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ABSTRACT
Background: Advances in sequencing, assembly, and assortment of contigs into
species-specific bins has enabled the reconstruction of genomes from metagenomic
data (MAGs). Though a powerful technique, it is difficult to determine whether
assembly and binning techniques are accurate when applied to environmental
metagenomes due to a lack of complete reference genome sequences against which to
check the resulting MAGs.
Methods: We compared MAGs derived from an enrichment culture containing
~20 organisms to complete genome sequences of 10 organisms isolated from the
enrichment culture. Factors commonly considered in binning software—nucleotide
composition and sequence repetitiveness—were calculated for both the correctly
binned and not-binned regions. This direct comparison revealed biases in sequence
characteristics and gene content in the not-binned regions. Additionally, the
composition of three public data sets representing MAGs reconstructed from the
Tara Oceans metagenomic data was compared to a set of representative genomes
available through NCBI RefSeq to verify that the biases identified were observable in
more complex data sets and using three contemporary binning software packages.
Results: Repeat sequences were frequently not binned in the genome reconstruction
processes, as were sequence regions with variant nucleotide composition. Genes
encoded on the not-binned regions were strongly biased towards ribosomal
RNAs, transfer RNAs, mobile element functions and genes of unknown function.
Our results support genome reconstruction as a robust process and suggest that
reconstructions determined to be >90% complete are likely to effectively represent
organismal function; however, population-level genotypic heterogeneity in natural
populations, such as uneven distribution of plasmids, can lead to incorrect
inferences.

Subjects Bioinformatics, Genomics, Microbiology
Keywords Binning, Metagenomics, Metagenome assembled genome

INTRODUCTION
High-throughput sequencing has revolutionized microbiology by circumventing “the great
plate count anomaly” (Staley & Konopka, 1985) and allowing direct investigation of
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natural communities in a culture-independent manner (Venter et al., 2004; DeLong et al.,
2006; Costello et al., 2009; Caporaso et al., 2012; Zhou et al., 2015; Rinke et al., 2013;
White et al., 2016). One goal of metagenomics has always been to obtain organism-specific,
complete, genomic information from the complex mixture of sequence data generated
from environmental samples. Having a complete genome sequence provides a platform
for understanding the range of metabolic roles an organism can play within a community
and the interactions it has with other organisms (Iverson et al., 2012; Sharon et al.,
2013; Delmont et al., 2015), and it can provide specific context for interpretation of
transcriptomics and proteomics (Lesniewski et al., 2012; Ram et al., 2005). Metagenome-
assembled genomes (MAGs) are produced by segregating assembled contigs/scaffolds into
organism-specific “bins”. This process of genome reconstruction has benefitted from
continuing advances in sequencing technologies, sequence assembly algorithms, and
segregation methods (Sangwan, Xia & Gilbert, 2016). Early success assembling genomes
from a simple community (Tyson et al., 2004) has led to more recent studies reconstructing
many organisms from complex environments (Brown et al., 2015; Anantharaman,
Breier & Dick, 2016; Baker et al., 2015; Li et al., 2015; Nobu et al., 2015; Tully, Graham &
Heidelberg, 2018; Parks et al., 2018; Pasolli et al., 2019; Almeida et al., 2019; Mobberley
et al., 2017; Stewart et al., 2019; Pedron et al., 2019; Wong et al., 2018; Daly et al., 2016;
Danczak et al., 2017). The accuracy of these techniques in the context of a complex
environmental community is difficult to gauge; however, because most available complete
microbial genome sequences that could serve as references are from cultured isolates, and
these isolates are rarely present in environmental metagenomes. Techniques that have
been developed to evaluate the accuracy of the binning process rely on conserved
genes and consistency of nucleotide composition (Eren et al., 2015; Parks et al., 2015;
Waterhouse et al., 2018; Chen et al., 2019; Hugoson, Lam & Guy, 2019). These techniques,
however, cannot make accurate determinations of how much sequence is missing or the
functional potential of missing content. Genome reconstruction techniques have been
tested using synthetic communities of cultured organisms (Hardwick et al., 2018) and
simulated metagenomic datasets. Over time, increasingly sophisticated methods have
been developed to simulate metagenomic read data sets, from the earlier Grinder
(Angly et al., 2012), MetaSim (Richter et al., 2008), GemSIM (McElroy, Luciani & Thomas,
2012), BEAR (Johnson et al., 2014), and NeSSM (Jia et al., 2013), to the more recent
CAMISIM (Fritz et al., 2019), which was developed as part of the community effort to
address standards in metagenome analysis software development (Sczyrba et al., 2017).
Generally these simulators concern themselves with modeling community structure
and sequencing attributes, such as read length and error rates, but are limited to presenting
data generated from a reference genomic database, thus cannot model the genetic
diversity found in most environments, although CAMISIM addresses this issue by
implementing the genome evolution simulator sgEvolver (Darling, 2004). Because genetic
variability within natural populations is, as yet, ill-defined (Rocha, 2018), it is unlikely
that such test data can accurately replicate the type and amount of variability found in
natural communities, and the complications this variability causes.
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Unicyanobacterial consortia (UCC) were developed as model systems to investigate the
mechanisms of metabolic interaction between cyanobacteria and heterotrophs. These
systems provide an opportunity to compare MAGs against a matching reference genome
set and learn about potential gaps and pitfalls of current reconstruction processes.
Two consortia, each containing a single unique cyanobacterial species and sharing an
additional 18 heterotrophic species, were derived from a natural mat community (Cole
et al., 2014). The communities have been sequenced, and genome reconstruction has been
performed (Nelson et al., 2015), yielding near-complete genome sequences revealing the
presence and maintenance of microdiversity, such as might be found within an intact
environmental sample. Thus, this system more accurately reflects in situ community
diversity compared to synthetic communities constructed from isolated organisms.
In parallel, isolates of 10 of the member species have also been sequenced (Nelson et al.,
2015; Romine et al., 2017). This paired genomic and metagenomic data set allows direct
comparison of MAGs from diverse organisms against “ground truth” genomic data.
Previously, we have shown that common aspects of the genome reconstruction process
(assembly from a complex sequence space and segregation of contigs based on read depth
profiles and sequence composition) to be both specific and sensitive (Nelson et al., 2015).

We have investigated the nature of genomic regions that under current standard
genome reconstruction techniques are not recovered (herein referred to as not-binned
regions, or NRs) to evaluate how these regions differ from recovered regions (correctly
binned regions, or CRs), and to what extent the missing genomic information might impact
conclusions drawn from analysis of MAGs. Two common elements of current sequence
segregation protocols are analysis of sequence composition and comparison of coverage
profiles between samples, so we compared the nucleotide content of NRs vs CRs,
examining both %G+C and tetranucleotide content, and the redundancy of sequence
information both within the individual genome (i.e., repetitiveness within the genome)
and across the entire metagenomic data set (i.e., sequence shared between populations).
To determine the impact on downstream functional analyses, the gene content was
examined for biases in the cellular roles of genes found within NRs and CRs. To verify
that the biases observed extended to more complex metagenomic datasets and across
binning algorithms, the Tara Oceans metagenome, which has been binned by different
groups using MetaBAT (Parks et al., 2018; Kang et al., 2015), Anvi’o (Eren et al., 2015;
Delmont et al., 2018), and BinSanity (Tully, Graham & Heidelberg, 2018; Graham,
Heidelberg & Tully, 2017), was subjected to similar sequence and repeat compositional
analysis.

MATERIALS AND METHODS
Data and code availability
The UCC MAG and genome data analyzed are available in the GenBank repository as
listed in Table 1. The metagenomic data used to construct the UCC MAGs is available
from the NCBI SRA (accessions SRX1063989 and SRX1065184). MAGs reconstructed
from the Tara Oceans metagenomic data (Tully, Graham & Heidelberg, 2018; Parks et al.,
2018) are available in the GenBank repository. MAGs from Delmont et al. (2018) are
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available through figshare (DOI 10.6084/m9.figshare.4902923). A list of MAGs and
corresponding identifiers are available in Table S1. Complete bacterial and archaeal
genomes were collected from NCBI RefSeq (O’Leary et al., 2016) (accessed Aug 2019)
based on assignment as either “reference genome” or “representative genome” for the data
column “refseq_category” and “Complete Genome” in the “assembly_level” column.
A list of genomes used in the analysis are available in Table S2. All analysis scripts are
available at http://github.com/wichne/biases_in_genome_reconstruction.

Identification of CR and NR regions
The UCC scaffolds comprising each MAG were searched against their cognate complete
genome sequence using nucmer using the maxmatch option (Kurtz et al., 2004).
Regions of the genomes that aligned end-to-end to MAG scaffolds at ≥99% identity were
cataloged as CR regions. All other genome regions were considered NR regions.

Compositional analysis
For the UCCMAGs and genomes, %G+C calculation and tetranucleotide frequency (TNF)
chi-square test were performed using custom Perl scripts (available at http://github.com/
wichne/biases_in_genome_reconstruction). Compositional analysis was restricted to
CR or NR regions longer than 1,000 bp to ensure sufficient sequence for meaningful
results. For TNF, the chi-squared statistic was calculated for each region using the TNF for
the whole genome as the expected values, and the mean and standard deviation for the

Table 1 Reconstructed genome coverage and completeness.

Genome Molecule identifier Genome NCBI
accessions

MAG NCBI accessions MG Cova %CRb NRc Mean NR
length (bp)

NR length range

HL-46 EI34DRAFT_7210 JQMU01000001.1 GCA_001314525.1 3.9× 40 284 4,742 1,007..42,318

EI34DRAFT_6181d JQMU01000002.1 3.9× 25 7 18,136 1,108..49,149

HL-48 CY41DRAFT KK366039.1 GCA_001314875.1 69× 95 29 1,892 330..53,737

HL-49 K302DRAFT JAFX01000001.1 GCA_001314815.1 9.7× 91 89 3,234 209..25,366

HL-53 Ga0003345 LN899469.1 GCA_001314555.1 113× 98 15 1,564 952..6,133

HL-55 K417DRAFT JYNR01000001.1 GCA_001314845.1 11× 95 34 3,574 417..45,387

HL-58 CD01DRAFT JMLY01000001.1 GCA_001314605.1 128× 99 13 1,124 959..12,996

HL-91 Ga0058931_14 FBYC01000004.1 GCA_001314645.1 226× 97 20 3,129 135..11,341

Ga0058931_11d FBYC01000001.1 227× 97 6 2,188 914..4,391

Ga0058931_13d FBYC01000003.1 158× 0 1 113,349 113,349

Ga0058931_12d FBYC01000002.1 160× 0 1 97,917 97,917

HL-93 Ga0071314 LT593974.1 GCA_001314745.1 11× 85 98 3,605 232..78,515

HL-109 Ga0071312_11 FMBM01000001.1 GCA_001314785.1 612× 87 20 1,835 204..63,971

Ga0071312_12 FMBM01000002.1 669× 92 28 1,285 506..52,589

Ga0071312_13d FMBM01000003.1 615× 95 3 6,053 1,908..10,088

HL-111 Ga0071316 LT629743.1 GCA_001314765.1 18× 95 39 1,589 501..20,407

Notes:
a Metagenomic read coverage.
b Percentage of the genome represented in the MAG.
c Number of not-binned regions.
d Predicted to be an extrachromosomal element.
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CR and NR pools calculated. For %G+C analysis, the mean %G+C for the CR and NR
regions was calculated, and the absolute difference was calculated between each region
and the genome average, and average differences determined for CR and NR pools.
To estimate p-values for the %G+C and TNF analyses, one thousand random coordinate
sets yielding the same number and length of fragments as in each genome’s CR or NR set
were generated from the genome sequence and evaluated.

For comparison of the UCC data set to the TaraOceans MAGs and RefSeq genome data
sets, sequence composition variance (i.e., deviation from the mean) was calculated for the
%G+C and tetranucleotide frequency using a custom Python script. The %G+C was
calculated for 2 kb segments (sliding window of 500 bp) for each MAG or genome.
A genome-wide variance value was calculated for each MAG or genome based on the
segments and plotted as a box plot per source data set. TNF was calculated for 10 kb
segments (sliding window 5 kb) for each MAG or genome. Using the calculation described
in Teeling et al. (2004), each segment had a Z-score calculated for each tetranucleotide
based on the observed-vs-expected frequency of the tetranucleotide in the 10 kb segment.
A Pearson correlation was then calculated in a pairwise fashion for all segments. Variance
of the Pearson correlation values within a MAG or genome was calculated and plotted
as a box plot per source data set.

Repetitiveness analysis
To calculate intragenome sequence repetitiveness, we determined the fraction of each
genome that was comprised of repeat sequence. Each genome sequence was searched
against itself using nucmer v3.0 (Kurtz et al., 2004) with the maxmatch option, and the
lengths of regions that aligned to another part of the genome/MAG with �97% identity
were summed and divided by the length of the genome/MAG.

To determine the repetitiveness of sequences across the entire metagenomic data set,
metagenome reads were searched against genome sequences using Bowtie2 (Langmead &
Salzberg, 2012). Per-base coverage was calculated using the samtools (Li et al., 2009)
depth command, and average coverage values for the genomes, NRs and CRs were
determined. One thousand sets of random coordinate regions of the same number and
lengths as in each set were analyzed to estimate p-values. Results are reported as average
coverage depth of NRs and CRs and the average difference from the genome depth-of-
coverage.

Gene function analysis
Unicyanobacterial consortial cultures complete genome sequences were annotated by
the IMG pipeline (Huntemann et al., 2015), which included COG assignment based on
the December 2014 release of the 2003–2014 COGs (Galperin et al., 2015). COGs assigned
to more than one functional category were counted for each assigned category. Genes not
assigned to a COG category were classified as “unassigned”. Ribosomal RNA (rRNA)
gene features were identified by the IMG pipeline (Markowitz et al., 2014); transfer RNAs
(tRNA) were identified with tRNAscan-SE (Lowe & Eddy, 1997); other non-coding
RNAs (ncRNA) were identified using the Rfam database v11.0 (Burge et al., 2013) and
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infeRNAl v1.1 software (Nawrocki & Eddy, 2013). For each gene set, the category
counts were normalized to the total feature counts. Principle component analysis was
performed and biplot of gene categories was generated using R package bpca v.1.2-2
(http://cran.r-project.org/web/packages/bpca/).

Statistical analysis
Statistical tests were performed using modules within the Python package SciPy (Virtanen
et al., 2019). The normality of the calculated variance distributions for each set of genomes
was determined using the Shapiro–Wilk test (Shapiro & Wilk, 1965). Genome sets with
a normal distribution were compared to each other with the T-test for two independent
variables (Welch, 1947). Genome sets without a normal distribution were compared to
each other with the Mann–Whitney U test (Mann & Whitney, 1947). p-values were
adjusted for multiple comparisons with the Benjamini-Hochberg procedure (Benjamini &
Hochberg, 1995) correction with a false discovery rate of 25% (Table S3).

RESULTS AND DISCUSSION
The power of metagenomics is that it allows exploration of diverse communities from
which we cannot culture the component populations either because the proper growth
conditions are unknown or difficult to replicate in a laboratory environment, or simply
because there are too many organisms present to have the resources or time to pursue the
effort. Because of this, there are very few examples of sequenced organisms isolated from
the same sample from which metagenomic sequencing and binning has been done to
generate MAGs. As such, a “gold standard” for evaluation of MAG content has been
difficult to come by. We have taken advantage of two enrichment cultures from which
MAGs and isolate genomes have been derived to generate just such a “gold standard”
comparison framework. We have previously generated two unicyanobacterial consortial
cultures (UCC) – enrichment cultures each containing a distinct cyanobacterial population
and different, yet overlapping, communities of associated heterotrophs, each numbering
<20 species—and performed metagenomic sequencing, assembly and binning (Nelson
et al., 2015; Romine et al., 2017). Illumina 150 bp paired-end reads were generated from
each community, and IDBA_ud was used to assemble the read sets separately and in
co-assembly. The abundances of the organisms differed between the two communities,
allowing us to bin the sequences by comparing sequence coverage values of contigs
between the two UCCs in a predominantly manual process (inspired by the work of Dick
et al. (2009)). The resulting MAGs were manually curated to eliminate contaminating
contigs and identify mis-binned contigs, correctly placing them when possible. In parallel,
ten organisms were isolated from the UCCs and completely sequenced. Comparison of
the MAGs to the isolate genomes showed recovery of >90% of sequence for genomes
with at least 10× coverage, with one exception, Halomonas sp. HL-93, which had 85%
recovery from 11× coverage (Table 1). Co-linear sequence alignments indicated there
were no assembly errors in the binned contigs (Nelson et al., 2015, and data not shown).
Based on the isolate-MAG comparisons, NRs were identified. Porphyrobacter HL-46 had
the lowest metagenome coverage (3.6×). Its MAG comprised hundreds of short contigs
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and was determined to be ~40% complete. Thus, the NRs for HL-46 are assumed to be
primarily caused by the random sampling of the shotgun sequencing methodology and not
by any inherent content biases, allowing the HL-46 analyses to serve as a control.

To determine if NRs were not binned due to lack of assembly, we mapped the contigs
from the assembly to the CR and NR regions of the genomes and looked at the contig
coverage of the regions. As expected, the CRs showed an average contig coverage of
1.04 ± 0.14, and most regions had only a single contig map to them (Fig. S1). Many of the
cases of multiple contigs mapping to a CR were due to short (<200 bp) contigs of repeat
sequence which might be an artifact of the assembler (IDBA_ud). NRs show a strong
positive correlation between region length and number of contigs mapping, with an
average coverage of 0.94 ± 0.71 (Fig. S2). This suggests poorer assembly of the NRs and
higher repeat content, but also indicates that most NR sequence is present in the contig set,
and thus the binning process is the main determinant of NRs.

Nucleotide composition of NRs frequently differs from the genome
average
Bacteria and Archaea have evolved to have a fairly consistent %G+C across their genome
(Karlin, Campbell & Mrazek, 1998), so much so that it has been proposed as a metric
of classification at higher taxonomic levels (Wayne et al., 1987). It is not uncommon,
however, to observe regions within a genome that differ significantly from the genome
average (Bohlin et al., 2010). This variation can be the result of selective pressure for
structural properties in non-coding genes, for instance ribosomal RNAs and other
functional RNAs have been shown to vary in nucleotide composition in correlation with
optimal growth temperature (Galtier & Lobry, 1997). In other cases, divergent %G+C
indicates a region which has been acquired recently (in evolutionary time) from a
non-related source (i.e., horizontal gene transfer) (Wixon, 2001). To investigate whether
variant G+C confounds genome reconstruction, we compared the %G+C of NRs to that of
CRs and the complete genome.

The genomes in this study had a range of %G+C values, from 42% (A. marincola
HL-49) to 68% (Erythrobacteraceae bacterium HL-111), with most skewing toward the
higher values (Table 2). We determined the %G+C for each CR and NR ≥200 bp in
length and compared them to the %G+C for the complete genome. For genomes with
more than one genomic element, each molecule was considered separately since
extrachromosomal elements may have distinct nucleotide composition. For seven of the
genomes, the %G+C for the NRs differed significantly (p ≤ 0.005) from the genome
average, while the CRs generally reflected the genome average (Table 2). The %G+C
averages for NRs from HL-48 and HL-111 were significantly lower (45.76% and 64.26%,
respectively) than the genomes’ averages (58.98% and 68.12% respectively). Other
genomes (HL-53, HL-55, HL-109) had some NRs with %G+C higher than the genome
average and some NRs with lower values (Fig. 1), despite having different average %G+C
values (47.5%, 56.0% and 64.1% respectively). Extrachromosomal elements analyzed
did not display a significant difference in the %G+C of their NRs from the molecule
average. As expected, the values for the NRs and CRs of HL-46 showed no significant
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difference from the genome average (Table 2), however, HL-46’s CRs and NRs did not
display identical %G+C profiles (Fig. 1). There was a slight bias toward higher %G+C for
the NRs and lower %G+C in the CRs, which could reflect a bias in the assembly algorithm.

Tetranucleotide frequency has been shown to be capable of distinguishing higher
taxonomic classifications, up to the species level (Teeling et al., 2004; Dick et al., 2009).
This resolving power has been leveraged in binning protocols (Tyson et al., 2004; Wu,
Simmons & Singer, 2016; Albertsen et al., 2013; Imelfort et al., 2014). To investigate whether
genomic regions with divergent TNF are poorly recovered in genome reconstruction,
we compared the TNFs of CRs and NRs to that of the cognate complete genome using
chi-squared analysis. In most cases, the chi-squared statistic was an order of magnitude
higher for NRs vs CRs, and the differences were significant for all chromosomal sequences
except for HL-46, HL-109, HL-93 and the small chromosome of HL-91 (Table 3).

One factor that could affect nucleotide composition effects on binning is the length of
the region with divergent composition vs the length of the contig. If the variant region
comprises most of the length of the contig being evaluated, the difference from the genome
average will be pronounced, whereas if the divergent region is only a small percentage
of the contig length, the signal will be muted. An examination of CR/NR length vs
compositional variance (Fig. S3) revealed a strong, significant negative correlation between
contig length and TNF chi square for CRs (R2 = 0.64, p-value < 2.2 × 10−16) and a weaker
relationship for NRs (R2 = 0.14, p-value = 4.9 × 10−12). Taken together, the %G+C and

Table 2 %G+C analysis.

Molecule Genome CRs NRs

Mean Mean Distance p-value Mean Distance p-value

HL-46 EI34DRAFT_7210 64.42 63.96 ± 1.94 1.55 ± 1.25 0.997 65.12 ± 2.13 1.61 ± 1.56 0..263

HL-46 EI34DRAFT_6181 59.94 60.78 ± 2.27 1.97 ± 1.41 0.856 60.97 ± 1.78 1.92 ± 0.75 0.605

HL-48 CY41DRAFT 58.98 59.00 ± 1.52 1.01 ± 1.13 0.996 45.76 ± 19.69 13.22 ± 19.69 <0.001a

HL-49 K302DRAFT 42.22 42.24 ± 1.71 1.15 ± 1.27 0.434 42.73 ± 3.37 2.44 ± 2.38 0.001

HL-53 Ga0003345 47.50 46.95 ± 1.61 0.96 ± 1.40 0.031 48.83 ± 3.55 3.70 ± 0.82 <0.001

HL-55 K417DRAFT 56.26 55.87 ± 1.97 1.42 ± 1.41 0.025 55.44 ± 3.30 3.00 ± 1.59 0.001

HL-58 CD01DRAFT 57.56 56.83 ± 2.61 1.69 ± 2.12 0.047 56.11 ± 3.69 3.93 ± 0.51 0.016

HL-91 Ga0058931_11 61.75 62.05 ± 0.25 0.31 ± 0.23 0.954 60.39 ± 3.17 2.79 ± 2.02 0.053

HL-91 Ga0058931_12 60.37 ndb nd nd nd nd nd

HL-91 Ga0058931_13 61.77 nd nd nd nd nd nd

HL-91 Ga0058931_14 61.84 60.99 ± 1.90 1.33 ± 1.60 0.030 59.11 ± 2.96 3.52 ± 1.96 0.005

HL-93 Ga0071314_11 55.88 56.75 ± 2.20 1.75 ± 1.59 1.000 56.08 ± 4.42 3.6 ± 2.57 <0.001

HL-109 Ga0071312_11 64.09 64.55 ± 1.46 1.12 ± 1.05 0.715 60.96 ± 3.02 3.28 ± 2.85 0.073

HL-109 Ga0071312_12 64.07 63.89 ± 1.41 0.92 ± 1.09 0.169 63.11 ± 2.21 1.94 ± 1.43 0.593

HL-109 Ga0071312_13 65.34 65.47 ± 0.07 0.13 ± 0.07 0.778 61.68 ± 2.24 3.66 ± 2.24 0.009

HL-111 Ga0071316_11 68.12 68.20 ± 1.44 0.99 ± 1.05 0.465 64.26 ± 1.39 3.86 ± 1.39 <0.001

Notes:
a Bold type indicates significant results (p ≤ 0.005).
b Not determined because the entire molecule was missing from the reconstructed genome.
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TNF results show that genomic regions with divergent nucleotide composition are
more likely to be missed during binning, and this effect is stronger for short contigs.
The most effective way to overcome this problem is to enhance assembly such that regions

Figure 1 Distributions of %G+C for MDR and CDR genomic regions. G+C composition was determined for individual regions identified as
CDRs or MDRs. Bar height represents the percentage of regions in the category. Black bars, CDRs; white bars, MDRs.

Full-size DOI: 10.7717/peerj.10119/fig-1
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with unusual content are included in significantly longer contigs, or use clone linkage to
identify strong, unique connections to binned contigs.

Repeated sequences segregate aberrantly
Sequence coverage profiles are frequently effective in discriminating contigs from different
organisms (Tyson et al., 2004). Samples taken under different conditions or at different
times capture community states which have similar organismal composition but differing
relative abundances. This difference translates to distinct coverage profiles for assembled
contigs, and thus contigs with similar coverage profiles are assumed to originate from
the same organism. In this data set, for example, we compared two cultures with
near-identical heterotroph species composition, but different cyanobacteria acting as a
conduit for energy and carbon (Cole et al., 2014; Nelson et al., 2015). Other studies have
compared samples taken at different times (Albertsen et al., 2013). Coverage analysis is
more difficult for repeated regions of a genome, which will yield higher coverage values
than the genome average and thus are more likely to be either not binned or binned
improperly. Differential coverage analysis can mitigate this problem by identifying
correlated changes in abundance of contigs with different coverage. Unlike nucleotide
composition variance; however, unusual high-coverage signal due to repeat sequence is less
likely to be diluted by incorporation into a larger contig because assemblers (especially
standard de Bruijn graph assemblers using short-read data) tend to terminate contigs
when repeats are encountered and/or assemble repeats into separate contigs (Pop, 2009).

Table 3 Tetranucleotide frequency analysis.

Molecule CR NR

Mean sd p-value Mean sd p-value

HL-46 EI34DRAFT_6181 0.2323 0.1883 0.154 0.1518 0.1429 0.983

HL-46 EI34DRAFT_7210 0.2042 0.0696 0.896 0.1701 0.1332 0.975

HL-48 CY41DRAFT 0.0276 0.0577 0.387 0.4425 0.2689 <0.001a

HL-49 K302DRAFT 0.0522 0.0431 0.757 0.2340 0.2164 <0.001

HL-53 Ga0003345 0.0261 0.0451 0.001 0.3851 0.1525 <0.001

HL-55 K417DRAFT 0.0458 0.0726 0.086 0.2774 0.2168 0.004

HL-58 CD01DRAFT 0.0761 0.1451 0.008 0.2974 0.969 0.004

HL-91 Ga0058931_11 0.0266 0.0213 0.313 0.3043 0.1416 0.011

HL-91 Ga0058931_12 ndb nd nd nd nd nd

HL-91 Ga0058931_13 nd nd nd nd nd nd

HL-91 Ga0058931_14 0.0557 0.0647 0.004 0.3614 0.2052 <0.001

HL-93 Ga0071314_11 0.0925 0.0738 0.993 0.2254 0.1595 0.062

HL-109 Ga0071312_11 0.0262 0.0401 0.396 0.3148 0.1842 0.087

HL-109 Ga0071312_12 0.0216 0.0281 0.076 0.2907 0.1913 0.231

HL-109 Ga0071312_13 0.0048 0.0019 0.538 0.3651 0.2299 0.016

HL-111 Ga0071316_11 0.0396 0.0561 0.322 0.4504 0.1640 <0.001

Notes:
a Bold text indicates significant result.
b Not determined because the entire molecule was missing from the reconstructed genome.
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To examine the impact of repeated sequences on genome reconstruction, we
determined the repetitiveness of sequence information across CRs and NRs, determined
from a self-vs-self similarity search, and compared those values to the genome average.
Correspondence of repeated regions and NRs was strong (Figs. 2 and 3; Fig. S4).
In HL-111, all NRs save one were present in at least two copies (Fig. 2). For all
reconstructions, save HL-46, the CRs had repeat content equal to or lower than the
genome average.

Another phenomenon that can affect contig coverage in metagenomic assembly is
multiple organisms sharing identical regions of DNA. Some regions are highly conserved
between related species, an example being the ribosomal RNA operon, which is known
to confound assemblers and segregation strategies (Ghurye, Cepeda-Espinoza & Pop,
2016). Alternatively, mobile elements such as plasmids or transposons can have a
broad host range and invade and inhabit closely or even distantly related organisms
(Frost et al., 2005). Such regions, even if not repeated within a genome, will exhibit
anomalous coverage and thus could be either excluded or mis-binned. We examined the
metagenomic read coverage depth to determine if NRs had anomalous profiles relative to
the whole genome and the CRs. For most reconstructions, the coverage of NRs differed

Figure 2 Analysis of HL-111 genome. Ring 1 (outermost, black), genome sequence; ring 2 (grey bars),
missed detection regions (MDRs); ring 3 (teal), tetranucleotide frequency (TNF) distance χ2 values; ring 4
(orange), %G+C; ring 5 (blue), intragenome redundancy; ring 6 (magenta), metagenome redundancy.
Values were calculated across 2,000 nt windows with a step size of 1,000 nt. For TNF, χ2 was calculated for
the windows using the whole molecule frequencies as the expected. Data for other genomes analyzed is
presented in Fig. S1. Circlular plots were generated using Circos v0.69.3 (Krzywinski et al., 2009).

Full-size DOI: 10.7717/peerj.10119/fig-2

Nelson et al. (2020), PeerJ, DOI 10.7717/peerj.10119 11/26

http://dx.doi.org/10.7717/peerj.10119/supp-4
http://dx.doi.org/10.7717/peerj.10119/supp-1
http://dx.doi.org/10.7717/peerj.10119/fig-2
http://dx.doi.org/10.7717/peerj.10119
https://peerj.com/


from the genome average and that of the CRs (Table 4; Fig. 2; Fig. S4). Only HL-46 and
one of the HL-109 molecules did not have significant differences. Most NRs displayed
higher or equivalent coverage values, however, several NRs in HL-48 and the two small
plasmids associated with HL-91 showed lower metagenomic coverage values (Fig. S4).
A likely explanation for this is the presence in the consortia of sub-populations of these
organisms that lack the plasmids.

Functional assessment of NR genes
To determine the extent to which regions missing from reconstructions might affect
downstream metabolic or functional analyses and predictions for organisms and

Figure 3 Repeat content of genomes vs MAGs. Box plot representation of the total fraction of each
genome/MAG in a repeat region as determined by NUCmer (≥97% identity; center line, median; box
limits, upper and lower quartiles; whiskers, 1.5× interquartile range; diamonds, outliers). UCC MAG and
genome comparison were significantly different (p = 0.01; Mann–Whitney U). Red asterisks denote the
existence of outliers outside of the displayed dataset. Full-size DOI: 10.7717/peerj.10119/fig-3
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communities, we examined the gene content of the NRs and the functional roles of those
genes. COG categorization was used as a basis for comparison because of its ability to
identify, in particular, genes associated with mobile elements such as plasmids, phage
and insertion sequences. In addition, we evaluated the distribution of non-coding RNA
genes since some are known to be repeated within genomes (multiple rRNA operons, for
example), and others (tRNAs) are commonly associated with mobile elements (Hacker &
Kaper, 2000).

For all the reconstructions, the gene content of the NRs differed from that of the CRs
and complete genomes. Functional analysis of gene sequences shows that this difference
was largely driven by genes encoding mobile element functions (COG category X) and
RNA genes (Fig. 4). The mobile element genes in the NR regions were predominantly
transposases with some contribution from bacteriophage and plasmid genes (HL-91;
HL-93). Most of the identified rRNA genes fell within NRs, with only HL-48 and HL-53
each having one rRNA contained in a CR. In addition, the NRs, including the two entire
plasmids from HL-91 which were not binned, contained a higher percentage of genes
that were not assigned to a COG category.

Evaluation of a complex metagenomic data set and common
automated binning tools
To verify that our conclusions of genome reconstruction bias in the highly curated UCC
data set were extendable to more complex data sets and for alternate, widely-used binning

Table 4 Genomic redundancy.

Molecule Genome CR NR

Mean Mean Distance p-value Mean Distance p-value

HL-46 EI34DRAFT_6181 2.76 2.78 0.26 ± 0.15 0.992 2.42 0.43 ± 0.31 0.264

HL-46 EI34DRAFT_7210 5.98 4.43 2.95 ± 2.34 0.978 4.99 4.01 ± 13.35 0.649

HL-48 CY41DRAFT 72.40 69.29 3.65 ± 2.45 1.000 140.93 100.97 ± 153.33 <0.001a

HL-49 K302DRAFT 8.97 8.67 0.51 ± 0.58 0.999 11.38 4.16 ± 17.52 0.002

HL-53 Ga0003345 441.81 446.29 24.51 ± 18.21 0.073 517.07 115.56 ± 59.71 <0.001

HL-55 K417DRAFT 16.76 15.35 7.06 ± 10.45 0.679 117.37 110.35 ± 333.81 <0.001

HL-58 CD01DRAFT 128.28 127.85 9.10 ± 15.71 1.000 180.14 60.44 ± 27.54 <0.001

HL-91 Ga0058931_11 231.39 228.46 3.64 ± 2.25 0.786 311.6 91.27 ± 97.44 0.001

HL-91 Ga0058931_12 163.24 ndb nd nd nd nd nd

HL-91 Ga0058931_13 168.27 nd nd nd nd nd nd

HL-91 Ga0058931_14 227.56 231.77 8.18 ± 6.59 0.220 273.03 97.82 ± 117.47 <0.001

HL-93 Ga0071314_11 50.87 50.03 4.04 ± 2.92 1.000 65.73 16.16 ± 35.87 <0.001

HL-109 Ga0071312_11 3103.11 3098.73 97.47 ± 72.15 0.748 3072.59 323.24 ± 240.86 0.005

HL-109 Ga0071312_12 2821.18 2822.26 113.08 ± 78.18 0.124 2778.03 352.81 ± 436.28 0.003

HL-109 Ga0071312_13 2853.84 2901.40 47.56 ± 9.73 0.179 2097.01 756.83 ± 256.91 0.018

HL-111 Ga0071316_11 90.14 88.03 3.98 ± 4.31 0.993 98.25 38.42 ± 104.87 0.027

Notes:
a Bold text indicates significant result.
b Not determined because the entire molecule was missing from the reconstructed genome.
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tools, we applied similar analyses to MAGs generated from the Tara Oceans metagenomic
data using distinct genome reconstruction protocols. For this comparison, 4,557 MAGs
generated from the Tara Oceans microbial metagenomic data reconstructed using
three complementary methods were collected and analyzed. Three different automated

Figure 4 Functional categorization of genes present on MDRs. The gene features of each genome
region were assigned to functional COG categories or as non-coding genes (rRNA; tRNA; ncRNA).
Organisms’ gene sets were compared using Principal Component Analysis. Organisms are represented by
colors (HL-46, yellow; HL-48, purple; HL-49, blue; HL-53, light blue; HL-55, gray; HL-58, orange; HL-91,
black; HL-93, pink; HL-109, red; HL-111, green). The genome region categories are represented by
shapes (whole isolate genomes, circles; CDRs, squares; MDRs, triangles; extrachromosomal elements,
diamonds). COG categories: A, RNA processing and modification; B, Chromatic structure and dynamics;
C, Energy production and conversion; D, Cell cycle control, cell division, chromosome partitioning;
E, Amino acid transport and metabolism; F, Nucleotide transport and metabolism; G, Carbohydrate
transport and metabolism; H, Coenzyme transport and metabolism; I, Lipid transport and metabolism;
J, Translation, ribosomal structure and biogenesis; K, Transcription; L, DNA replication, recombination
and repair; M, Cell wall/membrane/envelope biogenesis; N, Cell motility; O, Post-translational mod-
ification, protein turnover, chaperones; P, Inorganic ion transport and metabolism; Q, Secondary
metabolites biosynthesis, transport and catabolism; R, General function prediction; S, Function
unknown; T, Signal transduction mechanisms; U, Intracellular trafficking, secretion and vesicular
transport; V, Defense mechanisms; W, Extracellular structures; X, Mobilome, transposons, phages;
Y, Nuclear structure; Z, Cytoskeleton. Full-size DOI: 10.7717/peerj.10119/fig-4
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binning methodologies were employed to generate the MAG data set: MetaBat (v0.26.3)
(Parks et al., 2018; Kang et al., 2015), BinSanity (v1.0) (Tully, Graham & Heidelberg, 2018;
Graham, Heidelberg & Tully, 2017), and CONCOCT (with manual refinement in
anvi’o) (Eren et al., 2015; Delmont et al., 2018). All three automated binning algorithms
utilized read coverage and TNF to identify congruent contigs, with the intended role of
the algorithms to reconstruct high confidence environmental genomes while avoiding
over-binning (i.e., removing elements that deviate from the mean values of the binned
contigs). The MAGs had a mean estimated completeness and contamination of 76.6% and
2.2%, respectively, as determined by CheckM v.1.1.1 (Parks et al., 2015). In comparison,
1,736 “representative” and “reference” complete genomes were collected from NCBI
RefSeq.

Our results above predicted that the MAGs would have lower %G+C variance and TNF
variance than the isolate complete genome data set. For the observed %G+C, MAGs
tended to have lower variance (p < 0.001) than isolate genomes (Fig. 5A). The exception
was the Parks et al. (2018) MAGs, which had a much larger variance, even compared
to the RefSeq genome set (mean vs mean, p < 0.001). This may be the result of the
additional step applied to the MAGs by Parks et al. (2018), whereby related MAGs with

Figure 5 TaraOcean MAG nucleotide composition analysis. (A) %G+C variance analysis. Box plot representation of the %G+C variance for each
2,000 bp segment of genome/MAG (sliding window step: 500 bp; center line, median; box limits, upper and lower quartiles; whiskers, 1.5×
interquartile range; diamonds, outliers). Comparisons between Tara Oceans MAG datasets and RefSeq genomes were significantly different
(p < 0.001; Mann–Whitney U with Benjamini-Hochberg False Discovery Rate Correction (BH FDR)). (B) Tetranucleotide analysis. Box plot
representaiton of the variance in Pearson correlation values of the tetranucleotide Z-scores for a pair-wise comparison of each 10 kb segment of
genome/MAG (sliding window step: 5 kb; center line, median; box limits, upper and lower quartiles; whiskers 1.5� interquartile range; diamonds,
outliers). Comparisons between Tara Oceans MAG datasets and RefSeq genomes were significantly different (p < 0.001; Mann–Whitney U with BH
FDR Correction). Red asterisks denote the existence of outliers outside of the displayed range. Full-size DOI: 10.7717/peerj.10119/fig-5
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<3% mean %G+C difference were merged into a single representative MAG. For the
Tully, Graham & Heidelberg (2018) and Delmont et al. (2018) MAGs, the lower variance
observed compared to the RefSeq genomes is likely due to removal of contigs with deviant
%G+C values during binning. The MAGs also had lower variance with regards to TNF
compared to the RefSeq genomes (p < 0.001) (Fig. 5B), again, likely due to genomic
elements that deviated from the average value of the binned contigs having been removed
during the binning steps. These observations support our conclusions regarding genome
regions having divergent nucleotide composition being underrepresented in MAGs.

The Tara and NCBI Refseq data sets were then evaluated for repeat sequence content.
Each MAG and isolate genome was compared to itself using NUCmer to identify the
fraction of the genome composed of repeat regions (regions with�97% sequence identity).
MAGs universally had a smaller fraction of genomic information in repeat regions
compared to isolate genomes (p < 0.01; Fig. 6). The lack of repeat regions in MAGs is likely
the result of repeated regions having inflated or depressed read coverage values relative
to the mean of the genome, depending on the number of copies of the repeat region
present in the genome and how stable this number is across the population. Compared to

Figure 6 Tara Ocean MAG repeat content. Box plot representation of the total fraction of each gen-
ome/MAG in a repeat region as determined by NUCmer (≥97% identity; center line, median; box limits,
upper and lower quartiles; whiskers, 1.5× interquartile range; diamonds, outliers). Comparisons between
Tara Oceans MAG datasets and RefSeq genomes were significantly different (p < 0.001; Mann–Whitney
U with BH FDR Correction). Red asterisks denote the existence of outliers outside of the displayed
dataset. Full-size DOI: 10.7717/peerj.10119/fig-6
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the other TaraMAGs, the Tully, Graham & Heidelberg (2018)MAGs had a larger fraction
of redundant genomic elements. It is unclear what aspect of the assembly and binning
methodology has influenced these results. On average, the lengths of the repeat regions
from the Tully, Graham & Heidelberg (2018) MAGs are longer than the repeat regions in
the RefSeq genomes (mean: 1,052 bp vs 868 bp, respectively).

What’s missing from reconstructed genomes?
Analysis of regions that were not recovered from genome reconstruction (NRs) showed
both nucleotide compositional variance and intragenome repetitiveness. The %G+C
and tetranucleotide frequencies of NRs tended to differ from that of complete genomes
(Tables 2 and 3; Fig. 1), and the sequence coverage differed. This met expectations since, in
general, binning tools are designed around the assumption that sequences with similar
properties belong together, thus any genome region that varies significantly from the
genome average is likely to be incorrectly binned if it comprises the majority of a contig
under consideration. Regions with atypical nucleotide content have been observed to
contain genes upon which selective pressures are acting on nucleic acid structure, such as
ribosomal RNAs and tRNAs (Galtier & Lobry, 1997; Hurst & Merchant, 2001; Schattner,
2002), and exogenously introduced segments such as mobile elements (Daubin, Lerat &
Perriere, 2003; Garcia-Vallve, Romeu & Palau, 2000). It is significant that many of the
NRs displayed lower %G+C than the genome average, since it has been observed that
laterally acquired regions tend to have lower %G+C than their hosts (Daubin, Lerat &
Perriere, 2003), as phage and insertion sequences tend to have A+T-enriched genomes
(Rocha & Danchin, 2002). Notably, many genome regions with variant nucleotide
composition were incorporated into longer contigs by the assembler, masking the variance
and allowing correct binning. Conversely, the assembler collapsed repeated region
sequences into single contigs, and thus they were not binned due to the inflated sequence
coverage values. Often, repeated sequences displayed divergent nucleotide composition,
but the reciprocal was less frequent, indicating that repetitiveness is the stronger driver
of binning failure. These results demonstrate that assembly efficiency is an important
determining factor for correct binning, or conversely, any factor that results in shorter
assemblies will result in poorer recovery of anomalous regions. Thus, it is advisable
to include replication and positive controls in metagenomic sequencing protocols,
particularly for highly diverse communities such as soils and riverbed sediments, to allow
evaluation of assembly efficiency and accuracy.

Repeat regions identified in this study appeared to largely consist of insertion elements
based on functional analysis and their relatively short size (1–2 kb). Failure of these regions
to be correctly binned is unlikely to meaningfully affect functional predictions for a
reconstructed genome. Their presence in a genome is more likely to affect metabolic
reconstruction analysis by reducing assembly efficiency, resulting in more, shorter
contigs and increasing the chance that these shorter contigs are not binned or incorrectly
binned. Technological advances increasing read length beyond two kb will increase
contig lengths, binning accuracy, and the likelihood of yielding closed genomes from
environmental samples (White et al., 2016; Frank et al., 2016; Bertrand et al., 2019).

Nelson et al. (2020), PeerJ, DOI 10.7717/peerj.10119 17/26

http://dx.doi.org/10.7717/peerj.10119
https://peerj.com/


NRs were generally observed to be short, with a median length of less than five kb
(Table 1) and containing only a handful of genes. Thus, even a MAG with many gaps
(indicating a large number of NRs) may be missing only a small percentage of its genome.
The conserved single-copy gene (CSCG) estimations for completeness appear for all
intents and purposes to be a reasonable indication of how much information is absent
(Nelson et al., 2015). One caveat to this conclusion, however, is that extrachromosomal
elements, plasmids and phages (integrated or otherwise) typically do not carry CSCG
markers, and thus are essentially invisible in such analyses. The longer NRs observed in
our analysis appear to comprise integrated plasmids or phage, and thus any gap in a
reconstruction could represent up to 50 kb (or more) of genetic material. Importantly,
these represent introduced genetic material, which, while likely conveying a beneficial trait,
are unlikely to carry functions that are integral to host metabolic function.

CONCLUSIONS
This analysis indicates that reconstructed genomes estimated to be near-complete
can be assumed to contain nearly all genes important to metabolic reconstruction.
The majority of identifiable genes present on NRs appear to be either highly conserved,
non-coding genes that can be assumed to be present (such as the rRNA genes and
tRNA genes) or are associated with mobile genetic elements. While many of these genes
may be not be directly related to cellular metabolism (transposases, toxin/antitoxin
systems, phage and plasmid functions), it should be noted that entire extrachromosomal
elements may be missed by the binning process due to either alternate nucleotide
composition, a higher number of copies per cell than the genome, or occupancy in only a
subset of the population (such as the two molecules in HL-109). These elements frequently
carry genes that alter the physiology or resistance of the host organism. For example,
HL-109 and HL-111 have NRs that includes genes involved in glycan biosynthesis,
suggesting alterations to the cell wall, while HL-91 has picked up a multidrug efflux
transporter. As such, reconstructed genomes can be considered reliable foundations for
metabolic reconstruction but should not be assumed to be comprehensive for the function
of the organism.
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