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Sea urchins act as a keystone herbivore in marine coastal ecosystems, regulating
macrophyte density, which offers refuge for multiple species. In the Mediterranean Sea,
both the sea urchin Paracentrotus lividus and fish preying on it are highly valuable target
species for artisanal fisheries. As a consequence of the interactions between fish, sea
urchins and macrophyte, fishing leads to trophic disorders with detrimental consequences
for biodiversity and fisheries. In Sardinia (Western Mediterranean Sea), regulations for sea
urchin harvesting have been in place since the mid 90s. However, given the important
ecological role of P. lividus, the single-species fishery management may fail to take into
account important ecosystem interactions. Hence, a deeper understanding of population
dynamics, their dependence on environmental constraints and multispecies interactions
may help achieve long-term sustainable use of this resource. This work aims to highlight
how sea urchin population structure varies spatially in relation to local environmental
constraints and species interactions, with implications for their management. The study
area (Sinis Peninsula, West Sardinia, Italy) that includes a Marine Reserve was divided into
five sectors. These display combinations of the environmental constraints influencing sea
urchin population dynamics, namely type of habitat (calcareous rock, granite, basalt,
patchy and continuous meadows of Posidonia oceanica), average bottom current speed
and predatory fish abundance. Size-frequency distribution of sea urchins under
commercial size (< 5 cm diameter size) assessed during the period from 2004 to 2007,
before the population collapse in 2010, were compared for sectors and types of habitat.
Specific correlations between recruits (0-1 cm diameter size) and bottom current speeds
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and between middle-sized sea urchins (2-5 cm diameter size) and predatory fish
abundance were assessed. Parameters representing habitat spatial configuration (patch
density, perimeter-to-area ratio, mean patch size, largest patch index,
interspersion/juxtaposition index) were calculated and their influence on sea urchin density
assessed. The density of sea urchins under commercial size was significantly higher in
calcareous rock and was positively and significantly influenced by the density and average
size of the rocky habitat patches. Recruits were significantly abundant in rocky habitats,
while they were almost absent in Posidonia meadows. The density of middle-sized sea
urchins was more abundant in calcareous rock than in basalt, granite or Posidonia. High
densities of recruits resulted significantly correlated to low values of average bottom
current speed, while a negative trend between the abundance of middle-sized sea urchins
and predatory fish was found. Our results point out the need to account for the
environmental constraints influencing local sea urchin density in fisheries management.
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13 Abstract 

14 Sea urchins act as a keystone herbivore in marine coastal ecosystems, regulating macrophyte 

15 density, which offers refuge for multiple species. In the Mediterranean Sea, both the sea urchin 

16 Paracentrotus lividus and fish preying on it are highly valuable target species for artisanal 

17 fisheries. As a consequence of the interactions between fish, sea urchins and macrophyte, fishing 

18 leads to trophic disorders with detrimental consequences for biodiversity and fisheries. In 

19 Sardinia (Western Mediterranean Sea), regulations for sea urchin harvesting have been in place 

20 since the mid 90s. However, given the important ecological role of P. lividus, the single-species 

21 fishery management may fail to take into account important ecosystem interactions. Hence, a 

22 deeper understanding of population dynamics, their dependence on environmental constraints 

23 and multispecies interactions may help achieve long-term sustainable use of this resource. This 

24 work aims to highlight how sea urchin population structure varies spatially in relation to local 

25 environmental constraints and species interactions, with implications for their management. The 

26 study area (Sinis Peninsula, West Sardinia, Italy) that includes a Marine Reserve was divided 

27 into five sectors. These display combinations of the environmental constraints influencing sea 

28 urchin population dynamics, namely type of habitat (calcareous rock, granite, basalt, patchy and 

29 continuous meadows of Posidonia oceanica), average bottom current speed and predatory fish 

30 abundance. Size-frequency distribution of sea urchins under commercial size (< 5 cm diameter 

31 size) assessed during the period from 2004 to 2007, before the population collapse in 2010, were 

32 compared for sectors and types of habitat. Specific correlations between recruits (0-1 cm 

33 diameter size) and bottom current speeds and between middle-sized sea urchins (2-5 cm diameter 

34 size) and predatory fish abundance were assessed. Parameters representing habitat spatial 

35 configuration (patch density, perimeter-to-area ratio, mean patch size, largest patch index, 

36 interspersion/juxtaposition index) were calculated and their influence on sea urchin density 

37 assessed. The density of sea urchins under commercial size was significantly higher in 

38 calcareous rock and was positively and significantly influenced by the density and average size 

39 of the rocky habitat patches. Recruits were significantly abundant in rocky habitats, while they 

40 were almost absent in Posidonia meadows. The density of middle-sized sea urchins was more 

41 abundant in calcareous rock than in basalt, granite or Posidonia. High densities of recruits 

42 resulted significantly correlated to low values of average bottom current speed, while a negative 

43 trend between the abundance of middle-sized sea urchins and predatory fish was found. Our 

44 results point out the need to account for the environmental constraints influencing local sea 

45 urchin density in fisheries management.

46

47
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48 Introduction

49

50 The continuous decline of fishery catches during the last decades has pushed many 

51 fishermen to switch to new species at lower trophic levels (Anderson et al., 2011). One of the 

52 clearest examples from coastal ecosystems is the overexploitation of species involved in the typical 

53 tri-trophic interaction ‘‘fish-sea urchins-macroalgae’’ (Jackson et al., 2001). In the Mediterranean 

54 Sea, the interaction between the sea breams Diplodus spp. and Spaurus aurata, the sea urchin 

55 Paracentrotus lividus and coastal macroalgal forests follows this paradigm. 

56 Paracentrotus lividus is one of the most important herbivores of Mediterranean benthic 

57 ecosystems (e.g. Hereu et al., 2005; Prado et al., 2012). The impact of overfishing through the 

58 impairment of predatory control on P. lividus determines a significant loss of macroalgal 

59 communities and biodiversity (Micheli et al., 2005; Giakoumi et al., 2012; Sala et al., 2012; 

60 Wallner-Hahn et al., 2015). For this reason, in the Mediterranean Sea it is widely accepted that P. 

61 lividus harvesting may be a potentially effective method for mitigating overgrazing in areas of 

62 severe overfishing (e.g. Piazzi & Ceccherelli, 2019).

63 Concurrently, targeted harvesting of sea urchin is progressively increasing worldwide 

64 (Andrew et al., 2002; James et al., 2016). Direct extraction is resulting in the collapse of local 

65 populations (Tegner & Dayton, 1977; Pennington, 1985; Levitan, Sewell & Fu-Shiang Chia, 1992; 

66 Levitan & Sewell, 1998) and in community-level effects, with rapid development of large, brown 

67 algae and changes in the composition of fish and benthic communities (e.g. Steneck et al., 2002). 

68 Sea urchin fisheries generally follow the short-term “boom-and-bust” pattern of many invertebrate 

69 fisheries. They start as a small-scale activity that undergoes a phase of rapid expansion followed 

70 by a phase of full exploitation that lead to the exhaustion of the resource (Andrew et al., 2002).
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71 The key role played by sea urchins in benthic trophic interactions and in regulating subtidal 

72 communities needs to be considered in the development of sustainable urchin fisheries (Tegner & 

73 Dayton, 2000; Norderhaug et al., 2020).

74 In light of these considerations, an integrated management strategy for social and 

75 ecological systems has been developed in many regions where this situation has occurred (e.g. 

76 Moreno et al., 2006; Perry, Zhang & Harbo, 2002). There are a number of well-managed and 

77 sustainable sea urchin fisheries around the world that tend to rely on a good general knowledge of 

78 the biology of the urchin species present in the area as well as a sound understanding of the 

79 dynamics of sea urchin populations (James et al., 2016).

80 In New Zealand, for example, between 2002 and 2003, the sea urchin species Evechinus 

81 chloroticus was introduced into the quota management system of fishing, thanks to the support of 

82 the detailed biological information (Miller & Abraham, 2011). The quota management system is 

83 used to set the total allowed catch in twelve different fishing sectors according to the assessment 

84 of a set of biological criteria (Miller & Abraham, 2011). Fishing areas are classified in relation to 

85 growth conditions of the gonads, spawning rate, larval diffusion and the connectivity of local 

86 populations (Kritzer & Sale, 2004; James, Heath & Unwin, 2007; James & Heath, 2008; James et 

87 al., 2009; Wing, 2009). 

88 In Mediterranean Sea, P. lividus is locally harvested in few regions by recreational and 

89 artisanal fisheries. In Sardinia (Italy, Western Mediterranean Sea) for example, where sea urchin 

90 populations have suffered unsustainable pressure since the early 2000s (Guidetti, Terlizzi & Boero, 

91 2004; Pais et al., 2007, 2012; Ceccherelli et al., 2011), sea urchin harvesting is managed by a 

92 regional decree (Department of Environmental Protection Decree No. 276 of March 3, 1994 and 

93 subsequent amendments). This introduced a combination of measures including licences, quotas, 
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94 fishing techniques allowed, minimum size and seasonal closures. Regulation changed substantially 

95 after 2009: before 2009, professional fishermen (115 to 161 licences) were authorized to collect 

96 up to 3000 sea urchins per day by scuba diving along the entire coast of the Island (between 

97 November and April), with more restrictive regulations inside marine protected areas. After 2009, 

98 the number of regional licences increased to 189, but stricter regulations have been introduced for 

99 the harvesting, transportation, storage and processing of the sea urchins (RAS, Autonomous 

100 Region of Sardinia, decree no. 2524/DecA/102 of October 7, 2009). Daily catches per fisherman 

101 were reduced to 2000, while the minimum catch size remained unchanged over the years (>5 cm 

102 diameter size).

103   The Peninsula of Sinis, in the central western coast of Sardinia, including the local Marine 

104 Protected Area “Penisola del Sinis, Isola di Mal di Ventre” (Marine Reserve from now on), is one 

105 of the main harvesting hotspots. Inside the Marine Reserve, some harvesting restrictions are 

106 applied:  only resident professional fishermen are allowed to harvest sea urchins, for a maximum 

107 catch quota of 500 sea urchins per day per fisherman. The number of licenced fishermen varied 

108 from 125 in 2001 up to over 270 between 2004 and 2007 (including non-specialised artisanal 

109 fishers with special permission to harvest also sea urchins in this area). Nowadays, licences issued 

110 decreased progressively down to 54 and recreational fishing has been banned (before 2009 it was 

111 allowed for residents only, with max 50 urchins per day)

112 Despite the tighter regulations in place since 2009, individuals larger than 5 cm diameter 

113 (minimum commercial size) are still infrequent both inside and outside the Marine Reserve. In 

114 fact, scientific monitoring in the Marine Reserve has shown a dramatic depletion both in 

115 commercial sizes (> 5 cm diameter size) and in the whole population:  sea urchin >5 cm firstly 

116 declined between 2004 and 2005, while the whole population dramatically declined since 2010  
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117 (Pieraccini, Coppa & De Lucia, 2016)  with 65% and 75% reductions, respectively (Coppa et al., 

118 2018). The year 2010 can be thus considered the onset of the crisis of P. lividus in the area.   

119  Monitoring of sea urchin population structure (defined hereafter as abundance and age/size 

120 structure in the population) is performed on an ad-hoc basis in Sardinia in order to provide a 

121 scientific ground for stock assessment (Cau et al 2007). The first regional surveys of sea urchins 

122 in Sardinia were carried out in 2001, 2003 and again in 2007. As one of the main harvesting 

123 hotspots, the Peninsula of Sinis has been closely monitored since 2004. 

124 We used data of sea urchin density, by size class, collected between 2004 (first sampling) 

125 and 2007 (before the population collapse) to provide relevant information on population structure 

126 (under the commercial size of 5 cm diameter) when the impact of harvesting was still limited to 

127 the commercial class (Pieraccini, Coppa & De Lucia, 2016). These pre-collapse data represent a 

128 precious reference for understanding natural relationships between local population dynamics and 

129 the environmental constraints in the study area. 

130 In general, recruitment and predation are considered the main ecological processes driving 

131 P. lividus population dynamics and shaping population structure locally (Fig.1; Sala & Zabala, 

132 1996; Goñi et al., 2000). Larval supply is strongly influenced by coastal hydrodynamics (Fenaux, 

133 Cellario & Rassoulzadegan, 1988; Harmelin-Vivien et al., 2000; Prado et al., 2012; Farina et al., 

134 2018), while the nature of the substrate, the type of habitat and the abundance of predatory fish 

135 strongly influence settlement success and post-settlement survival (Boudouresque & Verlaque, 

136 2001; Tomas, Turon & Romero, 2004; Hereu et al., 2005; Oliva et al., 2016). Settlement on rocky 

137 habitats is generally higher than in seagrass Posidonia oceanica, where the abundance of cryptic 

138 predators determines a high mortality rate (Tomas, Turon & Romero, 2004). 
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139 Once in the benthos, predation becomes the most important ecological driver of sea urchin 

140 distribution (Hereu et al., 2005; Tomas, Romero & Turon, 2005). The labrid Coris julis and the 

141 commercial sea breams Diplodus spp. and Sparus aurata represent the main predators of recruits 

142 and middle-sized sea urchins respectively (Sala, 1997; Guidetti, Boero & Bussotti, 2005). The 

143 predation risk of sea urchins strongly depends on the availability of shelters provided by the 

144 structure of the habitats and their spatial configuration (Farina et al., 2009, 2017; Pagès et al., 

145 2012) until the urchins reach the safety size of ~ 5 cm (Guidetti et al., 2004).

146 We divided the study area into five fishing sectors with varying levels of environmental 

147 constraints influencing P. lividus recruitment and predation. Specifically, we focused on types of 

148 habitat  (i.e. Calcareous rock substrate, Granite substrate, Basalt substrate, patchy and continuous 

149 meadows of Posidonia oceanica), and on a pool of variables describing habitat spatial 

150 configuration (patch density, perimeter-to-area ratio, mean patch size, largest patch index and the 

151 interspersion/juxtaposition index) which strongly influence shelter and food availability for sea 

152 urchins (e.g. Hereu et al., 2005; Farina et al., 2017). A circulation model of bottom current speed 

153 was used to approximate coastal hydrodynamics that strongly influence larval diffusion and sea 

154 urchin settlement (Farina et al., 2018). Finally, predatory fish abundance provides approximative 

155 information about potential predation activity along the fishing sectors (Guidetti, 2007). 

156 Differences in the density of sea urchins under commercial size (< 5 cm diameter size), 

157 recruit density (0-1 cm diameter size) and middle-sized sea urchin density (2-5 cm diameter size) 

158 are estimated for each fishing sector and type of habitat. Density of commercial size class (>5 cm 

159 diameter test) was also reported but not considered in the analysis because already compromised 

160 by harvesting in the study period (Pieraccini, Coppa & De Lucia, 2016).
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161 Due to the absence of a direct estimation of predation and recruitment rates in these years, 

162 the importance of local hydrodynamics on population recovery and of predator activity on 

163 population structure are evaluated as a relationship a) of the average bottom current speed to the 

164 density of recruits, and b) between the densities of predatory fish and middle-sized sea urchins, as 

165 the size-class range potentially vulnerable to fish predators. Finally, the influence of spatial 

166 configurations of rocky habitats on the total density of sea urchins under commercial size (< 5 cm 

167 diameter size) is estimated.

168 Taking advantage of the valuable dataset before the collapse of 2010, we attempt to capture 

169 the natural relationships between local population dynamics and the environmental constrains in 

170 the study area, providing a precious reference point to understand the mechanisms driving 

171 population structure before its collapse. This is a key step toward an improved comprehension of 

172 local population dynamics and a prerequisite for basing fishing quota allocation 

173 In order to avoid a collapse of sea urchin populations in this area, and to achieve long term 

174 sustainability of the fishery, a major change in the management strategy is necessary (e.g. Ouréns, 

175 Naya & Freire, 2015). The aim of this study is therefore to provide evidence on the importance of 

176 embedding spatial and temporal environmental processes in the assessment of the stock 

177 sustainability towards a scientifically sound, ecosystem-based fisheries management that allows 

178 an integrated management of sea urchins and their predators in the Peninsula of Sinis.

179

180

181 Material & Methods
182

183 Study Area
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184 The study area encompasses 40 km of the West Coast of Sardinia (Italy) between the Gulf 

185 of Oristano and Su Pallosu Bay (Peninsula of Sinis) (Fig.2). This area includes the local Marine 

186 Protected Area of “Penisola del Sinis, Isola di Mal di Ventre”, which was established in 1997 and 

187 covers a surface of 250 Km2 (Fig. 2). The full protection area is 5 Km2 (Guala et al., 2008), while 

188 the remaining zones are intensively frequented by fishermen (Pieraccini, Coppa & De Lucia, 

189 2016).  The study area is limited to the bathymetry of 5 ± 1m (mean depth at which the harvesters 

190 usually work) and it is subdivided into five fishing sectors (Table 1). Study sector 1 is identified 

191 in the portion of coast located outside the Marine Reserve from Su Pallosu Bay to the northern 

192 boundary of the Marine Reserve, including Cape Mannu (Fig.2). Sectors 2 and 3 encompass the 

193 stretch of coast inside the Marine Reserve that is exposed to the open sea, while sector 4 represents 

194 the Marine Reserve islands of Mal di Ventre and Catalano. Finally, sector 5, at the southern border 

195 of the Marine Reserve, includes part of the Gulf of Oristano.

196 The seabed of the study area is composed of bedrock of different natures: Palaeozoic 

197 granite basement, cropping out around Mal di Ventre Island; Pliocene basalt rock in the Cape San 

198 Marco area and surrounding Catalano Island (Fais, Klingele & Lecca, 1996; De Falco et al., 2003; 

199 Duncan et al., 2011; Conforti et al., 2016); and the Miocene and Quaternary Calcareous rocks 

200 located all along the study area coastline (Lecca & Carboni, 2007). These different types of 

201 substrate morphology influence the distribution of Posidonia oceanica; the meadow shows a 

202 patchy pattern where the matte is on the bedrock and a continuous pattern where the matte lies on 

203 the unconsolidated sediments (Fig.2). The meadow is continuous on the eastern side of Mal di 

204 Ventre Island and inside the Gulf of Oristano, while P. oceanica shows a patchy meadow pattern 

205 in the rest of the study area (De Falco et al., 2008).

PeerJ reviewing PDF | (2020:03:47281:2:0:NEW 3 Sep 2020)

Manuscript to be reviewed



206 Along the coastal area, the average bottom current speed (Fig.3) strongly influences the 

207 abundance of sea urchin recruits (Farina et al., 2018). The water circulation in this area is mainly 

208 promoted by the action of the winds which are predominantly from the North-West, the Mistral 

209 wind, and from the South-West, the Libeccio wind, with average speeds of 7 m/s and with peaks 

210 around 20 m/s (Zecchetto et al., 2016). Such two prevalent wind regimes may generate intense 

211 flows towards the south, in the case of Mistral events, and weaker northward flows, in the case of 

212 Libeccio events. In both cases, within the Gulf of Oristano, recirculation cells develop in 

213 correspondence to the leeway side of the main two Gulf capes. We refer to Cucco et al. (2006, 

214 2012) for a detailed description of sea current circulation in the study area. 

215

216 Environmental constraints

217 Within the sectors, on the basis of the occurrence of different rocky substrates and 

218 Posidonia oceanica meadows, the environmental areas inhabited by sea urchins are defined as 

219 types of habitat (Abercrombie, Hickman & Johnson, 1966): Calcareous rock (CR), Granite (GR), 

220 Basalt (BA), Posidonia oceanica patchy meadow (PM) and Posidonia oceanica continuous 

221 meadow (CM). 

222 The geomorphology was described through habitat mapping (Fig. 2). Available data 

223 consisted of morpho-bathymetric data, aerial images and several geo-datasets. To ease processing 

224 and data sharing among researchers, all available data were integrated and organized in a 

225 geodatabase implemented through a GIS and the software suite Geoinformation Enabling Toolkit 

226 StarterKit ® (GET-IT), (Fugazza, Oggioni & Carrara; Pavesi et al., 2016; Lanucara et al., 2017; 

227 Brambilla et al., 2019)  that was developed by researchers from the Italian National Research 

228 Council within the framework of the  RITMARE research project. 
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229 The distribution and extent of habitats have been plotted to create a map with complete 

230 coverage of the seabed (MESH, 2008). Seafloor mapping has been made by imposing clear 

231 boundaries between different morphotypes (Fig. 2) to provide representations of how are they 

232 structured. Habitats alternate heterogeneously along the coast. A pool of variables describing the 

233 basic characteristic of their spatial configuration was estimated in each sector with the free 

234 software Fragstats 4.1 (McGarial & Marks, 1995). The estimated variables are Patch Density of 

235 types of habitat on the total landscape area (PD, patch/Km2), Perimeter-to-area ratio (P/A ratio, 

236 1/m), Mean Patch Size of types of habitat (MPS, Km2), the Largest Patch Index (LPI, %) as the 

237 percentage of landscape area occupied by the largest patch of a type  of habitat and 

238 Interspersion/Juxtaposition Index (IJI, %) which measures the degree of aggregation or 

239 “clumpiness” of a map based on adjacency of patches of the same type of habitat (O’Neill et al., 

240 1988) (Table 2). 

241 The average bottom current speed in the investigated area was obtained by means of a 

242 numerical modelling previously applicated in Farina et al., (2018). A three-dimensional 

243 hydrodynamic and wind wave model, SHYFEM-WWM (Umgiesser et al., 2004), previously used 

244 to reproduce the wind-wave and the 3D water circulation in the Western Sardinian Sea (Cucco et 

245 al., 2006, 2016; De Falco et al., 2008), was adopted. 

246 In Farina et al., (2018), the authors reported the model solution for the biennium 2009 and 

247 2010 since it is highly representative of the climate in the Sinis Peninsula (see Appendix 1 in 

248 there). The same solutions were used here to describe the water circulation in the first 10 meters 

249 of water depth. Hourly data of the sea water speed at the bottom were averaged between January 

250 and June, corresponding to the period of active local recruitment (Table 1; Fig.3) (Prado et al., 

251 2012; Farina et al., 2018).
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252 Finally, from a multi-year series of fish biomass data recollection, we extrapolated the abundance 

253 of sea urchin predatory fish for each sector from 2004 to 2007 with the exception of sector 5 (Marra 

254 et al., 2016). Data represent the abundance of the commercial sea breams Diplodus spp., Sparus 

255 aurata in the shallow water over the rocky bottoms (5 metres in depth) collected using Underwater 

256 Visual Census (Table 1) (Marra et al., 2016). In these years, the reserve effect on fish biomass was 

257 not evident and no significant differences were detected between inside and outside the Marine 

258 Reserve with the exception of the sea bream that were more abundant inside (Marra et al., 2016; 

259 Table.1). 

260

261 Sea urchin population structure

262 Sea urchin population structure was estimated for each type of habitat in the study sectors 

263 from a multi-year series of data from 2004 to 2007 (before the population collapsed). During this 

264 period, 79 samplings were carried out following a standard protocol at depths between 2 and 10 m 

265 (Guala et al., 2008). Data were collected as previously described in Farina et al. (2018). 

266 Specifically, for each site and type of habitat, sea urchin density was estimated as the number of 

267 individuals per square meter (ind/m2) and the sizes of the individuals (without spines) were 

268 measured with callipers to the closest mm.

269 For the statistical analysis, we define recruits as individuals with a diameter ≤ 1 cm that 

270 survived until approximately one year after their settlement (Ouréns et al., 2013) and  middle-sized 

271 sea urchins as individuals of size class range 2-5 cm (diameter size), vulnerable to predatory fish. 

272 Recruits and middle-sized sea urchins together constitute the under commercial size. Sea urchins 

273 larger than 5 cm diameter represent the commercial stock and are also estimated but this size-class 
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274 is not considered in the analysis carried out in relation with the environmental factors since its 

275 density was already reduced to low values by human activity before 2007 (Pieraccini, Coppa & 

276 De Lucia, 2016).

277  Sea urchin population density and structure are estimated for each type of habitat and 

278 sector for before their collapse (Table 3, Fig.4). We carried out an analysis of variance of the sea 

279 urchin density for the under-commercial-sized (< 5cm diameter test), recruit-sized (0-1 cm 

280 diameter size) and middle-sized sea urchins (2-5 cm diameter test) function of "sector" and 

281 "habitat" as fixed factors. Assumptions of normal distribution and homogeneity of response 

282 variables were tested using D’Agostino-Pearson and Cochran’s tests. The densities of sea urchins 

283 under commercial size and those of the middle-size followed a normal distribution with 

284 unbalanced replicates and were analysed with General Linear Model with Gaussian family 

285 distribution (Zuur et al., 2009). Whereas, given the non-normal distribution and the high amount 

286 of zeros in recruit density, the analysis of variance of recruits was performed with General Linear 

287 Model with Negative Binomial Distribution and certain zero Inflation in order to avoid biased 

288 parameter estimates and standard errors (Zuur et al., 2009). All the model validations are provided 

289 graphically (see Supplementary material). 

290

291 Relationship between population structure and environmental conditions 

292  Spearman's rank correlation coefficient as a non-parametric measure of rank 

293 correlation was carried out between non-normal distribution values of recruit density and the 

294 average bottom current speed, while Pearson's rank correlation, as a parametric linear regression 

295 test, was used to estimate the statistical relationship between normally distributed values of density 

296 for middle-sized sea urchins and the density of predatory fish.  
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297 The Generalized Linear Model (GLM) with Poisson family distribution was performed in order to 

298 assess the influences of a pool of variables representing the basic configuration of the rocky 

299 habitats on total sea urchin density for those under the commercial size. Patch Density, Perimeter-

300 to-area ratio, Mean Patch Size, Largest Patch Index and Interspersion/Juxtaposition Index (IJI, %) 

301 are previously estimated (see above) and used as predictors for sea urchins density (commercial 

302 stock excluded). The stepwise forward regression technique was used to select the more 

303 conservative model (Whittingham et al., 2006). 

304 Given the lack of data on fish visual census in Posidonia oceanica and since recruits are 

305 considerably underestimated inside meadows (Oliva et al., 2016), the patchy meadow and 

306 continuous meadow types of habitats were excluded a priori from all these analyses. Analyses 

307 were performed using R Studio (R Core Team, 2014).

308

309 Results

310

311 Environmental constraints

312 Sector 1 is the largest sector with an area of 12.7 Km2 (Fig.2). The average current speed 

313 was 0.05 ± 0.003 m/s (Fig.3) which was the slowest current measured in the recruitment period 

314 (from January to June; see Table 1). Conversely, sector 4 is the smallest sector with a total area of 

315 3.8 Km2 (Fig.2) and the highest predatory fish abundance of 84.6 ± 12.6 ind/ 125m2 (Table 1). 

316 Sectors 2 and 3 extend 5.1 Km2 and 4.4 Km2 respectively (Fig.2) with intermediate values for both 

317 bottom current speed average and predatory fish abundance (see Table 1 and Fig.3). Finally, sector 

318 5 covers a total area of 11.9 Km2 with a similar bottom current speed average for sector 3, while 

319 data on predatory fish abundance were not available (Table 1). 
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320 In sector 1, Posidonia oceanica patchy meadow (PM-1) is the most extended habitat with 

321 a surface of 7.2 Km2, while Calcareous rock (CR-1) covers 4.5 km2 with a Patch Density of 1.0 

322 per Km2  In sector 2, Calcareous rock (CR-2) presents the most extensive surface of the habitats in 

323 the sector with the highest patch aggregation (98.9% of IJI) of all the habitats in the study area (see 

324 Table 2).

325 In sector 3, Posidonia oceanica patchy meadow (PM-3) and Calcareous rock (CR-3) cover 

326 a surface of 2 and 1 Km2 respectively and both habitats present a Patch Density of 0.32 per Km2 

327 (Table 2). Basalt (BA-3) is distributed over 0.1 km2 in both sectors 3 and 4. In Sector 4, Granite 

328 (GR-4) covers 1.8 Km2 (Table 2). Finally, in sector 5 Posidonia oceanica continuous meadow 

329 (CM-5) represents 11.1 Km2 of the surface in the sector with the largest patch covering 42.6% of 

330 the total area (Table 2). Continuous meadow is also present in sector 4 but sea urchins have never 

331 been sampled there. A variable proportion of sandy bottom is present in all the sectors with the 

332 exception of sector 4.

333

334 Sea urchin population structure

335 Sector 1, located outside the Marine Reserve, presented the highest sea urchin density of 9.9 ± 1.1 

336 ind/m2, but the lowest proportion of commercial stock (15.1%; Table 1). Inside the Marine 

337 Reserve, sea urchin density ranged from the low density of sector 5 of 2.5 ± 0.2 ind/m2, with a 

338 proportion of 20% commercial stock, to the high density of 9.8 ± 1.2 ind/m2 in sector 4 and with a 

339 proportion of commercial stock of 28.7% (Table 1). 

340 The density of specimens under commercial size differ significantly between habitats (p-value < 

341 0.001) and between sectors (p-value = 0.02; Table 4a). Among the types of habitat, the highest sea 
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342 urchin density for specimens under commercial size was found in CR-1: 16.3 ± 1.4 ind/m2 (Figure 

343 4, Table 3). High values were also found in CR-2, CR-3 (10.6 ±1.3 and 10.1 ±0.8 ind/m2 

344 respectively) and in GR-4 (11±1.1 ind/m2). Otherwise, the lowest sea urchin density was estimated 

345 in correspondence to CM-5 (Table 3). 

346 Densities for both recruits and middle-sized sea urchins were significantly different among habitats 

347 and sectors (p-values < 0.001; Fig. 4 and Table 4b and 4c). Recruits were significantly more 

348 abundant in sector 1 and sector 4 where they were 3.6 ±0.6 ind/m2 in CR-1, 1.9 ±0.6 ind/m2 in 

349 GR-4 and 1.5 ±1.1 ind/m2 in BA-4 (Table 3 and 4b). Meanwhile, no recruits were found in PM-1, 

350 PM-2, BA-3 and CM-5 (Fig.4, Table 3). The highest average value of density for middle-sized sea 

351 urchins was found in CR-1 at (7.2 ±0.8 ind/m).  Average density values for CR-2 and CR-3 (6.3 

352 ±0.9 ind/m2 and 5.4 ±0.7 ind/m2 respectively) were higher than for BA-3, BA-4 and GR-4 (3.1 

353 ±1.1, 0.5 ±0.2 ind/m2 and 3.3 ±0.8 ind/m2 respectively) (Table 3). In CM-5, the density of middle-

354 sized sea urchins was 1.9 ± 0.5 ind/m2 (Fig.4, Table 3).

355

356 Relationship between population structure and environmental conditions 

357  Values of recruit density in rocky habitats (Calcareous rocky, Basalt and Granite) follow 

358 a non-normal distribution due to the high number of sampled zeros. Accordingly, Speraman’s non-

359 parametrical rank correlation test was performed between recruit density and average bottom 

360 current speed and a negative significant relationship was found (Spearman's rank correlation p-

361 value = 0.002932; rho = -0.3972998; Fig.5a). The density of middle-sized sea urchins following 

362 normal distribution was correlated to the predatory fish density using Peason’s correlation test and 
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363 the variables resulted in a significant negative correlation (Pearson’s correlation p-value = 

364 0.04268, correlation coefficient = -0.5118654; Fig. 5b). 

365 The General Linear Model highlights high significant influences of Patch Density (PD; p-

366 value< 0.001) and significant influence of the Mean Patch Size (MPS; p-value<0.001) on sea 

367 urchin density for specimens under commercial size. The proportion of the variance explained by 

368 the Minimal Adequate Model is roughly 50% (see Table 5 and Fig. S5).

369

370 Discussion

371

372

373 The surveys carried out between 2004 and 2007 revealed conspicuous differences in sea 

374 urchin density across fishing sectors and types of habitat. In general, rocky habitats of Calcareous 

375 rock, Basalt and Granite supported larger sea urchin populations than the habitats characterized by 

376 Posidonia oceanica.

377 Excluding the commercial component of the stock whose density was distorted by 

378 intensive fishing, the sea urchin density for specimens under commercial size in rocky habitats 

379 was significantly higher in Calcareous rock. Moreover, considering results obtained from the 

380 analysis on the spatial configuration, larger and more dense patches seems to further enhance sea 

381 urchin density in Calcareous rock. 

382 In fact sector 1 was outside the Marine Reserve and had the lowest proportion of 

383 commercial stock, Calcareous rock in this sector presented a large surface (4.5 Km2) with  high 

384 Patch Density (one patch per Km2) which supported a density of sea urchin under commercial size 

385 approximately twice that of calcareous rock in sectors 2 and 3. Specifically, recruit density in 
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386 Calcareous rock of sector 1 was 6 and 4 times higher than in the Calcareous rock of sectors 2 and 

387 3 respectively, and 2 and 2.5 times higher than in the Granite and Basalt of sector 4 respectively. 

388 The density of middle-sized sea urchins resulted more than 2 times higher in Calcareous rock in 

389 general (sectors 1, 2, 3) than in the Granite and Basalt (sector 4). Finally, in the Posidonia oceanica 

390 patchy meadows, recruit density was negligible everywhere, and similarly for the middle –sized 

391 sea urchins in the continuous meadow of sector 5.

392 Population structures analysed responded to the high variability of the environmental 

393 constraints observed along this stretch of coast. From January to June, when spawning occurs (Loi 

394 et al., 2017) and settlement is supposed to be over (estimating 20-30 days for the planktonic phase 

395 once the eggs are fertilized, Lozano et al., 1995), the average bottom current speed was slowest in 

396 sector 1. It was almost half the speed of sectors 2 and 4 and a third less than in sectors 3 and 5. 

397 The weak, negative correlation between recruits and bottom current speed is a distant 

398 approximation of the real influence of hydrodinamics on population recruitment. This correlation 

399 was performed due to the lack of data on larvae and settlers during these years. In general, the 

400 influence of current on recruitment can serve as an indicator of effective connectivity between 

401 areas (Romagnoni et al., 2020). However, sea urchin density during the post-settlement phase 

402 experiences important decreases due to predators (Hereu, Zabala & Sala, 2008) and, as 

403 consequence, bottom current speed should be more closely correlated to larvae and settlers than to 

404 recruits. The low values of the average bottom current speed (< 0.1 m/s) correspond to recruit 

405 densities above 3.5 ind/m2. It is noteworthy that the average bottom current speed on the 

406 Calcareous rock of sector 1 is always below this critical threshold. Accordingly, this condition 

407 seems to support the existence of local standing circulation structures that determine a higher 

408 regime of natural recruitment (Farina et al., 2018).
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409 After recruitment, predation is the second main process regulating sea urchin population 

410 structure on a local scale (Guidetti, 2004; Hereu, Zabala & Sala, 2008; Boada et al., 2015). Adult 

411 sea urchins are preyed on by few fish species, especially the sea breams which are targeted by 

412 artisanal fisheries (Guidetti, 2006). During 2004-2007, there was a negative correlation between 

413 the abundances of the sea breams and middle-sized sea urchins. Low abundances of predatory fish 

414 were found outside the Marine Reserve in sector 1, most likely due to the strong pressure exerted 

415 by recreational spearfishing (Marra et al., 2016). Conversely, in sector 4- the Islands inside the 

416 Marine Reserve- the density of sea breams was higher than in the other sectors (Marra et al. 2016). 

417 The reduced accessibility of the islands compared to the other coastal sectors could have 

418 offered seabreams protection from recreational spear fishermen, allowing higher abundance in this 

419 sector. Consistently with this theory, the lowest density of middle-sized sea urchins was found in 

420 sector 4, supporting the possibility of a higher level of predation in this area due to higher density 

421 of predatory fish. 

422 Moreover, predator activity is generally influenced by an increase in habitat edges (Bender, 

423 Contreras & Fahrig, 1998; Kondoh, 2003; Prado et al., 2008; Farina et al., 2017). This is typically 

424 caused by fragmentation processes, which generally result in increasing habitat complexity as 

425 patch perimeter- to- area ratios increase (Ranney, Bruner & Levenson, 1981). The opposite 

426 condition is designed by the calcareous rock in sector 1. High-density patches with large surfaces 

427 dampen visual predation of fish providing efficient shelters to middle-sized sea urchins and recruits 

428 as well (Hereu et al., 2005).

429 Our results suggest how environmental constraints exert an important influence on sea 

430 urchin population dynamics and population structures and are not quite as homogenous as it might 
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431 seem along this stretch of coast. Such heterogeneity might indicate that the sea urchin population 

432 in this region could be composed of multiple, smaller populations with their own dynamics, 

433 potentially connected via larval dispersion. In fact, the long planktonic early life-stage (between 

434 20-30 days according to Lozano et al., 1995) could theoretically make sea urchin populations well 

435 connected (López et al., 1998; Morgan et al., 2000; Prado et al., 2012; Treml et al., 2012). 

436 However, in this area larval dispersion could be strongly dependent on the bottom current speed 

437 (Farina et al 2018). The presence of “source- sink” dynamics via larval dispersal mediated by 

438 bottom current speed could affect conservation and management strategies for sustainable fisheries 

439 (Romagnoni et al., 2020; Kritzer and Sale 2004; Kerr et al., 2016). This is especially important for 

440 conservation requirements in a Marine Reserve (Paterno et al., 2017) and it is an aspect of concern 

441 for future research in this area.

442 The strength of connectivity depends strongly on the abundance of reproducers. Since 

443 commercial harvesting depletes the main reproducers (i.e. size class >5 cm), middle-sized sea 

444 urchins play an important role in the population’s recovery (Loi et al., 2017). However, this size 

445 class is highly vulnerable to predators. For this reason, harvesting of this size class should be 

446 limited in conditions of high predation mortality. This could be the case of the Islands of sector 4, 

447 where the sea urchin population seemed to suffer a higher predation pressure than in the other 

448 sectors.

449 Farina et al. (2009, 2014) found high proportions of middle-sized sea urchins in patchy 

450 meadows in accordance with the efficient shelter that Posidonia oceanica leaves provide from the 

451 visual mechanism of predatory fish. However, the three-dimensional structure of large seagrass 

452 meadows can become a ‘death trap’ in the presence of high densities of bottom predators (Farina 

453 et al., 2014, 2016; Schmidt & Kuijper, 2015). For example, Sector 5, in the Gulf of Oristano, is 
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454 characterized by a large, continuous meadow of Posidonia oceanica (De Falco et al., 2008). Here, 

455 the low density of P. lividus could be related to the abundance of whelks (e.g. Hexalplex trunculus, 

456 authors pers. obs.), which is known as effective predators of sea urchins (e.g. Farina et al., 2016) 

457 and whose proliferation is probably favoured by the bio-deposits that accumulate beneath the 

458 nearby mussel farms (Inglis & Gust, 2003).

459 In order to achieve long-term sustainable exploitation of marine resources, fisheries 

460 management should account for the key processes regulating population dynamics on a relevant 

461 spatial and temporal scale (Hilborn & Walters, 1992). Despite the approximations and data 

462 limitations, our analysis identified spatial heterogeneity in sea urchin stock abundance related to 

463 local conditions as well as emergent natural relationships between sea urchin population dynamics, 

464 their ecological drivers and the environmental constraints in this area. These findings may be of 

465 help in advancing management in the area. 

466 In this system, the continuous and inexorable decrease of sea urchins since 2007 has been 

467 followed by frantic adjustments in management measures. Regular stock assessment for P. lividus 

468 has been proposed to provide a scientific basis for management in Sardinia based on ad-hoc data 

469 and on regular scientific monitoring of sea urchin density (Addis et al., 2009). However, given the 

470 key role played by P. lividus in coastal ecosystems, advanced approaches could be required to 

471 provide long-term sustainable exploitation that considers the importance of environmental 

472 constraints in influencing local sea urchin population structure through the ecological drivers of 

473 recruitment and predation (Miller & Abraham, 2011). For example, fisheries models with explicit 

474 inclusion of spatial dynamics (Kritzer and Sale 2004; Kerr et al., 2016) or multispecies dynamics 

475 allow for the testing of alternative management strategies (Christensen & Walters, 2004; Fulton et 

476 al., 2004; Spedicato et al., 2010).
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477  When informed with ecologically relevant dynamics, such as those identified in the current 

478 study, these tools could complement single-species stock assessment in identifying management 

479 measures for regulating the fishing effort on specific components of the populations (for example, 

480 reducing harvesting of key size classes) or areas (e.g. areas with high predation mortality, or in 

481 key “source” areas). 

482 The Peninsula of Sinis offers a unique case study, where ecological and economic 

483 knowledge is building up, and the involved stakeholders, including small-scale fisheries 

484 organizations, Marine Reserve and local administration are demanding a science-based 

485 management system. There is currently momentum toward the implementation of a long-term 

486 vision which entails a data collection procedure aiming to provide management strategies for the 

487 sustainable management of sea urchin fisheries. These would combine the objectives of 

488 conservation of ecological features and of traditional and socio-economics values. Moreover, 

489 achieving sustainable fishing of both resources -sea urchins and sea breams- should enhance, as a 

490 cascade effect, the conservation prospective for macrophyte communities, which are pivotal for 

491 ensuring a high environmental quality and support nursery of other benthic species. 

492
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Figure 1
Diagram describing sea urchin population dynamics.

Letters represent different life stages of populations: a) commercial stock and main
reproducers of sea urchin populations, b) larval supply for populations, c) settlement in
suitable habitats, d) interactions with habitat structure for food and shelter, e) predator-prey
interactions with local predator community, f) fishing pressure both on fish and sea urchins.
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Figure 2
Detailed digital mapping of geomorphology in the study area

Colours indicatedifferent sectors and types of habitats: Calcareous rock (CR in grey), Granite
(GR in light blue), Basalt (BA in red), Posidonia oceanica patchy meadow (PM in dark green),
Posidonia oceanica continuous meadow (CM in light green) and sandy bottom (in yellow).
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Figure 3
Detailed digital mapping of hydrodynamism in the study area.

Map representing average bottom current speed obtained by the oceanographic model in the
area of interest during six months from spawning time to the period of settlement (January-
June).
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Figure 4
Graphs representing different population structures.

Populations of each type of habitat in each sector: calcareous rock of sector 1(CR-1), patchy
meadow of sector 1 (PM-1), calcareous rock of sector 2 (CR-2), patchy meadow of sector 2
(PM-2), calcareous rock of sector 3 (CR-3), patchy meadow of sector 3 (PM-3), basalt of sector
3 (BA-3), granite of sector 4 (GR-4), basalt of sector 4 and continuous meadow of sector 5
(CM-5).
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Figure 5
Graphs representing relationships between sea urchin densities and environmental
constraints.

In rocky habitats a) density of recruits is correlated with the average bottom current speed
(Spearman's rank correlation) and b) density of middle-sized sea urchins with predatory fish
density (Pearson’s correlation) Number of points used in the graph a corresponds to the sea
urchin sampling stations while in the graph b to the stations of fish visual census.
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Table 1(on next page)

Table showing differences in average bottom current speed and predatory fish density
between sectors (in sector 5 only one observation was carried out).
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Sector

Total 

area  

(Km2)

Average Current 

Speed

(m/s)

Average 

predatory fish 

 (ind/125m2)

Total sea 

urchin density

Stock 

proportion (%)

1 12.7 0.05 ±0.003  69.6 ± 20 9.9 ±1.1 15.1 ±2.3

2 5.1 0.09 ±0.004 53.5 ± 7.2 8.9 ±1.3 23.3 ±2.2

3 4.3 0.07 ±0.007 74.8 ± 22.8 6.9 ±1.5 28.7 ±4.7

4 3.8 0.10 ±0.004 84.6 ± 12.6 7.5 ±1.7 27.8 ±3.6

5 11.9 0.07 ±0.003 - 2.5 ±0.2 20.0 ±1.8 

1
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Table 2(on next page)

Spatial configuration of sampled habitats for each study sector.

Dash means no samplings were carried out.
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Sector Habitat code No of   

samplings

Area 

(Km2)

PD

(n/Km2)

P/A ratio

(1/m)

MPS 

(Km2)

LPI 

(%)

IJI 

(%)

Calcareous Rock CR-1 12 4.5 1.01 21.1 0.10 3 68.6

Patchy Meadow PM-1 12 7.2 0.16 11.0 0.72 5.3 55.31

Sand - 1.0 - - - - -

Calcareous Rock CR-2 15 2.5 0.62 15.2 0.31 17 98.9

Patchy Meadow PM-2 7 2.3 0.08 13.2 2.28 17.8 46.3

2

Sand - 0.3 - - - - -

Calcareous Rock CR-3 5 1.0 0.32 16.2 0.17 4.5 44.6

Patchy Meadow PM-3 4 2.0 0.32 10.4 0.33 8.2 61.7

Basalt BA-3 4 0.1 0.05 0.3 0.18 0.6 33.9

3

Sand - 1.2 - - - - -

Granite GR-4 14 1.8 0.02 16.4 1.85 2.9 62.7

Basalt BA-4 3 0.1 0.02 21.4 0.08 0.1 0

Patchy Meadow - 0.5 - - - - -

4

Cont. Meadow - 1.4 - - - - -

Cont. Meadow CM-5 3 11.1 2.6 2.1 3.7 42.6 5.5

Other - 0.1 - - - - -5

Sand - 0.7 - - - - -

1
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Table 3(on next page)

Densities of sea urchin size-classes representing population structures.

Mean sea urchins densities of the size-class range representing population structure in the
different types of habitat. Size-class ranges 0-1cm and 2-5cm diameter represent recruits
and middle-sized sea urchins respectively, whereas commercial stock size densities are
represented beyond the dotted line and are not included in the analysis.
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Sector Habitat

 

0-1cm 1-2cm 2-3cm 3-4cm 4-5cm

stock

5-6cm >6cm

1 Calcareous Rock 3.6±0.6 4.1±0.7 2.9±0.3 1.9±0.2 2.4±0.3 1.4±0.2 0

1 Patchy Meadow 0 0 0.3±0.1 1.1±0.4 1.3±0.3 0.7±0.2 0.1±0

2 Calcareous Rock 0.6±0.2 1.2±0.2 1.9±0.3 1.8±0.2 2.6±0.4 2.4±0.4 0.2±0.1

2 Patchy Meadow 0 0.3±0.1 1.2±0.5 2±0.4 2.1±0.3 1.3±0.3 0.3±0.1

3 Calcareous Rock 0.9±0.3 2.5±0.6 2.3±0.2 1.6±0.3 1.5±0.2 1.2±0.3 0.1±0

3 Patchy Meadow 0.1±0.1 0.2±0.1 0.6±0.3 0.8±0.4 1.2±0.5 1±0.2 0.1±0.1

3 Basalt 0 0.1±0 0.1±0 0.5±0.2 2.5±0.9 2.6±1.1 0.6±0.3

4 Granite 1.9±0.6 2.6±0.4 1±0.2 0.9±0.2 1.4±0.4 2.5±0.5 0.8±0.1

4 Basalt 1.5±1.1 1.2±0.7 0.2±0 0.1±0.1 0.2±0.1 0.5±0.3 0.3±0.2

5 Continuous Meadow 0 0 0.3±0.3 0.5±0.3 1.1±0 0.6±0.5 0

1
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Table 4(on next page)

Analysis of deviance table GLM model

a) density of under-commercial-size, b) density of recruit and c) density of middle-size sea
urchins in function of Sector and Habitat as fixed factors. DF: degrees of freedom, DR:
deviance residual, F: F statistics, P: probability of Type I error.
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1

a. Response variable  Factor DF DR F-value p-value

Sector 4 193.29 3.2592 0.01638

Habitat 3 801.33 18.0157 8.534e-09

Density of under-commercial size 

Residual 79

b. Response variable  Factor DF MS F-value p-value

Sector 3 44.68 6.038 0.00103

Habitat 3 101.21 13.677 4.26e-07

Density of recruit

Residual 69 7.40

c. Response variable  Factor DF DR F-value p-value

Sector 4 125.61 5.1458 0.0010676

Habitat 3 130.73 7.1410 0.0002935

Density of middle-size

Residual 78

2

3

4

5

6
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Table 5(on next page)

Generalized Linear Model (GLM) showing the effects of the assessed explanatory
variables on the density of commercial under-sized classes (TD<5cm).

The Minimal Adequate Model (AIC=290.8; R-square = 0.468) was obtained starting from Full
Model (AIC=295.5; R-square=0.476) through the stepwise forward regression technique
(Anova p-value=0.55). Coefficient estimates (Estimate), standard errors (SE), z-values, and
significance levels (p-value) for variables are provided for fixed effects. Significant effects are
given in bold.
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1

2

3

4

5

6

Full Model

Response variable Effect Estimate SE z-value p-value

MPS

PD

IJI

LPI

P/A ratio

0.310135

1.073995

0.001116

-0.011801

0.007291

0.120982

0.201901

0.004847

0.019027

0.015867

2.563

5.319

0.230

-0.620

0.460

0.0104

1.04e-07

0.8179

0.5351

0.6459

Minimal Adequate Model  

Response variable Effect Estimate SE z-value p-value

 Sea urchin density MPS

PD

0.3758

1.1459

0.0861

0.1381

4.365

8.300

1.27e-05

2e-16
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