

357 regions having inflated or depressed read coverage values relative to the mean of the genome, 

358 depending on the number of copies of the repeat region present in the genome and how stable 
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359 this number is across the population. Compared to the other Tara MAGs, the Tully et al. MAGs 

360 had a larger fraction of redundant genomic elements. It is unclear what aspect of the assembly 

361 and binning methodology has influenced these results. On average, the lengths of the repeat 

362 regions from the Tully et al. MAGs are longer than the repeat regions in the RefSeq genomes 

363 (mean: 1,052bp vs 868bp, respectively). 

364

365 What’s missing from reconstructed genomes?

366 Analysis of regions that were not recovered from genome reconstruction (NRs) showed both 

367 nucleotide compositional variance and intragenome repetitiveness. The %G+C and 

368 tetranucleotide frequencies of NRs tended to differ from that of complete genomes (Tables 2 

369 and 3, Figure 1), and the sequence coverage differed. This met expectations since, in general, 

370 binning tools are designed around the assumption that sequences with similar properties belong 

371 together, thus any genome region that varies significantly from the genome average is likely be 

372 incorrectly binned if it comprises the majority of a contig under consideration. Regions with 

373 atypical nucleotide content have been observed to contain genes upon which selective pressures 

374 are acting on nucleic acid structure, such as ribosomal RNAs and tRNAs (72,81,82), and 

375 exogenously introduced segments such as mobile elements (83,84). It is significant that many of 

376 the NRs displayed lower %G+C than the genome average, since it has been observed that 

377 laterally acquired regions tend to have lower %G+C than their hosts (83), as phage and insertion 

378 sequences tend to have A+T-enriched genomes (85). Notably, many genome regions with variant 

379 nucleotide composition were incorporated into longer contigs by the assembler, masking the 

380 variance and allowing correct binning. Conversely, the assembler collapsed repeated region 

381 sequences into single contigs, and thus they were not binned due to the inflated sequence 
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382 coverage values. Often, repeated sequences displayed divergent nucleotide composition, but the 

383 reciprocal was less frequent, indicating that repetitiveness is the stronger driver of binning 

384 failure. These results demonstrate that assembly efficiency is an important determining factor for 

385 correct binning, or conversely, any factor that results in shorter assemblies will result in poorer 

386 recovery of anomalous regions. Thus, it is advisable to include replication and positive controls 

387 in metagenomic sequencing protocols, particularly for highly diverse communities such as soils 

388 and riverbed sediments, to allow evaluation of assembly efficiency and accuracy.

389 Repeat regions identified in this study appeared to largely consist of insertion elements 

390 based on functional analysis and their relatively short size (1-2 kb). Failure of these regions to be 

391 correctly binned is unlikely to meaningfully affect functional predictions for a reconstructed 

392 genome. Their presence in a genome is more likely to affect metabolic reconstruction analysis by 

393 reducing assembly efficiency, resulting in more, shorter contigs and increasing the chance that 

394 these shorter contigs are not binned or incorrectly binned. Technological advances increasing 

395 read length beyond 2 kb will increase contig lengths, binning accuracy, and the likelihood of 

396 yielding closed genomes from environmental samples (8,86,87).

397 NRs were generally observed to be short, with a median length of less than 5 kb (Table 

398 1) and containing only a handful of genes. Thus, even a MAG with many gaps (indicating a large 

399 number of NRs) may be missing only a small percentage of its genome. The conserved single-

400 copy gene (CSCG) estimations for completeness appear for all intents and purposes to be a 

401 reasonable indication of how much information is absent (47). One caveat to this conclusion, 

402 however, is that extrachromosomal elements, plasmids and phages (integrated or otherwise) 

403 typically do not carry CSCG markers, and thus are essentially invisible in such analyses. The 

404 longer NRs observed in our analysis appear to comprise integrated plasmids or phage, and thus 
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405 any gap in a reconstruction could represent up to 50 kb (or more) of genetic material. 

406 Importantly, these represent introduced genetic material, which, while likely conveying a 

407 beneficial trait, are unlikely to carry functions that are integral to host metabolic function.

408

409 CONCLUSIONS

410 This analysis indicates that reconstructed genomes estimated to be near-complete can be 

411 assumed to contain nearly all genes important to metabolic reconstruction. The majority of 

412 identifiable genes present on NRs appear to be either highly conserved, non-coding genes that 

413 can be assumed to be present (such as the rRNA genes and tRNA genes) or are associated with 

414 mobile genetic elements. While many of these genes may be not be directly related to cellular 

415 metabolism (transposases, toxin/antitoxin systems, phage and plasmid functions), it should be 

416 noted that entire extrachromosomal elements may be missed by the binning process due to either 

417 alternate nucleotide composition, a higher number of copies per cell than the genome, or 

418 occupancy in only a subset of the population (such as the two molecules in HL-109). These 

419 elements frequently carry genes that alter the physiology or resistance of the host organism. For 

420 example, HL-109 and HL-111 have NRs that includes genes involved in glycan biosynthesis, 

421 suggesting alterations to the cell wall, while HL-91 has picked up a multidrug efflux transporter.  

422 As such, reconstructed genomes can be considered reliable foundations for metabolic 

423 reconstruction but should not be assumed to be comprehensive for the function of the organism.

424
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1 Table 1 Reconstructed genome coverage and completeness

Genome
Genome NCBI 
accessions

MAG NCBI 
accessions MG Cova %CRb NRc

 mean NR 
length (bp)

NR length 
range

HL-46 EI34DRAFT_7210 GCA_001314525.1 3.9x 40% 284 4742 1007..42318
EI34DRAFT_6181d 3.9x 25% 7 18136 1108..49149

HL-48 CY41DRAFT GCA_001314875.1 69x 95% 29 1892 330..53737
HL-49 K302DRAFT GCA_001314815.1 9.7x 91% 89 3234 209..25366
HL-53 Ga0003345 GCA_001314555.1 113x 98% 15 1564 952..6133
HL-55 K417DRAFT GCA_001314845.1 11x 95% 34 3574 417..45387
HL-58 CD01DRAFT GCA_001314605.1 128x 99% 13 1124 959..12996
HL-91 Ga0058931_14 GCA_001314645.1 226x 97% 20 3129 135..11341

Ga0058931_11d 227x 97% 6 2188 914..4391
Ga0058931_13d 158x 0% 1 113349 113349
Ga0058931_12d 160x 0% 1 97917 97917

HL-93 Ga0071314 GCA_001314745.1 11x 85% 98 3605 232..78515
HL-109 Ga0071312_11 GCA_001314785.1 612x 87% 20 1835 204..63971

Ga0071312_12 669x 92% 28 1285 506..52589
Ga0071312_13d 615x 95% 3 6053 1908..10088

HL-111 Ga0071316 GCA_001314765.1 18x 95% 39 1589 501..20407

2 a Metagenomic read coverage
3 b Percentage of the genome represented in the MAG
4 c Number of not-binned regions
5 d Predicted to be an extrachromosomal element
6
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%G+C analysis
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1 Table 2. Comparison of %G+C for genomes, CRs and NRs
2

Genome CRs NRs

molecule mean mean distance p-value mean distance p-value

HL-46 EI34DRAFT_7210 64.42 63.96±1.94 1.55±1.25 0.997 65.12±2.13 1.61±1.56 0..263

HL-46 EI34DRAFT_6181 59.94 60.78±2.27 1.97±1.41 0.856 60.97±1.78 1.92±0.75 0.605

HL-48 CY41DRAFT 58.98 59.00±1.52 1.01±1.13 0.996 45.76±19.69 13.22±19.69 <0.001a

HL-49 K302DRAFT 42.22 42.24±1.71 1.15±1.27 0.434 42.73±3.37 2.44±2.38 0.001

HL-53 Ga0003345 47.50 46.95±1.61 0.96±1.40 0.031 48.83±3.55 3.70±0.82 <0.001

HL-55 K417DRAFT 56.26 55.87±1.97 1.42±1.41 0.025 55.44±3.30 3.00±1.59 0.001

HL-58 CD01DRAFT 57.56 56.83±2.61 1.69±2.12 0.047 56.11±3.69 3.93±0.51 0.016

HL-91 Ga0058931_11 61.75 62.05±0.25 0.31±0.23 0.954 60.39±3.17 2.79±2.02 0.053

HL-91 Ga0058931_12 60.37 ndb nd nd nd nd nd

HL-91 Ga0058931_13 61.77 nd nd nd nd nd nd

HL-91 Ga0058931_14 61.84 60.99±1.90 1.33±1.60 0.030 59.11±2.96 3.52±1.96 0.005

HL-93 Ga0071314_11 55.88 56.75±2.20 1.75±1.59 1.000 56.08±4.42 3.6±2.57 <0.001

HL-109 Ga0071312_11 64.09 64.55±1.46 1.12±1.05 0.715 60.96±3.02 3.28±2.85 0.073

HL-109 Ga0071312_12 64.07 63.89±1.41 0.92±1.09 0.169 63.11±2.21 1.94±1.43 0.593

HL-109 Ga0071312_13 65.34 65.47±0.07 0.13±0.07 0.778 61.68±2.24 3.66±2.24 0.009

HL-111 Ga0071316_11 68.12 68.20±1.44 0.99±1.05 0.465 64.26±1.39 3.86±1.39 <0.001

3 a Bold type indicates significant results (P 0.005).≤

4 b Not determined because the entire molecule was missing from the reconstructed genome.
5
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1 Table 3. Tetranucleotide frequency 2 analysis.

CR NR
molecule mean sd p-value mean sd p-value

HL-46 EI34DRAFT_6181 0.2323 0.1883 0.154 0.1518 0.1429 0.983
HL-46 EI34DRAFT_7210 0.2042 0.0696 0.896 0.1701 0.1332 0.975
HL-48 CY41DRAFT 0.0276 0.0577 0.387 0.4425 0.2689 <0.001a

HL-49 K302DRAFT 0.0522 0.0431 0.757 0.2340 0.2164 <0.001
HL-53 Ga0003345 0.0261 0.0451 0.001 0.3851 0.1525 <0.001
HL-55 K417DRAFT 0.0458  0.0726  0.086  0.2774    0.2168 0.004
HL-58 CD01DRAFT 0.0761 0.1451 0.008 0.2974 0.969 0.004
HL-91 Ga0058931_11 0.0266 0.0213 0.313 0.3043 0.1416 0.011
HL-91 Ga0058931_12   ndb nd nd nd nd nd
HL-91 Ga0058931_13 nd nd nd nd nd nd
HL-91 Ga0058931_14 0.0557 0.0647 0.004 0.3614 0.2052 <0.001
HL-93 Ga0071314_11 0.0925 0.0738 0.993 0.2254 0.1595 0.062
HL-109 Ga0071312_11 0.0262 0.0401 0.396 0.3148 0.1842 0.087
HL-109 Ga0071312_12 0.0216 0.0281 0.076 0.2907 0.1913 0.231
HL-109 Ga0071312_13 0.0048 0.0019 0.538 0.3651 0.2299 0.016
HL-111 Ga0071316_11 0.0396 0.0561 0.322 0.4504 0.1640 <0.001

2 a Bold text indicates significant result
3 b Not determined because the entire molecule was missing from the reconstructed genome.
4
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1 Table 4. Metagenomic redundancy.

Genome CR NR
molecule mean mean distance p-value mean distance p-value

HL-46 EI34DRAFT_6181 2.76 2.78 0.26±0.15 0.992 2.42 0.43±0.31 0.264
HL-46 EI34DRAFT_7210 5.98 4.43 2.95±2.34 0.978 4.99 4.01±13.35 0.649
HL-48 CY41DRAFT 72.40 69.29 3.65±2.45 1.000 140.93 100.97±153.33 <0.001a

HL-49 K302DRAFT 8.97 8.67 0.51±0.58 0.999 11.38 4.16±17.52 0.002
HL-53 Ga0003345 441.81 446.29 24.51±18.21 0.073 517.07 115.56±59.71 <0.001
HL-55 K417DRAFT 16.76 15.35 7.06±10.45 0.679 117.37 110.35±333.81 <0.001
HL-58 CD01DRAFT 128.28 127.85 9.10±15.71 1.000 180.14 60.44±27.54 <0.001
HL-91 Ga0058931_11 231.39 228.46 3.64±2.25 0.786 311.6 91.27±97.44 0.001
HL-91 Ga0058931_12 163.24   ndb nd nd nd nd nd
HL-91 Ga0058931_13 168.27 nd nd nd nd nd nd
HL-91 Ga0058931_14 227.56 231.77 8.18±6.59 0.220 273.03 97.82±117.47 <0.001
HL-93 Ga0071314_11 50.87 50.03 4.04±2.92 1.000 65.73 16.16±35.87 <0.001
HL-109 Ga0071312_11 3103.11 3098.73 97.47±72.15 0.748 3072.59 323.24±240.86 0.005
HL-109 Ga0071312_12 2821.18 2822.26 113.08±78.18 0.124 2778.03 352.81±436.28 0.003
HL-109 Ga0071312_13 2853.84 2901.40 47.56±9.73 0.179 2097.01 756.83±256.91 0.018
HL-111 Ga0071316_11 90.14 88.03 3.98±4.31 0.993 98.25 38.42±104.87 0.027

2 a Bold text indicates significant result
3 b Not determined because the entire molecule was missing from the reconstructed genome.
4
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Figure 1

Distributions of %G+C for MDR and CDR genomic regions.

G+C composition was determined for individual regions identified as CDRs or MDRs. Bar

height represents the percentage of regions in the category. Black bars, CDRs; white bars,

MDRs.

PeerJ reviewing PDF | (2017:03:17041:1:1:NEW 4 Sep 2020)

Manuscript to be reviewed



PeerJ reviewing PDF | (2017:03:17041:1:1:NEW 4 Sep 2020)

Manuscript to be reviewed



Figure 2

Analysis of HL-111 genome.

Ring 1 (outermost, black) – genome sequence; ring 2 (grey bars) – missed detection regions

(MDRs); ring 3 (teal) – tetranucleotide frequency (TNF) distance χ2 values; ring 4 (orange) -

%G+C; ring 5 (blue) – intragenome redundancy; ring 6 (magenta) – metagenome

redundancy. Values were calculated across 2000 nt windows with a step size of 1000 nt. For

TNF, χ2 was calculated for the windows using the whole molecule frequencies as the

expected. Data for other genomes analyzed is presented in Figure S1. Circlular plots were

generated using Circos v0.69.3 ( Krzywinski, Schein et al. 2009 ) .
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Figure 3

Repeat content of genomes versus MAGs

Box plot representation of the total fraction of each genome/MAG in a repeat region as

determined by NUCmer (≥97% identity; center line, median; box limits, upper and lower

quartiles; whiskers, 1.5×interquartile range; diamonds, outliers). UCC MAG and genome

comparison were significantly different (p = 0.01; Mann-Whitney U).
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Figure 4

Functional categorization of genes present on MDRs.

The gene features of each genome region were assigned to functional COG categories or as

non-coding genes (rRNA; tRNA; ncRNA). Organisms’ gene sets were compared using Principal

Component Analysis. Organisms are represented by colors (HL-46, yellow; HL-48, purple;

HL-49, blue; HL-53, light blue; HL-55, gray; HL-58, orange; HL-91, black; HL-93, pink; HL-109,

red; HL-111, green). The genome region categories are represented by shapes (whole isolate

genomes, circles; CDRs, squares; MDRs, triangles; extrachromosomal elements, diamonds).

COG categories: A - RNA processing and modification; B - Chromatic structure and dynamics;

C - Energy production and conversion; D - Cell cycle control, cell division, chromosome

partitioning; E - Amino acid transport and metabolism; F - Nucleotide transport and

metabolism; G - Carbohydrate transport and metabolism; H - Coenzyme transport and

metabolism; I - Lipid transport and metabolism; J - Translation, ribosomal structure and

biogenesis; K - Transcription; L - DNA replication, recombination and repair; M - Cell

wall/membrane/envelope biogenesis; N - Cell motility; O - Post-translational modification,

protein turnover, chaperones; P - Inorganic ion transport and metabolism; Q - Secondary

metabolites biosynthesis, transport and catabolism; R - General function prediction; S -

Function unknown; T - Signal transduction mechanisms; U - Intracellular trafficking, secretion

and vesicular transport; V - Defense mechanisms; W - Extracellular structures; X - Mobilome,

transposons, phages; Y - Nuclear structure; Z - Cytoskeleton.
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Figure 5

Tara Ocean MAG nucleotide composition analysis

(A) %G+C variance analysis. Box plot representation of the %G+C variance for each 2,000bp

segment of genome/MAG (sliding window step: 500bp; center line, median; box limits, upper

and lower quartiles; whiskers, 1.5×interquartile range; diamonds, outliers). Comparisons

between Tara Oceans MAG datasets and RefSeq genomes were significantly different (p <

0.001; Mann-Whitney U with Benjamini-Hochberg False Discovery Rate Correction (BH FDR)).

(B) Tetranucleotide analysis. Box plot representaiton of the variance in Pearson correlation

values of the tetranucleotide Z-scores for a pair-wise comparison of each 10kb segment of

genome/MAG (sliding window step: 5kb; center line, median; box limits, upper and lower

quartiles; whiskers 1.5x interquartile range; diamonds, outliers). Comparisons between Tara

Oceans MAG datasets and RefSeq genomes were significantly different (p < 0.001; Mann-

Whitney U with BH FDR Correction). Red asterisks denote the existence of outliers outside of

the displayed range.
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Figure 6

Tara Ocean MAG repeat content

Box plot representation of the total fraction of each genome/MAG in a repeat region as

determined by NUCmer (≥97% identity; center line, median; box limits, upper and lower

quartiles; whiskers, 1.5×interquartile range; diamonds, outliers). Comparisons between Tara

Oceans MAG datasets and RefSeq genomes were significantly different (p < 0.001; Mann-

Whitney U with BH FDR Correction). Red asterisks denote the existence of outliers outside of

the displayed dataset.
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