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Surface air temperature (Ta) required for real-time environmental modelling applications
should be spatially quantified to capture the nuances of local-scale climates. This study
created near real-time air temperature maps at a high spatial resolution across Australia.
This mapping is achieved using the thin plate spline (TPS) interpolation with the help of a
digital elevation model and assimilation of 534 telemetered Australian Bureau of
Meteorology (BoM) automatic weather station (AWS) sites. The interpolation was assessed
using cross-validation analysis in a 1-year period using 30-minute interval observation.
This was then applied to an operational real-time mapping of Ta to produce real-time maps
at sub-hourly interval via a fully automated mapping system - using the R programming
language. The cross-validation analysis revealed root-mean-square errors of 1.6°C, 1.55°C,
1.7°C and 1.74°C for summer, autumn, winter and spring, respectively. On an hourly basis,
errors tended to be highest during the late afternoons in spring and summer from 3 pm to
6 pm (AEST), particularly for the coastal areas of Western Australia. The mapping system
was capable of regularly providing spatial outputs within 28-minutes of AWS site
observations being recorded and had a high degree of temporal reliability. All outputs were
displayed in a web mapping application to exemplify a real-time application of the outputs.
This study found that the methods employed would be highly suited for similar applications
requiring real-time processing and delivery of climate data at high spatiotemporal
resolutions across a considerably large land mass.
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14 Abstract

15 Surface air temperature (Ta) required for real-time environmental modelling applications should 

16 be spatially quantified to capture the nuances of local-scale climates. This study created near 

17 real-time air temperature maps at a high spatial resolution across Australia. This mapping is 

18 achieved using the thin plate spline (TPS) interpolation with the help of a digital elevation model 

19 and assimilation of 534 telemetered Australian Bureau of Meteorology (BoM) automatic weather 

20 station (AWS) sites. The interpolation was assessed using cross-validation analysis in a 1-year 

21 period using 30-minute interval observation. This was then applied to an operational real-time 

22 mapping of Ta to produce real-time maps at sub-hourly interval via a fully automated mapping 

23 system - using the R programming language. The cross-validation analysis revealed root-mean-

24 square errors of 1.6°C, 1.55°C, 1.7°C and 1.74°C for summer, autumn, winter and spring, 

25 respectively. On an hourly basis, errors tended to be highest during the late afternoons in spring 

26 and summer from 3 pm to 6 pm (AEST), particularly for the coastal areas of Western Australia. 

27 The mapping system was capable of regularly providing spatial outputs within 28-minutes of 

28 AWS site observations being recorded and had a high degree of temporal reliability. All outputs 

29 were displayed in a web mapping application to exemplify a real-time application of the outputs. 

30 This study found that the methods employed would be highly suited for similar applications 

31 requiring real-time processing and delivery of climate data at high spatiotemporal resolutions 

32 across a considerably large land mass.
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33 Introduction

34 A timely and accurate source of air temperature (Ta) data is essential for a wide variety of 

35 environmental modelling applications requiring real-time monitoring of environmental change 

36 (Lazzarini et al. 2014). This is often gleaned from a network of in-situ telemetered 

37 meteorological weather stations that are streamed over the internet (Williams et al. 2011). 

38 However, such data are only relevant for a single geographic location that fail to accurately 

39 account for the spatial variability between sites that can vary markedly over short distances 

40 (Webb et al. 2016). For applications that rely on location-specific data, observations are often 

41 harvested from stations situated kilometers away from their location of interest, resulting in that 

42 data not being truly representative of the desired location (Jeffrey et al. 2001; Liu et al. 2018). 

43 This variation is often attributed to the effects of topographic, coastal and latitudinal factors 

44 which strongly influence Ta over space (Hutchinson 1991; Jarvis & Stuart 2001a; Wang et al. 

45 2011). As such, Ta for the purpose of input to real-time modelling applications need to be 

46 spatially quantified to dynamically account for these interactions but also at an appropriate 

47 spatial resolution to account for the subtle nuances of local-scale climates.

48

49 There has been a plethora of research aimed at interpolating surface air temperature at various 

50 spatiotemporal scales (Hutchinson 1991; Jarvis & Stuart 2001b; Jeffrey et al. 2001; Jones et al. 

51 2009; Xu et al. 2018). This is in addition to surface temperature estimated from satellite data 

52 (Mao et al. 2017; Sobrino et al. 2020). Or from regional reanalysis of global circulation models 

53 at high spatiotemporal resolutions (Bollmeyer et al. 2015; Su et al. 2019). Despite this, their 

54 adoption for real-time monitoring applications have been limited. In the United Arab Emirates, 

55 remote sensing data coupled with in-situ meteorological recordings were used to produce sub-

56 hourly air temperature maps in near real-time (Lazzarini et al. 2014). The modelling system 

57 produced maps every 15 minutes with the evaluation of the outputs revealing an overall root 

58 mean square error average of 2.44°C. The spatial resolution of ~3km, however, is limited in 

59 accounting for lapse rates in highly variable topography and would warrant further modification 

60 for high-resolution monitoring. Similarly, a near real-time drought monitoring tool developed for 

61 South Asia produced daily minimum and maximum temperatures at a spatial resolution of 0.05° 

62 (~5km) (Aadhar & Mishra 2017). However, it’s application for sub-daily Ta monitoring at the 

63 local scale would also require further adaptation. In Australia, the Scientific Information for 

64 Land Owners (SILO) database and the Australian Gridded Climate Data (AGCD) interpolate 

65 daily minimum (Tmin) and maximum (Tmax) temperatures produced by Australian Bureau of 

66 Meteorology (BoM) weather station network to produce maps at 0.05° (~5km) grid resolution 

67 (Jeffrey et al. 2001; Jones et al. 2009). Both systems use thin plate smoothing spline (TPS) 

68 interpolation to deliver the daily temperature products with an evaluation of the SILO system 

69 exhibiting root mean square errors of 1.5°C and 1.9°C for Tmax and Tmin, respectively, and 

70 AGCD data showing similar errors of 1.2°C and 1.7°C. Both datasets are available daily with a 

71 time lag of 1 day with the SILO predictions accessible via an online platform 

72 (www.longpaddock.qld.gov.au/silo). This is used as input to purpose-built applications as 
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73 demonstrated by the Australian CliMate App (Australian CliMate Development Team 2016). 

74 While both datasets are useful for broad-scale analysis requiring up-to-date daily records, they 

75 still lacked the resolution for sub-daily real-time monitoring at the local-scale. 

76

77 Recently, a near-real time mapping system using a combination of regression trees (RT) and TPS 

78 interpolation was able to produce spatial products at a spatial resolution of 80m across the state 

79 of Tasmania, Australia (Webb et al. 2020). The system was capable of consistently producing 

80 maps within an hour of the BoM recordings becoming available. This was further supplemented 

81 with the assimilation of 267 non-telemetered logger recording sites; used to enhance 

82 interpolation accuracy. Evaluation of the system showed that the TPS method was more suited to 

83 real-time application due to the speed and relative accuracy of the outputs produced. Cross-

84 validation assessment showed root mean square errors of 1.42°C, 1.4 °C, 1.34°C and 1.35°C for 

85 autumn, winter, spring and summer, respectively, in addition to only requiring 2 minutes 

86 processing time to produce each map product. In this context, the application would be suited to 

87 the estimation of Ta across a much larger geographic space at a similar spatiotemporal resolution. 

88 As such, there is also an opportunity to apply this approach on a digital platform for real-time 

89 access for end-users. 

90

91 The objective of this study was to apply and extend the methods in Webb et al. (2020) for 

92 production of Ta maps across continental Australia. TPS interpolation is used to produce Ta maps 

93 at sub-hourly intervals (every 30 minutes) based on recordings garnered directly from BoM 

94 automatic weather station (AWS) sites. The resulting maps are presented digitally at a spatial 

95 resolution of 286m, appropriate for local-scale monitoring purposes. The methods for prediction 

96 accuracy are evaluated using historic hourly Ta data captured over a 1-year period, in addition to 

97 assessing the efficacy of the system for real-time application and subsequent display of outputs 

98 in a purpose-built web mapping application.    

99

100 Materials & Methods

101 Approach

102 The present study consisted of 2 parts. Firstly, evaluation of the TPS methodology using cross-

103 validation; and secondly, application of the methodology for operational real-time mapping of Ta 

104 (Fig. 1). For the evaluation purpose of the study, a historical dataset of 30-minute interval Ta 

105 recordings was garnered from BoM automatic weather station (AWS) sites for the 1-year period 

106 1 March 2019 to 29 February 2020. This data was used in a leave-one-out cross-validation 

107 exercise to assess the prediction performance of the TPS interpolation method. For the 

108 application of the methodology for operational real-time mapping, this was tested over a 21-day 

109 period from 1 June 2020 to 21 June 2020. For this purpose, a fully automated mapping system 

110 was developed using R programming language (R Development Core Team 2015). Processing 

111 performance of this mapping system was evaluated for computational efficiency by analyzing 

112 each subsequent spatial output (i.e. the time to taken to produce each Ta map) and therefore 
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113 assessed for real-time application. Maps produced from the interpolation process are 

114 immediately displayed in a web map application.

115

116 Air temperature (Ta) data

117 Air temperature (Ta) data recorded by automatic weather stations (AWS) from the Bureau of 

118 Meteorology (BoM) and capable of providing real-time access at 30-minute intervals were 

119 considered for primary use in this study (Fig. 2). For evaluating the accuracy of the model, a 

120 requirement was set, where each station used for the real-time application should have historic 

121 recordings for the previous year, specifically from 1 March 2019 to 29 February 2020. These 

122 historical data were used for cross-validation analysis. It should be noted that not all AWS sites 

123 had data available for the full evaluation period. In these cases, only sites that had least 720 

124 instances of 30-minute interval recordings in each season (15 days) was considered for the 

125 evaluation process. AWS sites that did not meet this criterion were discarded from the analysis. 

126 Thus, the screening process resulted in 534 AWS sites corresponding to a possible 17567 

127 recording observations in the evaluation period and relevant to each AWS. It should be noted 

128 that observations for each AWS site occur 1.2 m above ground using a resistance temperature 

129 detector housed in a Stevenson weather screen (Bureau of Meteorology 2018). All AWS 

130 recordings are telemetered into the BoM climate database and can be accessed ‘live’ via the 

131 BoM website (e.g. http://www.bom.gov.au/tas/observations/) with most recordings available 

132 every half hour with an approximate time lag ranging from 10 min to 20 min from the true 

133 observation time.     

134

135 Interpolating Ta using thin plate smoothing splines (TPS)

136 Ta values garnered from the BoM AWS sites were interpolated on a 30-minute interval basis 

137 using thin plate smoothing splines. This was performed to form TPS predictions in the evaluation 

138 period (1 March 2019 to 29 February 2020) as well as for application to real-time mapping. The 

139 TPS algorithm was chosen due to its good accuracy for mapping daily minimum and maximum 

140 temperatures across Australia (Jeffrey et al. 2001; Jones et al. 2009) and its relative quick 

141 computational speed and efficiency (compared to machine learning algorithms) in producing 

142 outputs in a timely manner (Webb et al. 2020). Its application involves a trivariate approach 

143 whereby latitude, longitude, and elevation variables are used as independent variables, as per 

144 Jeffrey et al. (2001). The independent variables of latitude and longitude are used for the partial 

145 spline component to account for spatial variation, whereas elevation is combined to account for 

146 the temperature lapse rates. The spline component of the algorithm is optimised by minimising 

147 the generalized cross validation error from the residual sum of squares (Hutchinson 1991). In this 

148 study, the Fields statistical package (Nychka et al. 2017) was used to implement the TPS 

149 algorithm in R software (R Development Core Team 2015). To guide the mapping of Ta, the 9-

150 second Digital Elevation Model (DEM) was used (Hutchinson et al. 2008). This was reprojected 

151 to Geocentric Datum of Australia 94, Geoscience Australia Lambert projection; and resampled to 

152 a spatial resolution of 286 m (roughly equivalent to the spatial resolution of original 9-second 
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153 DEM). The geographical coordinates of the AWS site locations were then spatially intersected 

154 with the newly resampled DEM. This operation provided a consistent template to routinely form 

155 TPS models using the AWS observations as data points to the algorithm (on a half-hourly basis). 

156 Thus, Ta predictions generated by each TPS model were spatially interpolated using the DEM as 

157 the z variable, along with the coordinate parameters of the inherent cell properties of the DEM 

158 acting as the latitude (x) and longitude (y) variables. This allowed the spline smoothing 

159 parameter to be applied continuously across the geographic feature space of the DEM, resulting 

160 in a final mapped prediction; saved as GeoTIFF rasters. 

161

162 Evaluating TPS interpolation

163 The performance of the TPS algorithm was evaluated in the period from 1 March 2019 to 29 

164 February 2020. A leave-one-out cross-validation procedure was employed for each AWS site, 

165 whereby the training dataset was split into i parts such that i is equal to the number of AWS sites, 

166 i.e. 534. For each AWS in i, the ith AWS site was kept for validation (i.e. using actual recordings 

167 from the evaluation period), while the remaining dataset, comprising of the remaining BoM 

168 recordings was used for TPS modelling to predict Ta at the ith AWS site. This was performed for 

169 each 30-minute interval (h) in the evaluation period to produce a set of modelled TPS estimates 

170 versus actual AWS recordings at each site. This equated to 17,567 modelled TPS predictions 

171 where actual observations from each AWS site could then be compared. Validation metrics used 

172 to assess the modelling accuracy included the mean absolute error (MAE), root-mean-square 

173 error (RMSE), coefficient of determination (R2) and the concordance coefficient. The 

174 concordance coefficient (pc) was used to assess agreement between TPS predictions ; and actual 𝑥
175 recordings ; that fall on the 45° line through the origin, as defined by Lin (1989):𝑦
176

177 𝑝𝑐 =
2𝑝𝜎𝑥𝜎𝑦𝜎2𝑥 +  𝜎2𝑦 + (𝜇𝑥 ‒ 𝜇𝑥)

2

178  

179 where for  and  represent the means for  and  , respectively,   and  represent the 𝜇𝑥 𝜇𝑥 𝑥 𝑦 𝜎2𝑥 𝜎2𝑦 
180 corresponding variances, and  is the correlation coefficient between  and  . A concordance 𝑝 𝑥 𝑦
181 rating close to one indicates strong agreement between predicted and actual Ta pairings that fall 

182 on the 45° line through the origin.

183

184 Application to real-time monitoring of Ta

185 The proposed methodology was assessed for operational real-time monitoring of Ta by 

186 automating the process using software R (R Development Core Team 2015), thereby developing 

187 a fully automated mapping system. The system was trialled over a 21-day period from 1 June 

188 2020 to 21 June 2020, using ‘real-time’ BoM observations to drive the system. The program 

189 consisted of two components, firstly the import of live Ta data via the internet from the BoM 

190 website, and secondly, the mapping of the observations using TPS interpolation. For the live 

191 BoM observations, these were automatically downloaded for individual station observations 
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192 every 30-minutes from the BoM observations portal (e.g. 

193 http://www.bom.gov.au/fwo/IDT60801/IDT60801.<stationIDnumber>.axf). These data were 

194 accessed as a comma delimited text file which was routinely updated every 30 minutes with an 

195 approximate time lag ranging from 5 to 20 minutes from when the observation was recorded 

196 (observation updates varied from station to station). The mapping system was programmed to 

197 query and import recordings every 30-minutes (bi-hourly) that corresponded to the nearest half-

198 hour at 0 and 30 minutes (past the hour). Because of the observational time lags, the system was 

199 programmed to make queries at 5, 10, 15, 20, 25 and 30 minutes within their 30-minute 

200 processing window. Also, a threshold was set where at least 480 out of the 534 BoM stations (i.e. 

201 90% of total available AWS sites that were used in the evaluation analysis) have available 

202 observations before the mapping was allowed to commence at their respective processing times. 

203 This serves to instil integrity into the system and thereby limit the number of missing 

204 observations that could otherwise produce inaccuracies into the final mapped output. However, if 

205 this threshold was not met during the query times, the mapping was still permitted to commence 

206 at the 30-minute mark regardless of the number of observations available (this was subsequently 

207 recorded). All AWS recording times were standardised to Australian Eastern Standard Time 

208 (AEST).

209

210 To interpolate the TPS predictions, the Raster package (Hijmans & van Etten 2012) in 

211 combination with the Fields statistical package (Nychka et al. 2017) was used to map the 

212 predictions in a continuous manner across Australia. To improve processing speed, the clusterR 

213 function within the Raster package was parameterised to host the TPS algorithm, thereby 

214 enabling mapping to occur using multi-core processors. In this manner, the mapping system was 

215 hosted on a high-end cloud computing Linux platform (Ubuntu 18.04 LTS (Bionic)) constituting 

216 16 virtual CPU cores and 64GB RAM; made available courtesy of the Australian National 

217 eResearch Collaboration Tools and Resources project (NeCTAR). Spatial outputs were saved as 

218 individual GeoTIFF raster format at a grid cell resolution of 286m, i.e. equivalent to the spatial 

219 resolution of the resampled DEM.       

220

221 Results

222 Assessment of the TPS interpolation procedure

223 Each of the AWS sites underwent the leave-one-out cross-validation analysis to assess TPS 

224 prediction accuracy for Ta in the evaluation period: 1 March 2019 to 29 February 2020. This 

225 analysis revealed broad similarities across the seasons with MAE values ranging between 1.16°C 

226 in autumn to 1.29°C in spring, and RMSE ranging between 1.55°C to 1.74°C for autumn and 

227 spring, respectively (Table 1). The R2 and Pc values were above 0.8 indicating that the TPS 

228 predictions were strongly correlated to the validation data in addition to being highly associated 

229 with the 45° line through the origin (Lin 1989). This assessment also implied that predictions 

230 were relatively consistent across the evaluation period and did not vary substantially on a 

231 seasonal basis. Moreover, it was clear that the TPS interpolation was more suited to predicting Ta 
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232 in autumn which exhibited superior statistics across all validation measures when compared to 

233 the other seasons. However, TPS predictions tended to be least accurate in spring which had 

234 MAE and RMSE values that was greater by 0.13°C and 0.19°C, respectively, when compared to 

235 the corresponding MAE and RMSE values in autumn. Interestingly, although spring exhibited 

236 comparatively inferior MAE and RMSE values, the R2 statistics were similar, both registering 

237 0.91. This suggests that while errors were comparatively larger in spring, they were still very 

238 highly correlated to the validation data. However, it should be noted that the coefficient of 

239 determination may have been unrealistically overestimated for spring since the seasonal data 

240 signal was not removed prior to analysis, as advocated in Jeffrey et al. (2001). 

241

242 When looking at the histogram distribution of the MAE it was apparent that spring and winter 

243 had a large proportion of AWS sites that exhibited MAE values above 2°C (Fig. 3). This 

244 contributed to the inflated error values shown in Table 1. Specifically, spring and winter both 

245 had a total of 42 and 46 AWS sites that registered MAE above 2°C compared to 22 and 16 AWS 

246 sites for summer and autumn, respectively. 

247

248 When viewing these errors spatially, it was clear that the majority of the larger interpolation 

249 errors transpired in regions where there was a lack of neighbouring AWS sites (Fig. 4). 

250 Specifically, the central and western interior parts of Australia tended to exhibit MAE values 

251 above 2°C, compared to the eastern half where temperatures were consistently predicted within 

252 1.5°C of the actual Ta. Of particular note was the predominately high errors encountered for the 

253 coastal areas of Western Australia (between Geraldton and Port Hedland) during summer and 

254 spring where prediction errors were regularly above 2.5°C. For example, the Learmonth Airport 

255 AWS site (Fig. 2) had MAE of 3.4°C and 3.15°C for spring and summer, respectively. Outside 

256 of this cluster, there were also high MAE values for individual AWS sites located at Pirlangimpi 

257 Airport (Tiwi Islands, Northern Territory) with MAE of 3.57°C in spring; Forrest in Western 

258 Australia with MAE of 2.86°C in summer; and Yampi Sound in Northern Territory with MAE of 

259 3.27°C in winter. Furthermore, in winter there was a notable cluster of high MAE values 

260 emanating from central Australia through to the coastal fringes of Northern Territory and 

261 Western Australia (i.e. Darwin through to Broome) with MAE consistently above 2°C.  

262

263 When observing MAE values over a 24-hour period (Fig. 5), it was clear that the high MAE 

264 values encountered for the coastal areas of Western Australia in summer and spring tended to 

265 occur during afternoons. Specifically, these had MAE ranging between 4-6°C for times 3 pm to 6 

266 pm, i.e. 1 pm to 4 pm, Australian Western Standard Time (AWST). Of particular note was the 

267 Learmonth Airport AWS site registering MAE of 6.88°C, peaking at 5 pm (3 pm, AWST) in 

268 summer (Fig. 6). Similarly, very high MAE values were encountered for the south-eastern area 

269 of Western Australia, notably for the Forrest AWS site at 6 pm, which registered MAE of 6.07°C 

270 and 5.25°C for spring and summer, respectively (Fig. 6). This was in addition to the Ceduna 

271 AWS site (South Australia) at 6 pm, which registered a MAE of 5.41°C in summer. During 
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272 winter the trend for high MAE in central Australia and the coastal fringes of Northern Territory 

273 and Western Australia tended to occur during early mornings from 3 am to 9 am (1 am to 7 am, 

274 AWST), with MAE ranging from 3-5°C. The AWS sites with the greatest MAE in these parts 

275 were Adele Island and Yampi Sound which exhibited values of 6.41°C and 6.4°C, respectively, 

276 at 8 am (Fig. 6). Both sites are located in the northern coastal region of Western Australia (NB: 

277 the locations of all aforementioned AWS sites are depicted in Fig. 2).  

278

279 Assessment of mapping Ta in near real-time

280 The TPS methodology was applied to mapping Ta in real-time at 30-minute intervals over a 21-

281 day period from 1 June 2020 to 21 June 2020. This exercise resulted in 1007 maps being 

282 produced which aligned to the total number of 30-minute processing intervals in the trial period; 

283 confirming all possible maps were successfully processed. On analysing the map completion 

284 times, the majority of the maps were completed at 28 minutes (Fig. 7). Specifically, 410 and 414 

285 maps were produced for their respective 0- and 30-minute processing intervals. This 

286 corresponded directly to the AWS import times (Fig. 8), with the same proportion of AWS 

287 observations reaching the 480-observation threshold import limit at the 15-minute mark; thereby 

288 permitting Ta mapping to commence. Thus, import times that occurred at 15-minutes, equated to 

289 resulting maps being completed at 28-minutes from the AWS observation time. From this, it can 

290 be deduced that on all occasions the map processing time was 13-minutes, regardless of the 

291 interval being processed. It should be noted that on 35 occasions the 480-observation threshold 

292 limit was not reached, resulting in maps - that did not meet this criterion - being produced at the 

293 30-minute mark. This equated to 14 and 21 maps produced at the 0- and 30-minute processing 

294 intervals, respectively.   

295

296 Discussion

297 Appraisal of the TPS interpolation procedure

298 On the whole, the TPS interpolation method was a reliable predictor of Ta across Australia with 

299 an average the RMSE of 1.65°C (i.e. when averaged across the seasons in Table 1). When 

300 compared to previous studies, this error was similar to Jeffrey et al. (2001) with RMSE of 1.5°C 

301 and 1.9°C for daily maximum and minimum temperatures, respectively; and Jones et al. (2009) 

302 with corresponding RMSE of 1.2°C and 1.7°C. On a seasonal basis the TPS predictions tended 

303 to be least accurate in spring which had MAE and RMSE values larger by 0.13°C and 0.19°C, 

304 respectively, compared to the same measures in autumn. When viewing these errors spatially, it 

305 was clear that the majority of the larger interpolation errors transpired in the central and western 

306 interior parts of Australia. This is unsurprising given the station density in these parts are 

307 relatively sparse in addition to large temperature variances which tend to produce inflated errors 

308 (Jeffrey et al. 2001; Jones & Trewin 2000). Of particular note was the predominately high errors 

309 encountered for the coastal areas of Western Australia (between Geraldton and Port Hedland) 

310 during summer and spring where prediction errors were regularly above 2.5°C. This was in 

311 addition to high MAE values for individual AWS sites located at Forrest in Western Australia 
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312 and Ceduna in South Australia. Collectively, these regions tend to experience very strong 

313 gradients for maximum temperatures due to their proximity between the coast and inland deserts 

314 regions (Jones et al. 2009). These are invariably difficult to model with a sparse network of 

315 observation sites since these errors are amplified during mid to late afternoons in late spring and 

316 summer when the temperature gradients were at their greatest. Also, temperatures in these areas 

317 can vary considerably over short periods leading to a tendency for larger errors (Jones & Trewin 

318 2000). Concerning winter, the trend for high MAE in central Australia and coastal fringes of 

319 Northern Territory and Western Australia tended to occur during early mornings from 3 am to 9 

320 am (1 am to 7 am, AWST). As acknowledged previously, the accuracy of the mapping was 

321 limited in these regions due to an insufficient network of AWS sites. Also, AWS sites in the 

322 coastal fringes tend to have tight climate gradients as a result of local maritime effects (Jones et 

323 al. 2009). Thus, the sparse network of AWS sites would not be able to account for these on a 

324 sub-hourly timescale. Moreover, the spread of AWS sites in remote coastal locations – e.g. Adele 

325 Island, Yampi Sound and Pirlangimpi Airport AWS sites - tend to have considerably larger 

326 errors as a result of unique and often complex microclimates (Jones et al. 2009). It should also be 

327 noted that the larger errors for the central interior parts of Australia may also be due to the 

328 weaker link between altitude and minimum temperature – for which the TPS algorithm is reliant 

329 (Hutchinson 1991). This is because minimum temperatures have a highly variable and complex 

330 relationship with topography for which elevation and its association with lapse rates are only one 

331 part (Rolland 2003; Trewin 2005). Considering minimum temperatures tend to transpire during 

332 early mornings – as encountered for AWS sites in winter (Fig. 5 & 6) – a multivariate approach 

333 to modelling might be more appropriate along with a denser network of AWS sites. This 

334 approach was conducted by Webb et al. (2020) that showed errors improved during winter when 

335 using regression tree interpolation over TPS. However, the substantially longer processing times 

336 may not be appropriate for real-time application, negating its ability to produce outputs in a 

337 timely manner as required for this study. 

338

339 It should be commented that the cross-validation analysis adopted in this study would likely 

340 overestimate the error since predictions made at locations have actual data observations. This 

341 would be less of a concern for regions where the number of observation points is numerous, such 

342 as for the majority of land areas in south-east Australia – which tended to have more accurate Ta 

343 predictions compared to the western interior. Nevertheless, this exemplifies that the sparse 

344 network of AWS sites in central and western coastal areas of Australia was a notable factor 

345 contributing to larger interpolation errors.       

346

347 Appraisal of mapping Ta in near real-time and application to digital mapping

348 The TPS interpolation applied in real-time was capable of producing sub-hourly Ta maps 

349 typically within 28-minutes of the observation being recorded by the available AWS sites (Fig. 

350 7). Specifically, import times were generally reached for the predefined threshold of 480 

351 observations at the 15-minute mark (Fig. 8) which was followed by a 13-minute processing lag. 
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352 In this regard, maps were consistently available within their 30-minute processing window and 

353 had a high degree of temporal reliability - with all possible maps produced in the 21-day trial 

354 period. The resulting maps were presented on a digital web mapping platform to allow real-time 

355 access and interrogation ability of each output. An example of this application can be accessed at 

356 URL http://austemperature.live/ (Fig. 9). A GeoServer backend was used to host current outputs 

357 to allow geospatial representation and sharing of outputs via a Wep Map Service (Open Source 

358 Geospatial Foundation 2019). The maps can be spatially queried to reveal temperatures for the 

359 current hour and also for the previous 3-hrs (at 30-minute intervals). This is enabled via web 

360 application packages shiny and leaflet (Chang et al. 2019; Cheng et al. 2019) within the R 

361 programming environment (R Development Core Team 2015). In this fashion, maps can be 

362 spatially interrogated via an on-the-fly ‘data drilling’ for any geographical location in Australia 

363 (via mouse click). A facility to view the cross-validation statistics of each map output is also 

364 provided as well as the ability to download each newly created map for use in GIS applications. 

365 Rainfall mapping outputs are also presented, although this should be used with caution due to the 

366 preliminary nature of this work. 

367

368 Conclusions

369 The methods described in this study were successful for operational real-time spatial mapping of 

370 Ta at high spatiotemporal across Australia. The TPS interpolation method was best suited for 

371 mapping Ta during autumn and was comparatively less accurate during winter and spring. In 

372 particular, areas, where there was a lack of AWS sites, tended to underperform. These areas 

373 included the central and western interior regions of Australia, as well for the north-west coastal 

374 areas of Western Australia. On a temporal basis, the errors were amplified during the afternoons, 

375 particularly around the coastal regions of Western Australia, during spring and summer. In 

376 winter, errors tended to be higher in central Australia and the coastal fringes of Northern 

377 Territory and Western Australia, from 3 am to 9 am. In terms of applying the TPS method to 

378 real-time operational mapping, the mapping system was able to regularly provide spatial outputs 

379 within 28-minutes of AWS site observations being recorded. In addition, it also had a high 

380 degree of temporal reliability with all maps produced in the 21-day trial period. Outputs were 

381 sequentially displayed on purpose-built web mapping application to exemplify real-time 

382 application of the outputs. In this regard, the methodology employed in this study would be 

383 highly suited for similar applications requiring real-time processing and delivery of climate data 

384 at high spatiotemporal resolutions across a large landmass, suitably complimented with a 

385 relatively dense network of observation sites.  

386
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Figure 1
Workflow developed for this study
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Figure 2
Elevation map of Australia with locations of major towns/cities and Bureau of
Meteorology (BoM) automatic weather stations (AWS).

Purple dots illustrate AWS locations. Red dots denote locations of notable AWS sites (refer
results section)
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Figure 3
Histogram plots of MAE values in each season with fitted cumulative frequency curves.
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Figure 4
Interpolated MAE °C values (using a two-dimensional smoothing spline) produced from
individual AWS sites in each season.

Black dots illustrate locations of AWS sites. Larger dots denote AWS sites where MAE values

are above the 95th percentile (labelled with their corresponding MAE value).
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Figure 5
Interpolated MAE °C values (using a two-dimensional smoothing spline) for the 24-hour
period in each season. Maps are displayed at 3-hourly intervals for times 12am, 3am,
6am, 9am, 12pm, 3pm, 6pm and 9pm (AEST).

Aut Autumn, Win Winter, Spr Spring, Sum Summer

PeerJ reviewing PDF | (2020:07:50683:0:0:NEW 4 Jul 2020)

Manuscript to be reviewed



Figure 6
Mean absolute error (MAE, °C) over a 24-hour period (AEST) averaged for selected AWS
site in each season.
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Figure 7
Frequency of map completion times (minutes from AWS observation time, T) in
accordance to their bi-hourly processing intervals at 0 (a) and 30 (b) minutes.
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Figure 8
Box and whisker plots for AWS import times (minutes from AWS observation time, T) in
accordance to their bi-hourly processing intervals at 0 (a) and 30 (b) minutes.

Numbers in bold denote frequencies when the 480-observation threshold limit was reached.
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Figure 9
Web map environment for displaying and spatially interrogating the near real-time Ta
outputs. An example can be viewed at URL http://austemperature.live/.
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Table 1(on next page)

Validation statistics for the TPS interpolation procedure showing the coefficient of
determination (R2), concordance coefficient (Pc), mean absolute error (MAE, °C ) and
root-mean-square error (RMSE, °C) averaged for each

sd standard deviation, min minimum, max maximum
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Summer Autumn Winter Spring

R2

    mean 0.89 0.91 0.86 0.91

    min 0.05 0.02 0.01 0.01

    max 0.99 0.99 0.97 0.99

    sd 0.11 0.09 0.11 0.09

Pc

    mean 0.92 0.94 0.92 0.93

    min 0.18 0.14 0.18 0.09

    max 0.99 0.99 0.99 0.99

    sd 0.09 0.08 0.09 0.08

MAE

    mean 1.17 1.16 1.27 1.29

    min 0.45 0.48 0.52 0.57

    max 3.15 2.76 3.27 3.57

    sd 0.41 0.36 0.47 0.45

RMSE

    mean 1.6 1.55 1.7 1.74

    min 0.62 0.67 0.74 0.77

    max 4.25 3.49 4.26 4.31

    sd 0.54 0.47 0.61 0.57

1
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