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ABSTRACT
Background. Type 2 diabetes mellitus (T2DM) is a metabolic disease affecting a huge
population worldwide. Teucrium polium L. has been used as a folk medicine for the
treatment of T2DM in Anatolia, Turkey. The antihyperglycemic effect of the plant was
reported previously. However, there was no detailed study on the underlying molecular
mechanisms. In this study, we generated a research plan to clarify the active constituents
of the extract and uncover the molecular mechanisms using network pharmacology
analysis.
Methods. For this purpose, we composed a dataset of 126 compounds for the
phytochemical profile of the aerial parts of T. polium. Drug-likeness of the compounds
was evaluated, and 52 compounds were selected for further investigation. A total of 252
T2DM related targets hit by selected compounds were subjected to DAVID database.
Results. The KEGG pathway analysis showed enrichment for the TNF signaling
pathway, insulin resistance, the HIF-1 signaling pathway, apoptosis, the PI3K-AKT
signaling pathway, the FOXO signaling pathway, the insulin signaling pathway, and
type 2 diabetes mellitus which are related to T2DM . AKT1, IL6, STAT3, TP53, INS,
and VEGFA were found to be key targets in protein-protein interaction. Besides these
key targets, with this study the role of GSK3β, GLUT4, and PDX1 were also discussed
through literature and considered as important targets in the antidiabetic effect of T.
polium. Various compounds of T. polium were shown to interact with the key targets
activating PI3K-AKT and insulin signaling pathways.
Conclusions. According to these findings, mainly phenolic compounds were identified
as the active components and IRS1/PI3K/AKT signaling and insulin resistance were
identified as the main pathways regulated by T. polium. This study reveals the relation-
ship of the compounds in T. polium with the targets of T2DM in human. Our findings
suggested the use of T. polium as an effective herbal drug in the treatment of T2DM
and provides new insights for further research on the antidiabetic effect of T. polium.
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INTRODUCTION
Diabetes mellitus is a metabolic disease characterized by high blood glucose levels.
According to the reports ofWHO, about 422million people live with diabetes. Diabetes was
a direct cause of about 1.6 million deaths only in 2016. Among adults, 90% of the patients
have type 2 diabetes mellitus (T2DM) (Holman, Young & Gadsby, 2015). In T2DM, β-cell
dysfunction and/or insulin resistance results with hyperglycemia and high glucose levels in
blood. Patients with T2DM are under risk for some complications that diabetes can cause
such as cardiovascular disease, renal disease, diabetic retinopathy and neuropathy (Zheng,
Ley & Hu, 2018). In T2DM, multitarget treatment is used to overcome the defects caused
in the organism (He et al., 2019; Vuylsteke et al., 2015).

The genus Teucrium L., a member of Lamiaceae family (Subfamily Ajugoideaea),
has a cosmopolitan distribution and including about 250 species spread worldwide
(Stevens, 2017). In Turkey, Teucrium polium L. is known as ‘‘Acıyavşan’’ and used as
a traditional medicine for the treatment of diabetes (Arıtuluk & Ezer, 2012). In Algeria
and Iran, T. polium is used traditionally for the treatment of diabetes (Chinsembu,
2019; Rezaei et al., 2015). The infusion or decoction of aerial parts is used frequently
for the treatment of diabetes, stomachache, hemorrhoid, common colds, abdominal
pains, antipyretics, and sunstroke as internally (Tuzlacı, 2016). T. polium has been shown
to have mainly flavonoids, phenolic acids, phenylethanoid glycosides, and terpenoids
mainly diterpenoids (Bahramikia & Yazdanparast, 2012). Phytotherapeutic effects of
T. polium, such as antioxidant, antimutagenic, cytotoxic, anticancer, hepatoprotective, anti-
inflammatory, hypolipidemic, hypoglycemic, antinociceptive, antispasmodic, antiulcer,
antibacterial, antiviral, and antifungal activities have been shown by in vivo or in vitro
assays (Bahramikia & Yazdanparast, 2011; Hasani-Ranjbar et al., 2010).

The hypoglycemic effect of T. polium was shown by several reports (Esmaeili &
Yazdanparast, 2004; Gharaibeh, Elayan & Salhab, 1988; Shahraki et al., 2007; Yazdanparast,
Esmaeili & Helan, 2005). The hypoglycemic effect of T. polium was observed by Gharaibeh,
Elayan & Salhab (1988) for the first time. In the research, the decoction of aerial parts
was tested through three different administrations (oral, intraperitoneal, and intravenous)
in normoglycemic and streptozotocin-induced hyperglycemic rats. In all administration
ways of T. polium decoction, it had caused a decrease in blood glucose concentration. The
decoction of T. polium had a decrease of 20.5% in blood glucose concentration by oral
administration while intraperitoneal and intravenous administration of the decoction had
a decrease of 26.5% and 44%, respectively. The study has suggested that the hypoglycemic
effect of T. polium was a result of an increase in the peripheral utilization of glucose
(Gharaibeh, Elayan & Salhab, 1988). In another study, administration of ethanol-water
(7:3) extract of aerial parts of T. polium per six weeks, resulted in a decrease of 64% in blood
glucose levels of streptozotocin-induced hyperglycemic rats. The result of this study also had
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proved that T. polium extract reduced blood glucose concentration by increasing pancreatic
insulin secretion dose-dependently (Esmaeili & Yazdanparast, 2004). Although there are
reports about the hypoglycemic effect of T. polium, there is still a lack of information for
underlying mechanisms. In a recent study, to elucidate molecular mechanisms, effects of
T. polium extract on pancreatic islets cells regeneration was investigated. It was found that
the antidiabetic effect of T. polium was connected with the antioxidant defense system and
Pdx1 expression in the JNK pathway (Tabatabaie & Yazdanparast, 2017).

Plants have been used for the treatment of various diseases in folk medicine. These
herbal preparations consist of multiple compounds that target multiple proteins in an
organism. This suits well with the multicomponent-multitarget paradigm (Zhang et
al., 2019). Network pharmacology provides information to understand the underlying
mechanisms of therapeutic and adverse effects of these multicomponent therapeutics
(Hopkins, 2008; Keith, Borisy & Stockwell, 2005; Li & Zhang, 2013). Unlike the trend in
drug research studies held in the 20th century which aims for single components affecting
single targets, nowadays researchers focus on multicomponent therapeutics. Network
pharmacology is a rising trend in the 21st century, mainly after 2010 (Lu et al., 2019).
Network pharmacology studies revealed molecular mechanisms of several Traditional
Chinese Medicine (TCM) recipes in the treatment of complex diseases already (Chen et al.,
2019; Chen et al., 2018; Xiang et al., 2019).

In this study, the underlying mechanisms of T. polium in the treatment of diabetes were
aimed to be elucidated. For this purpose, firstly the phytochemical content of the plant was
screened through a detailed literature search. Compounds reported from T. polium were
selected based on their drug-likeness properties and screened for their potential targets
that play a role in the biological processes. Therapeutical targets of T2DM and targets of
the compounds were merged for further investigations. Protein-protein interaction (PPI)
network of common targets was constructed. Key targets were determined and the role of
targets in T2DM pathways was discussed.

MATERIALS & METHODS
Literature based search for phytochemical content of T. polium
Previous phytochemical studies on T. polium were reviewed and compounds that were
isolated or determined listed. Literature search was performed using ‘Scopus’ and ‘Web
of Science–Clarivate’ databases with the keyword ‘Teucrium polium’ upto June 2020. After
the review process, it was found that 126 compounds were reported from T. polium by
several reports. Due to their structure, compounds were listed under 3 groups (phenolics,
terpenoids and amino acid derivatives). All the compounds were converted to Canonical
SMILES format using PubChem (https://pubchem.ncbi.nlm.nih.gov/) or CS Chemdraw
Ultra.

Evaluation of drug likeness of the compounds
The absorption and permeation abilities of the compounds in the extract play a critical
role in the biological activity observed. In this study, Lipinski’s rule of five was used
to filter compounds which possess good absorption and permeation so that could be
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a new drug candidate. According to this criteria compounds which have; (i) molecular
weight (MW) greater than 500, (ii) the calculated logP value above 5, (iii) more than 5
hydrogen bond donors (HBD) and (iv) more than 10 hydrogen bond acceptors (HBA)
were filtered (Lipinski et al., 2001; Turner & Agatonovic-Kustrin, 2007). All 126 compounds
were subjected to SWISSADME to obtain data for pharmacokinetics and drug-likeness
(Daina, Michielin & Zoete, 2017). 52 compounds meet the Lipinski’s rule of 5′and further
used to construct ‘Compound-Target’ network. The detailed results for all the dataset of
126 compounds can be found in Table S1.

Construction of ‘Compound-Target’ network
In an herbal extract, each compound has an interaction with specific targets. The biological
effects of the extract are a result of these interactions. Targets of the selected 52 compounds
were searched through TCSMP (Traditional Chinese Medicine Systems Pharmacology
Database and Analysis Platform), and SYMMAP databases (Ru et al., 2014; Wu et al.,
2018). Compounds were also subjected to SwissTargetPrediction for target fishing (Daina,
Michielin & Zoete, 2019). During these screening, targets were limited for Homo sapiens.
To avoid confusion, targets obtained were screened for UniprotKB ID for their unique
identifiers (http://www.uniprot.org/) (UniProt Consortium, 2018). Duplicate targets for the
same compounds were removed and ‘Compound-Target’ network was obtained including
704 targets (Table S2). Cytoscape 3.8.0 was used for the visualization of the network
(Shannon et al., 2003).

Collection of T2DM targets and network construction
T2DM related genes were collected from DisGeNET (https://www.disgenet.org/). ‘Type
2 diabetes mellitus’ was used as a keyword. DisGeNET is a platform with collections of
genes associated with diseases (Bauer-Mehren et al., 2010). 1513 genes related to T2DM
were obtained. The data obtained were transferred to Cytoscape 3.8.0.

‘Compound-Target-Disease’ network and the ‘Protein-Protein
Interaction’ network construction
For further investigation, the intersection of ‘Compound-Target’ network and T2DM
related genes were set as ‘Compound-Target-Disease’ network. This network consisted
of 252 genes (Table S3). For an illustration of the roles of selected genes in biological
systems, the STRING database (http://string-db.org/, version 11) was used. STRING is a
database that helps understanding associations between expressed proteins in a cellular
function (Szklarczyk et al., 2018). Protein-protein interaction (PPI) map of 252 genes were
generated. The confidence score was set as high (> 0.7). The key targets were defined using
topological analysis. Topological network parameters cover some properties such as; degree
distributions, stress centrality, betweenness centrality, closeness centrality (Doncheva et al.,
2012). In this study, degree distributions were selected to identify key targets.

Gene enrichment analysis
DAVID Bioinformatics Resources 6.8 was used in gene enrichment analysis. DAVID
database integrates biological knowledge with analytical tools that provide bioinformatic
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annotations (Huang, Sherman & Lempicki, 2008; Huang, Sherman & Lempicki, 2009). The
252 genes which were common for compounds and disease were uploaded to DAVID
(https://david.ncifcrf.gov/). The results were listed based on their p values. Top 20 results
with lower p value were selected. The results of gene ontology (GO) function and (Kyoto
Encyclopedia of Genes andGenomes) KEGGpathway analysis were evaluated and discussed
(Ashburner et al., 2000; Gene Ontology Consortium, 2019; Mi et al., 2019).

Construction of ‘Compound-Target-Pathway’ network
‘Compound-Target-Disease’ network and selected KEGG pathways were intersected to
give ‘Compound-Target-Pathway’ network. Cytoscape was used for visualization.

RESULTS
Screening of chemical compounds in T. polium and selection for the
potential active compounds
Through a detailed literature search, 126 compounds were listed in the aerial parts of
T. polium (Table S4). Mainly phenolic compounds (flavonoids, phenylethanoid glycosides,
phenolic acids), terpenoids (secoiridoids, iridoids, sesquiterpenoids, diterpenoids,
triterpenoids) and amino acid derivatives (cyanogenic glycosides) were identified. Drug-
likeness of these compounds were scanned through Lipinski’s rule of 5 (the parameters of
the compounds were given in Table S1). 80 compounds that met the selected criteria were
searched for their potential targets using SYMMAP, TCMSP and Swiss Target Prediction
databases. The databases provided information for 52 compounds (Table 1).

Analysis of compound-target interactions and determination of the
common targets of T. polium and T2DM related genes
There is a total of 704 genes related to 52 compounds. The ‘Compound-Target’ network
consists of 756 nodes and 4023 edges. Quercetin, apigenin and luteolin were found to be
in relation with more targets than the other compounds (edge numbers were 254, 184
and 158 respectively). For further investigation, the common targets for T. polium and
T2DM were determined. Firstly, 1513 T2DM related genes were imported from DisGeNet.
All the targets were converted to Uniprot IDs to avoid confusion. The merge process
of compound-target network and disease-target network resulted in 252 common targets
(Fig. 1). These targets were selected for further investigation to understand the mechanisms
of T. polium in the treatment of T2DM.

Construction of PPI networks and determination of the key targets
To understand the metabolic processes, PPIs play a key role. It comprises a network
including direct and indirect interactions between proteins which give researchers new
insights in understanding biological phenomena (Ijaz, Ansari & Iqbal, 2018; Szklarczyk et
al., 2018). To clarify the key targets in the ‘Compound-Target-Disease’ network, the target
genes were subjected to STRING 11.0 using a confidence score of > 0.7 (high) to achieve
PPI network. The PPI network had 252 nodes and 1912 edges. According to topological
analysis, degree distributions were evaluated. Degree shows the interaction numbers of the
targets within the network. The nodes with a higher degree are referred to as a hub. The
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Table 1 The molecular formula and structures of the 52 compounds that used in network pharmacology analysis.

No Compound code Compound name Formula Structure

1 TP1 4′,7-dimethoxy apigenin C17H14O5

2 TP2 4′-O-methyl luteolin C16H12O6

3 TP3 6-hydroxy luteolin C15H10O7

4 TP4 Acacetin C16H12O5

5 TP5 Apigenin C15H10O5

6 TP6 Catechin C15H14O6

7 TP7 Cirsilineol C18H16O7

8 TP8 Cirsiliol C17H14O7

9 TP9 Cirsimaritin C17H14O6

10 TP10 Eupatorin C18H16O7

(continued on next page)
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Table 1 (continued)

No Compound code Compound name Formula Structure

11 TP11 Isoscutellarein C15H10O6

12 TP12 Jaceosidin C17H14O7

13 TP13 Luteolin C15H10O6

14 TP14 Quercetin C15H10O7

15 TP15 Caffeic acid C9H8O4

16 TP16 Gallic acid C7H6O5

17 TP17 p-Coumaric acid C9H8O3

18 TP18 t -Ferulic acid C10H10O4

19 TP19 Vanillic acid C8H8O4

20 TP20 2-(3,4-dihydroxyphenyl)ethanol C8H10O3

(continued on next page)
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Table 1 (continued)

No Compound code Compound name Formula Structure

21 TP21 Tyrosol C8H10O2

22 TP22 4α-[(β-D-glucopyranosyloxy)methyl]-5α-(2-
hydroxyethyl)-3-methylcyclopent-2-en-1-one

C15H24O8

23 TP23 5α-[2-(β-D-glucopyranosyloxy)ethyl]-4α-hydroxymethyl-
3-methylcyclopent-2-en-1-one

C15H24O8

24 TP24 20-O-acetyl-teucrasiatin C24H30O8

25 TP25 Capitatin C24H28O9

26 TP26 Clerodane-6,7-dione C22H24O8

27 TP27 Teubutilin A C22H28O6

28 TP28 Teupolin VII C20H26O5

29 TP29 Teupolin VIII C19H24O5

(continued on next page)
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Table 1 (continued)

No Compound code Compound name Formula Structure

30 TP30 (1R, 4S, 10R) 10,11-dimethyl-
dicyclohex-5(6)-en-1,4-diol-7-one

C12H18O3

31 TP31 (1R,6R,7R,8S,11R)-1,6-dihydroxy-4,11-dimethyl-
germacran-4(5), 10(14)-dien-8,12-olide

C15H22O4

32 TP32 (10R,1R,4S,5S,6R,7S)-4,10-die-poxygermacran-6-ol C15H26O3

33 TP33 Prunasin C14H17NO6

34 TP34 1α-hydroxy isoondetamnone C12H18O2

35 TP35 4β,5α-Epoxy-7αH-germacr-10(14)-en-6β-ol-1-one C15H24O3

36 TP36 4β,5α-Epoxy-7αH-germacr-10(14)-en,1β-
hydroperoxyl,6β-ol

C15H26O4

37 TP37 4β,5β-Epoxy-7αH-germacr-10(14)-en,1β-
hydroperoxyl,6β-ol

C15H26O4

38 TP38 4α,5β-epoxy-7αH-germacr-10(14)-en,1β-
hydroperoxyl,6α-ol

C15H26O4

(continued on next page)
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Table 1 (continued)

No Compound code Compound name Formula Structure

39 TP39 10α,1β;4β,5α-diepoxy-7αH-germacrm-6-ol C15H26O3

40 TP40 Teucladiol C15H26O2

41 TP41 4β,6β-dihydroxy-1α,5β(H)-guai-9-ene C15H26O2

42 TP42 Oplopanone C15H26O2

43 TP43 Oxyphyllenodiol A C14H22O3

44 TP44 Arteincultone C15H24O4

45 TP45 Ladanein C17H14O6

46 TP46 Salvigenin C18H16O6

47 TP47 5,3′,4′-trihydroxy-3,7-dimethoxyflavone C17H14O7

(continued on next page)
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Table 1 (continued)

No Compound code Compound name Formula Structure

48 TP48 Jaranol C17H14O6

49 TP49 β-eudesmol C15H26O

50 TP50 α-Cadinol C15H26O

51 TP51 7-epi-Eudesm-4(15)-ene-lβ,6α-diol C15H26O2

52 TP52 7-epi-Eudesm-4(15)-ene-lβ,6β-diol C15H26O2

Figure 1 The scheme for intersection of T. polium and type 2 diabetes mellitus (T2DM) targets.
Full-size DOI: 10.7717/peerj.10111/fig-1

hub plays a key role in the biological process as it is related with more targets. Two-fold of
the mean of the degree was selected as a threshold for the determination of key targets. 37
targets with a higher degree than 30.3 was thought to have a critical role for the mechanism
of action (AKT1, INS, VEGFA, IL6, TP53, STAT3, MAPK1, APP, TNF, MAPK8, CXCL8,
EGFR, PIK3CA, PIK3R1, SRC, MMP9, IL10, PTGS2, IL1B, CCL2, RELA, HRAS, GAPDH,
PTEN, IL2, IL4, MTOR, TLR4, CASP3, JAK2, ICAM1, ESR1, FGF2, CXCL10, PPARG,
MMP2, MAPK14). Acacetin (TP4), apigenin (TP5), jaceosidin (TP12), luteolin (TP13),
quercetin (TP14), and caffeic acid (TP15) showed higher interactions with the key targets
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Figure 2 ‘Compound-Key Target-Pathway’ network of T. polium. Pink nodes represent phenolic compounds, yellow nodes represent terpenoids
and purple node represent cyanogenic glycoside. Key targets are given in light blue nodes and pathways are given in dark blue nodes.

Full-size DOI: 10.7717/peerj.10111/fig-2

and might have a role in the antidiabetic effects of T. polium (Fig. 2). PPI network for key
targets had 37 nodes and 425 edges. Interleukin-6 (IL6), signal transducer and activator of
transcription 3 (STAT3), mitogen-activated protein kinase 1 (MAPK1), insulin (INS), and
vascular endothelial growth factor A (VEGFA) were the proteins with a higher number of
interactions (Fig. 3).

Gene enrichment analysis using DAVID database for GO and KEGG
252 common targets were subjected to DAVID database for gene enrichments. GO and
KEGGgene enrichment results were put in order according to their p values. GOenrichment
results were given in three parts; molecular, biological, and cellular. Top 20 results for each
analysis were plotted in a graph produced by Graphpad Prism 6 (Figs. 4 and 5).

The results for GO analysis were evaluated through related terms option of DAVID
database. According to biological process results; response to drug (GO:0042493), negative
regulation of apoptotic process (GO:0043066) and positive regulation of transcription
from RNA polymerase II promoter (GO:0045944) showed higher target numbers in count
(Fig. 4). Negative regulation of apoptotic process, inflammatory response (GO:0006954),
positive regulation of cell proliferation (GO:0008284), glucose homeostasis (GO:0042593)
and glucose transport (GO:0015758) were found to be related with at least one of the
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Figure 3 The PPI network of the 37 key targets obtained from STRING v11.
Full-size DOI: 10.7717/peerj.10111/fig-3

KEGG pathways such as PI3K-Akt signaling pathway (hsa04151), TNF signaling pathway
(hsa04668), insulin resistance (hsa04931), insulin signaling pathway (hsa04910), FoxO
signaling pathway (hsa04068), adipocytokine signaling pathway (hsa04920), AMPK
signaling pathway (hsa04152) and type 2 diabetes mellitus (hsa04930). Molecular
function results with higher target numbers were protein binding (GO:0005515), protein
homodimerization activity (GO:0042803), and identical protein binding (GO:0042802)
(Fig. 4). Kinase activity (GO:0016301) and insulin receptor substrate binding (GO:0043560)
were found to be related to at least one of the KEGG pathways such as insulin resistance,
insulin signaling pathway, FoxO signaling pathway, PI3K-Akt signaling pathway, and type
2 diabetes mellitus.

KEGG enrichment results supported these findings. Results of 252 common targets were
listed as (related with T2DM); TNF signaling pathway, insulin resistance, apoptosis, HIF-1
signaling pathway, PI3K-Akt signaling pathway, FoxO signaling pathway, insulin signaling
pathway and type 2 diabetes mellitus (Fig. 5). The top 20 results according to the p values
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Figure 4 GO gene enrichment analysis for 252 common targets (top 20 results according to the p
value).

Full-size DOI: 10.7717/peerj.10111/fig-4

suggested that, compounds reported from T. polium might also leads new insights for the
treatment of cancer (Table 2).

DISCUSSION
The potent hypoglycemic effect of T. polium extract has been reported by several
reports (Esmaeili & Yazdanparast, 2004; Gharaibeh, Elayan & Salhab, 1988; Tabatabaie
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Figure 5 KEGG pathway enrichment results for 252 candidate target genes (top 20 results according to
the p value).

Full-size DOI: 10.7717/peerj.10111/fig-5

& Yazdanparast, 2017; Yazdanparast, Esmaeili & Helan, 2005). According to the study
performed by Tabatabaie and Yazdanparast, T. polium extract lowered fasting blood
glucose levels closely to the control group. In addition to the hypoglycemic effect, T. polium
treated rats had lower triglyceride and cholesterol levels when compared with diabetic
rats (Tabatabaie & Yazdanparast, 2017). These experimental data show the potential of
T. polium as a promising herb in the treatment of T2DM.

According to the findings of this study, we are considering that T. polium show its
antidiabetic effect via enhancing β-cell number and function and exhibiting insulin-
like effect through PI3K-AKT pathway. Previous reports performed on the extract and
compounds of T. polium support our findings of the network pharmacology assisted
analysis. According to the KEGG enrichment results in our study, 18 key targets take part
in PI3K-AKT pathway and 11 key targets take part in insulin resistance pathway (Table 2).
For this view, it is essential to understand the roles of these pathways in T2DM.

T2DM is appeared owing to two fundamental defects that are insulin resistance and
impaired β-cell function which are caused by long-term hyperglycemia (Cheatham &
Kahn, 1995). Insulin resistance is characterized as reduced insulin sensitivity in the target
tissue (like skeletal muscle, liver, and adipose). It is connected with the pathogenesis of
metabolic diseases like obesity, type 2 diabetes, hypertension, cardiovascular diseases, and
fatty liver disease (Draznin, 2020).
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Table 2 KEGG pathway enrichment results for 252 common targets together with the key targets involved.

No Pathway name Key target Nodes

1 HIF-1 signaling pathway AKT1, RELA, EGFR, GAPDH, INS, IL6, MTOR, MAPK1,
PIK3CA, PIK3R1, STAT3, TLR4, VEGFA

13

2 Insulin resistance AKT1, RELA, INS, IL6, MTOR, MAPK8, PTEN, PIK3CA,
PIK3R1, STAT3, TNF

11

3 Chagas disease (American trypanosomiasis) AKT1, CCL2, CXCL8, RELA, IL1B, IL10, IL2, IL6, MAPK1,
MAPK14, MAPK8, PIK3CA, PIK3R1, TLR4, TNF

15

4 TNF signaling pathway AKT1, CCL2, CXCL10, RELA, CASP3, ICAM1, IL1B, IL6,
MMP9, MAPK1, MAPK14, MAPK8, PIK3CA, PIK3R1,
PTGS2, TNF

16

5 Hepatitis B AKT1, CXCL8, HRAS, RELA, SRC, CASP3, IL6, MMP9,
MAPK1, MAPK8, PTEN, PIK3CA, PIK3R1, STAT3, TLR4,
TNF, TP53

17

6 Proteoglycans in cancer AKT1, HRAS, SRC, CASP3, EGFR, ESR1, FGF2, MMP2,
MMP9, MTOR, MAPK1, MAPK14, PIK3CA, PIK3R1,
STAT3, TLR4, TNF, TP53, VEGFA

19

7 Pathways in cancer AKT1, CXCL8, HRAS, RELA, CASP3, EGFR, FGF2, IL6,
MMP2, MMP9, MTOR, MAPK1, MAPK8, PPARG, PTEN,
PIK3CA, PIK3R1, PTG2, STAT3, TP53, VEGFA

21

8 Apoptosis AKT1, RELA, CASP3, PIK3CA, PIK3R1, TNF, TP53 7
9 Prolactin signaling pathway AKT1, HRAS, JAK2, RELA, SRC, ESR1, INS, MAPK1,

MAPK14, MAPK8, PIK3CA, PIK3R1, STAT3
13

10 Pancreatic cancer AKT1, RELA, EGFR, MAPK1, MAPK8, PIK3CA, PIK3R1,
STAT3, TP53, VEGFA

10

11 PI3K-Akt signaling pathway AKT1, HRAS, JAK2, RELA, EGFR, EGFR, INS, IL2, IL4,
IL6, MTOR, MAPK1, PTEN, PIK3CA, PIK3R1, TLR4,
TP53, VEGFA

18

12 FoxO signaling pathway AKT1, HRAS, EGFR, INS, IL10, IL6, MAPK1, MAPK14,
MAPK8, PTEN, PIK3CA, PIK3R1, STAT3

13

13 Insulin signaling pathway AKT1, HRAS, INS, MTOR, MAPK1, MAPK8, PIK3CA,
PIK3R1

8

14 Central carbon metabolism in cancer AKT1, HRAS, EGFR, MTOR, MAPK1, PTEN, PIK3CA,
PIK3R1, TP53

9

15 Type II diabetes mellitus INS, MTOR, MAPK1, MAPK8, PIK3CA, PIK3R1, TNF 7
16 Glioma AKT1, HRAS, EGFR, MTOR, MAPK1, PTEN, PIK3CA,

PIK3R1, TP53
9

17 Prostate cancer AKT1, HRAS, RELA, EGFR, INS, MTOR, MAPK1, PTEN,
PIK3CA, PIK3R1, TP53

11

18 Toxoplasmosis AKT1, JAK2, RELA, CASP3, IL10, MAPK1, MAPK14,
MAPK8, STAT3, TLR4, TNF

11

19 Non-alcoholic fatty liver disease (NAFLD) AKT1, CXCL8, RELA, CASP3, INS, IL1B, IL6, MAPK8,
PIK3CA, PIK3R1, TNF

11

20 Measles AKT1, JAK2, RELA, IL1B, IL2, IL4, IL6, PIK3CA, PIK3R1,
STAT3, TLR4, TP53

12

INS, one of the hub genes in the PPI network in our study, regulates glucose metabolism
and ensure metabolic homeostasis. It also promotes glycogen synthesis, lipid metabolism,
protein synthesis and degradations, gene transcriptions, etc. (Cheatham & Kahn, 1995).
Additionally, it is an important regulator of pancreatic β-cells growth and proliferation
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through the phosphatidylinositol 3-kinase (PI3K)/AKT (also known as protein kinase
B-PKB) pathway (Fujimoto & Polonsky, 2009).

Insulin receptor activation through insulin binding stimulates PI3K-AKT signaling
pathway. AKT is determined as one of the key targets in our study and 4′-O-methyl
luteolin (TP2), 6-hydroxy luteolin (TP3), apigenin (TP5), isoscutellarein (TP11), jaceosidin
(TP12), luteolin (TP13), quercetin (TP14), 20-O-acetyl teucrasiatin (TP24), and capitatin
(TP25), 4β,5α-epoxy-7 αH-germacr-10(14)-en,1β-hydroperoxyl,6β-ol (TP36), 4α,5β-
epoxy-7αH-germacr-10(14)-en,1β-hydroperoxyl,6α-ol (TP38), 5,3′,4′- trihydroxy-3,7-
dimethoxyflavone (TP47), jaranol (TP48) showed interaction with the target AKT1 that
could have a role in the antidiabetic effect of T. polium (Fig. 2). AKT activation, promotes
cell survival, proliferation, and growth by controlling key signaling nodes such as glycogen
synthase kinase 3 (GSK3), Forkhead BoxO (FoxO) transcriptions factors, tuberous sclerosis
complex 2 (TSC2) and mechanistic target of rapamycin (mTOR) complex 1 (mTORC1)
(Manning & Toker, 2017).

In a previous study about molecular mechanisms of the effects of T. polium extract on
pancreatic β-cells regeneration, it was showed that c-jun N-terminal kinase (JNK) pathway
provoked with oxidative stress leads to the inactivation of pancreas/duodenum homeobox
protein 1 (PDX1) via FoxO1. In the same study, T. polium extract increased FoxO1
phosphorylation and, promoted the expression of PDX1 (Tabatabaie & Yazdanparast,
2017). Tyrosol (TP21), a polyphenol reported from T. polium, also was shown to inhibit
ER-stress induced β-cell apoptosis by JNK phosphorylation (Lee et al., 2016). JNK pathway
induces insulin receptor substrate 1 (IRS1) inhibition by causing serine phosphorylation
which is an important step in downstream of insulin receptor signaling. This impairs
the insulin signaling pathway by inhibiting IRS1-IRS2/PI3K-AKT pathway (Kaneto et al.,
2005). IRS1-IRS2/PI3K-AKT pathway inactivates FoxO1 which supports pancreatic β-cells
proliferation by enhancing PDX1 expression (Kitamura et al., 2002).

PDX1 has a very important role in pancreatic β-cell function and survival, is regulated
through FoxO1 and glycogen synthase kinase 3 beta (GSK3β) (Fujimoto & Polonsky, 2009).
In skeletal muscle, AKT inactivates GSK3β by phosphorylation that results in a reduction
in the phosphorylation of a few GSK3 substrates such as Glycogen Synthase (GS) (Hermida,
Dinesh Kumar & Leslie, 2017). In pancreatic β-cells of the islets, GSK3β inhibited by AKT,
does not phosphorylate PDX1. PDX1 is a critical regulator of pancreatic development
and activates glucose transporter 2 (GLUT2), INS, and glucokinase genes (Humphrey
et al., 2010). Thus, pharmacological inhibition of GSK3β could be substantial in type 2
diabetes treatment (Sacco et al., 2019). Even GSK3β has not been found as a key target in
our PPI network, a large group of compounds reported in T. polium interact with GSK3β,
listed as, 4′,7-dimethoxy apigenin (TP1), 4′-O-methyl luteolin (TP2), 6-hydroxy luteolin
(TP3), acacetin (TP4), apigenin (TP5), cirsilineol (TP7), cirsiliol (TP8), cirsimaritin (TP9),
eupatorin (TP10), isoscutellarein (TP11), jaceosidin (TP12), luteolin (TP13), quercetin
(TP14), 20-O-acetyl teucrasiatin (TP24), capitatin (TP25), clerodane-6,7-dione (TP26),
(1R,6R,7R,8S,11R)-1,6-dihydroxy-4,11-dimethyl-germacran-4(5), 10(14)-dien-8,12-olide
(TP31), prunasin (TP33), teucladiol (TP40), 4β,6β-dihydroxy-1α,5β(H)-guai-9-ene
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(TP41), oplopanone (TP42), ladanein (TP45), salvigenin (TP46), 5,3′,4′- trihydroxy-
3,7-dimethoxyflavone (TP47), jaranol (TP48) (Table S5). Both phenolic compounds,
terpenoids and a cyanogenic glycoside found to interact with GSK3β.

Furthermore, glucose transporter 4 (GLUT4) induction through insulin-stimulated
PI3K/AKT has an important role in whole-body glucose homeostasis by glucose intake
at adipose tissue, cardiomyocytes and skeletal muscle cells (Klip, McGraw & James, 2019).
Previous reports on flavonoids like apigenin (TP5), quercetin (TP14), kaempferol showed
enhancement in GLUT4 translocation (Alkhalidy et al., 2015; Hossain et al., 2014; Jiang et
al., 2019). According to the findings of our study, apigenin (TP5), luteolin (TP13), and
quercetin (TP14) showed interaction with the target GLUT4 (Table S5). By Kadan et al.
(2018), it was found that extract of T. polium increased translocation of GLUT4 in L6
muscle cells in the absence and presence of insulin when compared with the control. These
findings indicated that insulin-like activity of T. polium is a result of increase in GLUT4
translocation (Kadan et al., 2018). Quercetin (TP14) and gallic acid (TP16) increased
glucose uptake through IRS1/PI3K/AKT signaling (Gandhi et al., 2014; Jiang et al., 2019).
Furthermore, it was shown that gallic acid and p-coumaric acid (TP17) ameliorate insulin
shortage and insulin resistance (Abdel-Moneim et al., 2018). A previous study on rats
showed that vanillic acid (TP19) upregulates hepatic insulin signaling, insulin receptor,
phosphatidylinositol-3 kinase, glucose transporter 2, and phosphorylated acetyl CoA
carboxylase expression (Chang et al., 2015). Kaempferol treatment also showed to improve
β-cell mass in diabetic mice (Alkhalidy et al., 2015). Similarly, cirsimaritin (TP9) suppresses
apoptosis in β-cells (Lee et al., 2017).

IL6, another hub gene in the PPI network in this study, is a proinflammatory cytokine
that has a complex role in T2DM. In this study, luteolin (TP13), quercetin (TP14) and
teupolin VIII (TP29) showed interaction with the target IL6 (Table S5). Several studies
showed that chronic inflammation plays a role in T2DM (Lehrskov & Christensen, 2019).
Studies on the patients with T2DM showed an increase in IL6 levels in the plasma (Akbari
& Hassan-Zadeh, 2018). The biological role of IL6 depends on the signaling pathway
(Akbari & Hassan-Zadeh, 2018). Although there are different opinions on the effects of
IL6 in T2DM, recent studies showed that the absence of IL6 resulted in hyperglycemia
and higher fat levels in people with obesity (Kurauti et al., 2017; Lehrskov & Christensen,
2019). However, IL6 also increases the expression of insulin degrading enzyme which is
important in glucose metabolism. This enzyme also degrades amyloid β. For this view,
IL6 is an important cytokine both in two closely related diseases Alzheimer’s disease and
T2DM (Kurauti et al., 2017). STAT3 activation also negatively regulates another common
target GSK3β of Alzheimer’s disease and T2DM (Moh et al., 2008). STAT3 has a role in
cell differentiation in various systems including immune and endocrine systems. However
recent studies showed that STAT3 suppression together with Pdx1 expression increased the
number of β-cells (Miura et al., 2018). Caffeic acid (TP15), t -ferulic acid (TP18), 4α-[(β-D-
glucopyranosyloxy)methyl]-5α-(2-hydroxyethyl)-3-methylcyclopent-2-en-1-one (TP22),
5α-[2-(β-D-glucopyranosyloxy)ethyl]-4α-hydroxymethyl-3-methylcyclopent-2-en-1-one
(TP23), and teupolin VIII (TP29) showed interaction with the target STAT3 (Table S5).
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VEGFA is a growth factor that has an important role in angiogenesis, vasculogenesis and
endothelial cell growth. Apigenin (TP5), luteolin (TP13), quercetin (TP14) and prunasin
(TP33) showed interaction with the target VEGFA (Table S5). Hyperglycemic situations
result in overexpression of VEGFA which is a critical factor in diabetic complications such
as diabetic retinopathy (Caldwelll et al., 2003).

CONCLUSIONS
In the last decade, network pharmacology driven omics methods play an important role
to understand the role of the herbal prescriptions used as a folk medicine in various
diseases. In this study, molecular mechanisms of T. polium in the treatment of T2DM
were evaluated with the help of bioinformatics. Though there were studies on T. polium
extract’s antihyperglycemic effect via in vitro and in vivo assays, the underlying molecular
mechanisms has not totally determined yet. We constructed a comprehensive dataset of
compounds reported in T. polium. 126 compounds previously isolated or determined from
the aerial parts of the plant were listed through a detailed literature search. In this view,
this study serves the most detailed data on the content of the phytochemical profile of
T. polium so far.

In the present network pharmacological analysis, insulin resistance and PI3K-AKT
signaling pathway were shown to take place in the center of the mechanism of action of
T. polium. T. polium is an insulin-sensitizing plant. Even though insulin resistance has
an important role in the pathophysiology of T2DM, insulin resistance does not result in
T2DM in all cases. It turns to T2DM with a loss in β-cell mass in pancreatic islets. The
results of the present network pharmacology studies taken together with the previously
reported data, suggested that T. polium could be a promising herb for the treatment of
T2DM through ameliorating insulin resistance and enhancing β-cell mass.
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