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ABSTRACT

Venenum Bufonis (VB), also called Chan Su in China, has been extensively used as
a traditional Chinese medicine (TCM) for treating heart failure (HF) since ancient
time. However, the active components and the potential anti-HF mechanism of VB
remain unclear. In the current study, the major absorbed components and metabolites
of VB after oral administration in rats were first collected from literatures. A total
of 17 prototypes and 25 metabolites were gathered. Next, a feasible network-based
pharmacological approach was developed and employed to explore the therapeutic

Submitted 26 May 2020 mechanism of VB on HF based on the collected constituents. In total, 158 main targets
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Guohua Y. 202002016@bucm.edu.cn hubs were found to be highly enriched in adrenergic signalling in cardio-myocytes.

After verified by molecular docking studies, four key targets (ATP1A1, GNAS, MAPK1
and PRKCA) and three potential active leading compounds (bufotalin, cinobufaginol

3 _ and 19-oxo-bufalin) were identified, which may play critical roles in cardiac muscle
g:g:g?:t?érlgf?:g:aggpoizg on contraction. This study demonstrated that the integrated strategy based on network
page 12 pharmacology and molecular docking was helpful to uncover the synergistic mechanism
of multiple constituents in TCM.
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INTRODUCTION

Heart failure (HF), a multifactorial degenerative disease, occurs when the heart is not able
to pump blood efficiently to satisfy the oxygen and nutritional needs of the body (Asarno
et al., 2019). HF affects over 26 million people worldwide and continues to represent

a major burden for public health due to its high mortality, morbidity and healthcare
expenses (Di Palo ¢ Barone, 2020; Lother ¢ Hein, 2016). The incidence rate of HF rises in
magnitude with age and the major etiologies were coronary heart disease, abnormal heart
valves and hypertension (Akkineni et al., 2019). Western medicines, such as angiotensin
converting enzyme (ACE) inhibitors, diuretics, f-adrenergic blockers, angiotensin receptor
I antagonists and positive inotropic agents, are currently the main treatment programs for
HF (Xu et al., 2020; Yang et al., 2020a; Yang et al., 2020b). However, long-term use of these
chemical drugs will lead to a series of adverse reactions like electrolyte depletion, fluid
depletion, and hypotension (Jia et al., 2020). Therefore, novel alternative or synergetic
anti-HF therapies are greatly needed.

Venenum Bufonis (VB) is the dried white secretion of the auricular and skin glands
of Bufo bufo gargarizans Cantor or Bufo melanostictus Schneider (He et al., 2019; Yun et
al., 2009). As a precious traditional Chinese medicine (TCM), VB has long been used for
treating heart failure, arrhythmia, swells, sore throat, pains, cancers and many other diseases
(Liang et al., 2008; Pan et al., 2020). Extensive natural product studies have indicated that
VB contains a high level of bufadienolides and many other constituents like alkaloids,
cyclic amides, sterols, polypeptides, proteins, polysaccharides, and organic acids (Wei et
al., 2019). Modern pharmacological studies have confirmed that VB exhibited a variety
of pharmacological effects, including cardiotonic, antinociceptive, anti-tumor, anesthetic,
anti-inflammatory as well as antimicrobial properties (Wei et al., 2020). Importantly, it is
evident that VB exerts a strong cardiac excitatory effect like that of digitalis, and the drug
possesses many advantages such as no accumulation, quick-acting and diuretic action (Wei
et al., 2019). According to the Chinese Pharmacopoeia (2015 edition), VB is contained
in many TCM prescriptions for the treatment of HD, such as Jiuxin Pill and Shexiang
Baoxin Pill (Chinese Pharmacopoeia Commission, 2015). Although well-practiced in clinical
medicine, the holistic pharmacological mechanisms of VB on HF are largely unknown.

As an emerging field of pharmacology, network pharmacology delivers a systematic
and holistic understanding of drug action and disease complexity, which shares key ideas
with the integrality and systematicness of TCM theory (Luo et al., 2020; Zhang et al., 2020).
An increasing body of evidence suggests that network pharmacology is a powerful tool
to illuminate the integration synergistic mechanism of action of TCM from the multi-
dimensional perspective (Chen et al., 2019; Miao et al., 2019). For example, the bioactive
candidates and underlying mechanisms of Cichorium glandulosum for ameliorating type 2
diabetes mellitus was successfully elucidated using “compound-target” network analysis
(Qin et al., 2019). The action mechanism of Carthamus tinctorius L. on cardiovascular
disease was also elaborated based on the “compound-protein/gene-disease” network (Vi et
al., 2019). However, due to the limitation of this method, many previous researches usually
collected TCM components from related TCM databases to establish the compound—target
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map. The candidate compounds might not be in line with the components actually delivered
into the blood circulatory system, which unavoidably produced unreal results (Ding et al.,
2019; Zhang et al., 2018).

In this study, first the in vivo ingredients of VB after oral administration in rats were
taken from the literature. Second, the VB- and HF-associated targets were predicted. Third,
network construction and pathway enrichment analysis were used to explore the active
components and the potential targets relevant to the treatment of HF with VB. Finally,
molecular docking was performed to confirm the specific interactions between VB and
the candidate targets. The above study not only provides a comprehensive understanding
about the molecular mechanism of VB acting on HF, but also offers a rapid and effective
strategy for screening desired compounds from TCM. The flowchart was illustrated in
Fig. 1.

MATERIALS AND METHODS

In vivo constituents of VB

A total of 42 in vivo constituents of VB have been reported, including 17 prototypes
and 25 metabolites (He et al., 2012; Liang et al., 2008; Miyashiro, Nishio & Shimada, 2008;
Ning et al., 2010; Tao et al., 2017; Xia et al., 2010; Xin et al., 2016; Zhu et al., 2013). The
molecular 2D files of these constituents were downloaded from the ChemSpider database
(http://www.chemspider.com/) and were saved in mol format (step 1 in Fig. S1). The
details were listed in Table S1.

The prediction of VB-related targets

The predicted proteins targeted by the in vivo constituents of VB were screened from
MedChem Studio (MedChem Studio, 3.0; Simulations Plus, Inc, Lancaster, CA, USA,
2012). This software could efficiently capture the FDA-approved drugs that have similar
chemical structures to the components in TCM (Yu ef al., 2016). We picked out VB
compound-drug pairs with high confidence scores (>0.6) and considered the target
proteins of the known drugs as the VB-related targets. Other parameters were set as the
default values (step 1 in Fig. S1).

Known therapeutic targets for HF

In this study, two databases were employed in acquiring pathological targets for HF, by use
of “heart failure” as the query. One was the DrugBank database (http://www.drugbank.ca/,
version 5.1.1), which could provide detailed information on the drug targets and their
links with human diseases (Griesenauer, Schillebeeckx ¢ Kinch, 2019). Only drug—target
interactions for FDA-approved anti-HF drugs and potential human protein targets
associated with HF were selected for further analysis. The second platform was the Online
Mendelian Inheritance in Man (OMIM) database (http://www.omim.org/, updated on
May 4, 2018), a constantly updated database of human genetic diseases and genes (step 1
in Fig. S1) (Hamosh et al., 2005).
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Figure 1 Workflow of network pharmacology and molecular docking approaches to reveal the active
components and molecular mechanisms of VB acting on HF.

Full-size Gal DOTI: 10.7717/peer;j.10107/fig-1

Protein—protein interaction (PPI) data

The PPI information related to the putative targets of VB constituents and known
therapeutic targets for HF was harvested by use of STRING (Search Tool for the Retrieval of
Interacting Genes/Proteins) database (http://string-db.org/). This database could provide
a global perspective of proteins and their functional interactions and associations (Jernsen
et al., 2009). Results were limited to “Homo sapiens” and protein interactions with a
confidence score greater than or equal to 0.4 would be selected. Other parameters were set
as the default values (step 2 in Fig. S1).
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Network construction and analysis

In order to illustrate the interaction among the ingredients, targets and diseases, a
“ingredient—target—disease” network was built by introducing the information of candidate
compounds of VB, putative targets of VB and HF-associated targets into Cytoscape software
(version 3.6.0, Boston, MA, USA). This software is an efficient open source bioinformatics
tool for visualizing and analysing the complex biological networks (Shannon et al., 2003).
Three important topological characteristics (“degree”, “betweenness”, and “closeness”),
which have been described in our previous publication (Yu et al., 2018), were calculated to
assess the central attribute of each hub node in the network by use of the Cytoscape plugin
“Network Analyzer”. And “degree” > median degree centrality, “betweenness” > median
betweenness centrality and “closeness” > median closeness centrality were adopted as the
screening criteria to acquire the critical targets (Luo et al., 2020). Other parameters were
set as the default values (step 2 in Fig. S1).

Pathway enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis and Gene Ontology
(GO) enrichment analysis were undertaken to explore the potential functions of the
pivotal target proteins involved in the VB-mediated treatment of Hf (Nguyen et al., 2019a;
Nguyen et al., 2019b), by use of the Database for Annotation, Visualization and Integrated
Discovery (DAVID) system (http://david.abcc.nciferf.gov/home.jsp/, v6.8) (Dennis Jr et al.,
2003). Relevant pathways with the false discovery rate (FDR)-corrected P-value < 0.05
were considered statistically significant. Other parameters were set as the default values
(step 3 in Fig. S1).

Molecular docking simulation

Molecular docking studies were conducted to further verify the reliability of the potential
targets using CDOCKER module implemented in Discovery Studio 2016 (DS 2016).
CDOCKER is a semi-flexible molecular docking analysis method based on the CHARMm
force field, which can produce high-precision docking results, and it provides information
on the interaction binding energy and ligand-receptor docking mode. The three-
dimensional (3D) structures of the candidate compounds were generated using Chem3D
Pro 12.0 and the crystallographic structures of the proteins encoded by the candidate target
genes were obtained from the PDB database (http://www.rcsb.org/pdb/home/home.do),
which was then decorated by removing the ligands, adding hydrogen, removing water,
optimizing and patching amino acids. The binding site was defined by the ligand atoms,
and the radius range was automatically generated. After each compound was docked,
the 10 best conformations were obtained (Yang, 2020). Finally, CDOCKER interaction
energies (CIEs) were used to assess the binding affinities between the core targets and the
corresponding compounds. And the conformation corresponding to the lowest CIE was
selected as the most probable binding conformation. All parameters used in calculation
were default except for explained (step 4 in Fig. S1).
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RESULTS AND DISCUSSION

Putative targets for VB

As shown in Table 52, a total of 260 potential targets of the in vivo components of VB were
obtained by MedChem Studio. The results showed that the candidate compounds could
act on multiple targets, and one target could also be linked to multiple components.

Known therapeutic targets for HF

We collected 109 and 199 HF-related targets from DrugBank database and OMIM database,
respectively. We then checked the data and eliminate redundant entries, leaving a final
dataset of 292 targets associated with HF (Table 53). Among them, 22 targets were both the
VB- and HF-related targets, including NR112, MT-CO1, CA2, NR3C1, SHBG, ATP1Al,
CYP17A1, PGR, NR3C2, MME, AR, ACE, PRKCA, CYP11B2, RXRA, PPARG, PIK3CG,
PPARD, PDE4B, KCNMA1, MED1 and HIF1A.

Network and pathway analysis

To facilitate scientific interpretation of the complex relationships between VB and HF, a
“chemical target-disease associated gene” network, comprising the VB-related targets and
the HF-related targets, was constructed based on the PPI data from STRING database.
As listed in Table 54, this network was composed of 461 nodes and 5009 edges. After
computing the values of the topological features of all hubs, 158 major hubs were identified
because they satisfied the criteria (degree cutoff = 19, betweenness cutoff = 0.001659,
and closeness cutoff = 0.381426). Among them, 93 hubs were VB-related targets, 65 hubs
were HF-related targets. These major hubs may play a critical role in the entire interaction
network. The specific information about the major hubs was shown in Table S5.

Potential mechanisms of VB in treating HF

To elucidate the biological process (BP), molecular function (MF), cellular components
(CC) of these major hubs involved in, GO enrichment analysis was conducted on the major
hubs. As shown in Figs. 2A-2C, the top 10 significant GO entries (P < 0.05) were selected
on the basis of P value.

To deeply determine the function and systemic association of the main hubs, KEGG
pathway enrichment analysis were conducted. The results indicated that these hubs
were enriched in 101 significant pathways (P < 0.05). As shown in Fig. 2D, the top 11
pathways were considered as the main biological processes involved in the treatment. To
further identify the functional mechanisms of VB on HF, the candidate compounds-main
VB-related targets-main pathways network diagram was generated and elucidated in Fig. 3.
The hubs can be mainly divided into the following three functional modules (circles):
signal transduction (including adrenergic signalling in cardio-myocytes, calcium signalling
pathway, cAMP signalling pathway, dilated cardiomyopathy, long-term potentiation
and cGMP-PKG signalling pathway), cardiovascular system (including cardiac muscle
contraction, vascular smooth muscle contraction and hypertrophic cardiomyopathy),
and neural regulation (including dopaminergic synapse and circadian entrainment).
Interestingly, adrenergic signalling in cardio-myocytes was highly enriched in KEGG
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Figure 2 GO term performance and pathway enrichment analysis of the major hubs. (A) GO: BP; (B)
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Full-size Gl DOI: 10.7717/peerj.10107/fig-2

pathway analysis, which played a critical role in the regulation of cardiac muscle contraction
(the top-ranked GO: Biological Process terms), suggesting that VB may impart therapeutic
effects on HF majorly through adrenergic signalling in cardio-myocytes.

As shown in Table S6, the VB putative targets associated with adrenergic signalling in
cardio-myocytes include guanine nucleotide-binding protein G(s) subunit alpha (GNAS),
adenylate cyclase 2 (ADCY2), ADCY5, protein phosphatase 1 catalytic subunit gamma
(PPP1CC), protein phosphatase 2 catalytic subunit alpha (PPP2CA), protein phosphatase
2 catalytic subunit beta (PPP2CB), calcium voltage-gated channel subunit alphal C
(CACNAIC), CACNAILD, ATPase Nat/K* transporting subunit alpha 1 (ATP1A1),
mitogen-activated protein kinase 1 (MAPK1), protein kinase C alpha (PKCew, encoded by
PRKCA). Figure 4 depicts a graphical overview of adrenergic signalling in cardio-myocytes
influenced by main putative targets of VB components.

Molecular docking

Table 1 displayed the CIEs (top 5 for each target) of VB hit constituents against the active
sites of the screened targets in adrenergic signalling, including ATP1A1, GNAS, ADCY2,
ADCYS5, PPP1CC, PPP2CA, PPP2CB, CACNAIC, CACNA1D, MAPK1 and PRKCA.
The results indicated that the VB-related components had been docked successfully with
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Table 1 Molecular docking results (top five for each target).

Targets Compound -CIE (kcal/mol)
ATPI1A1 Bufotalin 49.0335
Cinobufotalin 46.109
Cinobufagin 45.1269
Cinobufaginol 44.0494
58, 6c-dihydroxybufalin 43.3908
GNAS Cinobufaginol 55.2668
6c-hydroxybufalin 53.1182
19-oxo-desacetylcinobufagin 52.2151
1,5-dihydroxyldesacetylcinobufagin 49.9538
1,128-dihydroxycinobufagin 49.4652
MAPK1 Cinobufaginol 55.1432
Cinobufagin 54.0654
Bufotalin 53.1891
1,5-dihydroxyldesacetylcinobufagin 51.5985
12-hydroxyl-cinobufagin 51.2183
PRKCA 19-oxo-bufalin 42.0454
Marinobufagin 39.3428
Hellebrigenin 38.6171
58, 6c-dihydroxybufalin 37.9654
Resibufogenin 37.8932

ATP1A1, GNAS, MAPK1 and PRKCA, which may be the key targets involved in VB for
the treatment of HF. Herein, we selected four representative pairs of binding interactions
to illustrate how the four targets bound to their corresponding components (Fig. 5). The
interplay between ATP1A1 and bufotalin was depicted in Figs. 5A and 5B. The hydroxyl
groups on bufotalin could form three hydrogen bonds with SER209, ARG191 and VAL712.
Another key residue which involved in interaction was MET157. The binding mode of
GNAS and cinobufaginol was depicted in Figs. 5C and 5D. The hydroxyl groups could
bind with LEU171, MET255, ASN254 and LYS300 by forming hydrogen bonds. The
carbonyl on the lactone ring could also form hydrogen bond with LYS305. In addition, the
lactone ring could bind with GLU164 and LYS305 via pi-anion and pi-cation interactions.
Other interactions including alkyl and pi-alkyl were connected with ALA303, TYR163
and LEU296. The action mode of MAPKI1 and cinobufaginol was depicted in Figs. 5E
and 5F. Cinobufaginol could form five hydrogen bonds with LYS112, LYS52 and TYR34.
In addition, the lactone ring could bind with ASP109 via pi-anion interaction. Other
interactions including alkyl and pi-alkyl were connected with VAL37. The interplay
between PRKCA and 19-oxo-bufalin was depicted in Figs. 5G and 5H. The hydroxyl
groups of 19-oxo-bufalin could form two hydrogen bonds with PRO202 and LYS230.
Another key residue which involved in interaction was LEU200.
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IDchimeric 3N23). (C) Schematic (3D) representation and (D) Schematic (2D) representation of the
interplay between cinobufaginol and GNAS (PDB IDchimeric 3C14). (E) Schematic (3D) representation
and (F) Schematic (2D) representation of the interplay between cinobufaginol and MAPK1 (PDB
IDchimeric 3071). (G) Schematic (3D) representation and (H) Schematic (2D) representation of the
interplay between 19-oxo-bufalin and PRKCA (PDB IDchimeric 4DNL). Active site amino acid residues
were represented as tubes, while the compounds were shown as a stick model with purple color.
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DISCUSSION

Many pathways are involved in adrenergic signalling for the regulation of cardiac contractile
function. Among them, the best described is the mechanism mediated by B-adrenergic
receptor (B-AR)-Gs—adenylate cyclase (AC) pathway (Baker, 2014). Activation of B-AR—
Gs—AC plays an important role in increasing heart rate and force of myocardial contraction
(Chen et al., 20205 Santulli & Iaccarino, 2016). According to our predicted results, VB could
regulate B-AR-Gs—AC pathway by targeting Gs (GNAS) and AC (ADCY2 and ADCY5).
The regulation of Ca** homeostasis is also important for the cardio-myocyte excitation
and cardiac electrical activity (Arakelyan et al., 2007). According to our predicted results,
VB could regulate by targeting PP1 (PPP1CC), PP2A (PPP2CA, PPP2CB), and LTCC
(CACNAIC, CACNA1D). Nat/K*-ATPase, a ubiquitous membrane protein composed
of two subunits denoted as « and g, is also a critical regulator in maintaining the balance
of Ca’" in cardio-myocytes (Orlov et al., 2020 Seflovd et al., 2017). An increasing body
of evidence suggests that bufadienolides in VB possess inhibition effects on Nat/K*-
ATPase (Orlov et al., 20205 Sousa et al., 2017), such as bufalin (Lan et al., 2018; Laursen

et al., 2015), cinobufagin (Wang, Sun ¢ Heinbockel, 2014), marinobufagenin (Strauss et
al., 2019), arenobufagin (Cruz Jdos ¢ Matsuda, 1993), and hellebrigenin (Moreno et al.,
2013). Therefore, the cardiotonic effect of VB may be mainly through the suppression of
Na™/K*-ATPase. Inhibition of the Ca?*/PKC a/ERK1/2 signal pathway plays a significant
role in attenuating the progression of heart failure (Braz et al., 2004; Molkentin ¢ Robbins,
2009). Several components from VB have been reported to inhibit the activity PKCa and
ERK, such as bufalin (Wu er al., 2015), marinobufagin (Bagrov et al., 2000; Fedorova et al.,
2003) and cinobufagin (Baek et al., 2015).

Based on the data analysis above, the bufadienolides may be the main active components
in VB, which exert anti-HF effects via synergistically acting on multiple targets in multiple
pathways. Among them, the positive inotropic effect of VB produced through the inhibition
of Nat/K T-ATPase has been demonstrated in many basic researches and clinical practices.
The molecular docking results indicated that the representative compounds could connect
with the active-site residues via various noncovalent interactions, including the hydrogen
bonding, pi-alkyl, pi-anion and pi-cation, etc, which was valuable for understanding of the
action mechanisms of VB. In addition, according to -CIE values, bufotalin, cinobufaginol
and 19-oxo-bufalin showed the best performance and thus were considered as the potential
active leading compounds of the corresponding targets. Further researches on other
potential targets or pathways are required to validate the predicted results.

CONCLUSION

In summary, the active components of VB and their synergistic mechanisms for alleviating
HF were successfully unveiled by network pharmacology coupled with molecular docking
approach. The adrenergic signaling involved in cardiac muscle contraction process was
found to be mainly responsible for the anti-HF effect of VB in silico. Four core targets
and their corresponding leading compounds were identified, which may provide valuable
information for further experimental validations and drug discovery.
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