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ABSTRACT
Background. Single-cell RNA-sequencing (scRNA-seq) technology is a powerful tool
to study organism from a single cell perspective and explore the heterogeneity between
cells. Clustering is a fundamental step in scRNA-seq data analysis and it is the key
to understand cell function and constitutes the basis of other advanced analysis.
Nonnegative Matrix Factorization (NMF) has been widely used in clustering analysis
of transcriptome data and achieved good performance. However, the existing NMF
model is unsupervised and ignores known gene functions in the process of clustering.
Knowledges of cell markers genes (genes that only express in specific cells) in human
and model organisms have been accumulated a lot, such as the Molecular Signatures
Database (MSigDB), which can be used as prior information in the clustering analysis
of scRNA-seq data. Because the same kind of cells is likely to have similar biological
functions and specific gene expression patterns, themarker genes of cells can be utilized
as prior knowledge in the clustering analysis.
Methods. We propose a robust and semi-supervised NMF (rssNMF) model, which
introduces a new variable to absorb noises of data and incorporates marker genes
as prior information into a graph regularization term. We use rssNMF to solve the
clustering problem of scRNA-seq data.
Results. Twelve scRNA-seq datasets with true labels are used to test the model
performance and the results illustrate that our model outperforms original NMF
and other common methods such as KMeans and Hierarchical Clustering. Biological
significance analysis shows that rssNMF can identify key subclasses and latent biological
processes. To our knowledge, this study is the first method that incorporates prior
knowledge into the clustering analysis of scRNA-seq data.

Subjects Bioinformatics, Molecular Biology, Computational Science
Keywords Semi-supervised, NMF model , Single cell RNA-seq

INTRODUCTION
Single cell RNA-seq (scRNA-seq) is a powerful tool enabling the transcriptional profiles at
cellular resolution, comparing with ‘‘bulk’’ RNA-seq which can only measure the average
gene expression among a group of cells. Compared with traditional high density microarray
in single-cell transcriptomes, scRNA-seq has an obvious advantage that it can profile all
transcripts in one cell rather than only detecting known genes by complement sequence
probes. Besides, by scRNA-seq we can assess the heterogeneity between cells and identify
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the hidden biological process, such as embryonic development and the origin of cancer
cells (Tirosh et al., 2016; Zeisel et al., 2015).

Downstream analysis is the most important step in the workflow of scRNA-seq analysis
and necessary for solving specific biological question. Clustering plays a fundamental and
important role in many downstream analysis methods since it has a substantial impact on
the outcome. There are considerable clustering algorithms for scRNA-seq andmost of them
can be applied to any type of data, such as KMeans and Hierarchical Clustering. However,
most of thesemethods are unsupervised and does not consider known biological knowledge
such as cell marker genes. In this paper, we proposed a semi-supervised NMF model for
the clustering analysis of scRNA-seq data, which incorporates cell marker information and
significantly improves the accuracy of clustering analysis.

Related work
Nonnegative matrix factorization (NMF) is an effective method for unsupervised clustering
analysis of gene expression data. Given a nonnegative matrix X of size m×n, NMF aims
to find two non-negative matricesW and H such that:

X ≈WH

Where W ∈Rm×k is a basis matrix, H ∈Rk×n is a coefficient matrix. The solution to this
problem can be obtained by solving the following optimization problem:

minW ,HO(W ,H )=minW ,H
1
2
||X−WH ||2F

||.||F means Frobenius norm and W and H satisfy nonnegative constrains. Since many
practical problems in data mining, pattern recognition and machine learning require
non-negativity constraints and appropriate low dimensional representation of original
data, NMF has been successfully applied to these fields, which obtains the parts-based
representation as well as enhancing the interpretability of the data (Berry et al., 2007;
Chagoyen et al., 2006; Lee & Seung, 1999). In bioinformatics, it has been used to extract
meaningful features that belongs to different cell types from microarray and scRNA-seq
data and identify mRNA isoforms (Brunet et al., 2004; Shao & Hofer, 2017; Ye & Li, 2016).

Different variants of NMF has been put forward such as sparse NMF (SNMF) and
discriminant NMF (DNMF) for microarray and RNA-seq data (Jia et al., 2015; Kim &
Park, 2007). SNMF introduces a regularization term on W or H to control the degree of
sparsity and generate sparser representation. DNMF incorporates Fisher’s discriminant
criterion in the coefficient matrix by maximizing the distance among any samples from
different classes meanwhile minimizing the dispersion between any pair of samples in
the same class. The DNMF requires discriminant information to construct the objective
function and has been applied in various scenes such as face recognition and facial
expression recognition. Yet in most cases of scRNA-seq, we cannot know the exact class
information. Moreover, none of these methods consider the technical factors including
amplification, library size differences and dropouts (Buettner et al., 2015; Kharchenko,
Silberstein & Scadden, 2014). In addition to the technical factors, scRNA-seq data exhibit
high cell-to-cell variability in gene expression, which impeding the analysis. Overall, the
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technical effects and inherent variability in scRNA-seq introduce substantial noise and may
corrupt the analysis of underlying biological process.

In this paper, we propose a robust semi-supervised NMF model that is robust to noises
and uses marker information of cells as prior knowledge. We already have prior knowledge
about the marker genes of different cells (such as MSigDB database; Liberzon et al., 2011),
for instance, metastatic melanoma is a mixture of tumor cells and a variety of normal cell
including T-cells, B-cells, macrophages and NK cells; thus, we can know the prior marker
genes of different groups. We will show that incorporating such information into the NMF
model, the clustering accuracy can be increased significantly.

MATERIALS & METHODS
Original NMF algorithm
The original NMF algorithm was introduced by Lee and Seung and the objective function
is non-increasing if follows the multiplicative update rules (Lee & Seung, 2001):

Wij←−Wij
(XHT )ij

(WHHT )ij
Hij←−Hij

(W TX)ij
(W TWH )ij

The author proved that by repeating iteration of the update rules is guaranteed to
converge to a locally optimal matrix factorization. By using the non-negative constrains,
NMF can learn a low dimensional representation of the original data.

Roubst NMF algorithm
Robust NMF (rNMF) first proposed by Kong and Ding and was designed to handle
outliers and noises that original NMF fail to cope with (Kong, Ding & Huang, 2011). The
main difference of rNMF is using L2,1 norm loss function instead of Frobenius norm which
is defined as follow:

||X−WH ||2,1=
n∑

j=1

√√√√ m∑
h=1

(X−WH )2hj =
n∑

j=1

||xj−Whj ||

In this formulation, the error of each data point is ||xj −Whj || rather than squared,
thus the errors caused by outliers and noises do not dominate the objective function
compared with the squared one. Different from the revision on the objective function,
Zhang proposed a method which introduce an error matrix S∈Rn×m to capture the errors
and handle the extreme data points (Zhang et al., 2011):

minW ,H ,S||X−WH−S||2F
s.t .W ≥ 0,H ≥ 0,||S||0≤ υ

Where ν is the parameter that specifies the maximum number of nonzero elements in S.

Robust semi-supervised NMF algorithm
Motivated by robust NMF formulation, we adopt similar method to deal with the noises
in scRNA-seq data under the assumption that the data matrix may be corrupted by noises
and the noises are sparse (we use rNMF to represent this model below). In addition, we
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incorporate the prior information into a graph regularization term tomaintain the intrinsic
geometrical and discriminating structure of the data in the parts-based representation:

minW ,H ,S||X−WH−S||2F+α||S||1+βTr
(
HLHT )

s.t .W ≥ 0,H ≥ 0

Where Tr(.) denotes the trace of a matrix and α, β is the regularization parameters.
Since the l0− norm is difficult to solve, we replace the l0− norm constraint with a
l1−norm regularizer, which is a common technique for sparse solution. The second
graph regularization term maintains the local geometrical structure of the original data
matrix X in the low dimensional representation, i.e., the matrix H . Briefly, if two data
points xi and xj are close to each other in matrix X , then hi and hj , points in the low
dimensional representation matrix H , are also close to each other. This property is usually
referred to as local invariance assumption (Belkin & Niyogi, 2002; Cai, Wang & He, 2009)
and has been applied in the development of dimensionality reduction algorithms and
semi-supervised learning algorithms (Belkin & Niyogi, 2002; Zhu & Lafferty, 2005).

Chung et al. demonstrate that the local geometrical structure can be modeled by a
nearest neighbor graph on a scatter of data points (Chung & Graham, 1997). For each data
point xi in X, we need to find its neighbors and put edges between xi and its neighbors. In
our scRNA-seq problem, we suppose that all the cells are the nodes in a graph, but different
group of cells have different weighting. We use marker genes of cell group to construct the
weight matrix Q, which can be defined by various ways. In this paper, we chose the heat
kernel weighting and the weighting between xi and xj are:

Qij = e−
||xi−xj ||

2

σ

where σ is parameter that controls the weighting and we set σ = 1 in the experiment. Note
that only the rows (genes in rows and samples in columns for matrix X) that we select as
cell markers of X will be used to compute the weighting. As shown in Fig. 1, the expression
matrix X includes five groups and each group has its own highly-expressed genes (yellow
rectangular block). The rows which are the markers of different groups are selected to
construct the weight matrix.

We use Euclidean distance to measure the dissimilarity in the low dimensional
representation of X :

D(hi,hj)= ||hi−hj ||2

then the local geometrical structure preserving criterion can be written as:

<=

n∑
i,j=1

||hi−hj ||2Qij

=

n∑
i=1

hTi hiDii−

n∑
i,j=1

hTi hjQij

=Tr(HDHT )−Tr(HQHT )=Tr(HLHT )
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Figure 1 (A-B) An illustration of how to construct the weight matrix Q (C). (A) The heatmap is an
ideal simulated gene expression matrix X; (B) the heatmap is part of the matrix X that only selects rows of
marker genes.

Full-size DOI: 10.7717/peerj.10091/fig-1

Where D is a diagonal matrix and Dii=
∑

jQij . L is called graph Laplacian and L=D−Q.
We can see that by minimizing <, if data point xi and xj are close (Qij is big), hi and hj will
also be close to each other, so the distance relation between points in original data matrix
X can be preserved in low dimensional matrix H . This technique was first designed by
Cai et al. and introduced to solve the embedded structure problem, which assume that the
data is usually sampled from a low dimensional manifold embedded in a high dimensional
ambient space (Cai et al., 2011). We show that by encoding the geometrical information in
the NMF model, the clustering accuracy can be greatly improved.

Optimization algorithm for robust semi-supervised NMF
In this section, we derive the iterative multiplicative update rules for the robust semi-
supervised NMF based on the coordinate descent method (Sha et al., 2007). The objective
function is not convex forW, H and S together, so it is unrealistic to expect an algorithm to
find the global minima. It is natural to optimize W, H and S separately since the objective
function is convex while holding the other two variables as constant.

The objective function of rssNMF can be rewritten as:

O= ||X−WH−S||2F+α||S||1+βTr
(
HLHT )

=Tr((X−WH−S)(X−WH−S)T )+βTr
(
HLHT )

+α||S||1
=Tr(XXT )−2Tr(XHTW T )−2Tr(XST )+2Tr(WHST )+Tr(WHHTW T )

+Tr(SST )+βTr
(
HLHT )

+α||S||1

After introducing the Lagrangemultiplier9and8 for the constrains, the Lagrange function
L is stated as

L=Tr(XXT )−2Tr(XHTW T )−2Tr(XST )+2Tr(WHST )+Tr(WHHTW T )
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+Tr(SST )+βTr
(
HLHT )

+α||S||1+Tr(9W )+Tr(8H )

and the partial derivatives of L with respect toW andH are:

∂L

∂W
=−2XHT

+2SHT
+2WHHT

+9

∂L

∂H
=−2W TX+2W TS+2W TWH+2βHD−2βHQ+8

By KKT conditions ψhiwhi= 0andφijhij = 0, we can obtain:

−(XHT )ijwij+ (SHT )ijwij+ (WHHT )ijwij = 0

−(W TX)ijhij+ (W TS)ijhij+ (W TWH )ijhij+ (βHD)ijhij− (βHQ)ijhij = 0

Then the updating rules forW and H are:

Wij←−Wij
(XHT )ij

(WHHT +SHT )ij
(1)

Hij←−Hij
(W TX+βHQ)ij

(W TWH+W TS+βHD)ij
(2)

For fix W and H , we update S via the soft-thresholding operator (Hale, Yin & Zhang,
2008) and the optimization problem for S is:

minS||X−WH−S||2F+α||S||1

Theorem 1: Define the soft-thresholding operator as below:

Tυ (z)=


z−υ,if z >υ
z+υ,if z <−υ
0,otherwise

Where z ∈R and υ> 0 and this operator can also be applied to vectors or matrices by
element-wise operation. For the following l1−norm problem:

minv
1
2
||x−v||2F+α||v||1

the unique solution of v is given by Tα(x) (Hale, Yin & Zhang, 2008). Similarly, we can get
the update rule for S:

S←−T α
2
(X−WH ) (3)

Based on above analysis, our algorithm for solving rssNMF is presented in Algorithm 1.
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Algorithm 1Multiplicative Updating Rules for Semi-Supervised NMF
Input: Gene expression matrix X ∈ Rm×n , graph Laplacian L, clustering number k, pa-
rameter α and β
1: InitialW , H and S
2: Repeat
3: UpdateW using Eq. (1)
4: Update H using Eq. (2)
5: Update S using Eq. (3)
6: until a predefined stopping criterion is satisfied
Output: w ∈Rm×k , H ∈Rk×n

The proof of convergence analysis of our algorithm essentially follows the idea of
graph NMF and ensures that the objective function of rssNMF is nonincreasing under the
updating rules in Eqs. (1), (2) and (3) and could converge to a stationary point (Cai et al.,
2010). Since the idea is similar to the method in the paper (Cai et al., 2010) so we did not
prove it here.

RESULTS
Dataset
Cell markers, usually referring to surface molecules on cell membrane, are different in
different kinds of cells. Surface molecules that appear only on a particular type of cell
are called cell markers and often used for cell type identification. For example, cancer
cell specific markers often appear on the surface of cancer cells and are utilized as targets
for anticancer drugs. Cell markers have been a hotspot in molecular biology study and
researchers have accumulated lots of marker data for different kinds of cells, such as
MSigDB (Liberzon et al., 2011). Here, we extend the concept of cell markers. We use ’’cell
marker genes’’ to represent those genes that can distinguish different types of cell, which
are usually only expressed in specific type of cells or relatively highly expressed, such as
differentially expressed genes. In single-cell RNA-sequencing, we already know where the
sequencing samples come from and then we can have a modest degree of prior knowledge.
That is, we have known what kinds of cells are in the experimental samples although there
are still many kinds of cells remaining unknown. For instance, when the cancer tissue was
sequenced, the samples contained a large number of normal cells in addition to cancer
cells, such as lymphocytes, myeloid populations and cancer-associated fibroblasts. Taking
melanoma as an example, melanoma is often known as malignant melanoma, which is
a kind of cancer that stems from the pigment-containing cells known as melanocytes.
Melanoma is a mixture of tumor cells and a variety of normal cells including T-cells,
B-cells, macrophages and NK cells. This feature has been found in many studies, thus we
can know the prior marker genes of different groups of cells in advance. We will show
that incorporating such information into the NMF model, the clustering accuracy can be
increased significantly.
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Table 1 Published ten scRNA-seq datasets used to test rssNMFmodel. All the datasets are scRNA-seq data of human or mouse embryos.

Dataset Units GSE/ArrayExpress
Number

Number of
cells

Species Number of
Clusters

Biase FPKM GSE57249 56 Mouse 5
Goolam CPM E-MTAB-3321 124 Mouse 5
Yan RPKM GSE36552 124 Human 9
Shin RPKM GSE71485 256 Mouse 10
Deng RPKM GSE45719 259 Mouse 10
Leng Normalized counts GSE64016 460 Human 4
Kowalczyk TPM GSE59114 564 Mouse 8
Camp FPKM GSE75140 734 Human 9
Chu_1 TPM GSE75748 758 Human 6
Chu_2 TPM GSE75748 1,018 Human 7
Tasic RPKM GSE71585 71,585 Mouse 7
Zeisel Counts GSE60361 60,361 Mouse 8

Notes.
FPKM, fragments per kilobase of transcript per million mapped reads; RPKM, reads per kilobase of transcript per million mapped reads; CPM, counts per million mapped
reads.

Twelve scRNA-seq datasets are used in the experiment. All the datasets are normalized
expression level (FPKM, RPKM or CPM) or counts and number of cells range from 56 to
3005 (Table 1). Almost allthe datasets except dataset ‘‘Zeisel’’ have true labels since they
are collected from different time points during embryonic development and we provide
the accession number in Table 1. The labels of dataset ‘‘Zeisel’’ comes from computation
and can be seen as a silver dataset.

Compared algorithms
To benchmark rssNMF, six clustering algorithms are used: NMF, rNMF, ssNMF, KMeans,
Hierarchical Clustering and SC3.

NMF: F-norm formulation is adopted to cluster scRNA-seq data.
rNMF: similar to the proposed rssNMF but without the graph regularization term:

minW ,H ,S||X−WH−S||2F+α||S||1
s.t .W ≥ 0,H ≥ 0

ssNMF: ssNMF removes the matrix S which copes with noises and outliers but keep the
graph regularization term:

minW ,H ||X−WH ||2F+βTr
(
HLHT )

s.t .W ≥ 0,H ≥ 0

KMeans: a canonical distance-based iterative algorithm. Euclidean distance is used in the
experiment.

Hierarchical clustering: we use a division-based algorithm which initially starts with
all observations in a single cluster and divide samples until each cluster only contain one
observation. Euclidean distance is used in the experiment and ‘‘ward.D2’’ method was used
in R hclust() function.
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SC3: consensus clustering algorithm for single-cell RNA-seq data, which is a benchmark
in comparison to various clustering methods in scRNA-seq clustering analysis (Duò,
Robinson & Soneson, 2018; Kiselev et al., 2017).

After factorization, we use KMeans to cluster matrix H and obtain the clustering results.
The other common method is categorizing sample j directly by the largest coefficient in
column hj .

To evaluate the clustering performance of robust semi-supervised NMF, we use adjusted
Rand index (ARI, Supplementary File) which ranges from −1 to +1. Since cell labels are
available so ARI can be calculated to measure the similarity between two data clustering
results.

Prior genes selection and parameter setting
For all the datasets, we use differentially expressed genes as marker genes. For all the clusters
in each dataset, we use R package ‘‘Deseq2’’ to identify the differentially expressed genes
and select 20 differentially expressed genes with largest variance as cell marker genes for
each group to construct weighting matrix. We set the same parameter value for rNMF,
ssNMF and rssNMF and results are obtained by running the six methods 30 times on each
dataset. For the factoring matrices W and H , we use standard normal distribution for
random initialization.

Experimental results
Table 2 shows the clustering results on twelve datasets and we can see that rssNMF performs
better than themost methods on almost all datasets. Here, we consider a basic circumstance
that we only know one group of cells in the experiment and shows the results that one
group of genes is added. All these datasets can be downloaded on NCBI Gene Expression
Omnibus (GEO). The final results are evaluated by taking the average value of ARI over
30 runs. Compared with SC3, rssNMF gets better performance over seven datasets. We
notice that the overall ARI on these seven datasets is relatively low (smaller than 0.4)
which indicates that the cells hard to discriminate. Under such circumstance, the prior
information can help improve the clustering accuracy than purely unsupervised clustering
algorithm.

Our rssNMF model has two critical parameters: regularization parameter α and β.
Figure 2 and Fig. S1 shows the how the average performance of rssNMF varies with the
parameters α and β. As we can see in the Fig. 2, the performance of rssNMF is quite
stable with respect to the parameter α on all four datasets. If α/2>maxij(X−WH )ij , all
the elements in S will be zero, thus when the parameter α is large enough, rNMF will be
equivalent to the original NMF.

The parameter β controls the weights of the graph regularization term and we test
different weights range from 2 to 20,000 (Fig. S1). The performances are stable when β is
smaller than 200 in the four datasets. When β is too large, clustering accuracy decreases
a lot for the graph regularization term dominates the whole formulation and covers the
main information.

To investigate how the prior information influences the clustering accuracy, we test the
performance of rssNMF with respect to different number of group information. For each
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Table 2 Benchmarking of rssNMF against other clustering method. All the algorithms were applied 50 times to each dataset. Parameter α for
rNMF and rssNMF: 2. Parameter β for rssNMF: 2. Prior information: for each dataset, we randomly select one cluster and use 20 marker genes of
the selected cluster to construct the weight matrix.

Dataset KMeans HC NMF SC3 rNMF ssNMF rssNMF

Biase 0.712 0.761 0.774 0.844 0.806 0.796 0.862
Goolam 0.304 0.310 0.387 0.731 0.43 0.642 0.657
Yan 0.375 0.570 0.533 0.805 0.572 0.675 0.710
Shin 0.167 0.217 0.282 0.366 0.282 0.327 0.370
Deng 0.42 0.399 0.466 0.775 0.52 0.547 0.682
Leng 0.057 0.009 0.112 0.179 0.14 0.165 0.213
Kowalczyk 0.182 0.176 0.269 0.307 0.304 0.293 0.365
Camp 0.232 0.225 0.274 0.327 0.3 0.297 0.305
Chu_1 0.177 0.199 0.22 0.205 0.241 0.326 0.369
Chu_2 0.204 0.242 0.314 0.312 0.314 0.322 0.357
Tasic 0.51 0.284 0.705 0.822 0.711 0.791 0.790
Zeisel −4.97E−05 −9.36E−04 2.43E−03 −5.60E−04 2.65E−03 0.007 0.014

Figure 2 Performance of rssNMF versus parameter. The rssNMF is stable with respect to the
parameter—and achieve good performance varies from 2 to 32.

Full-size DOI: 10.7717/peerj.10091/fig-2

group in one dataset, 20 marker genes are selected as prior information to compute the
weighting matrix. Figure S2 shows how the ARI changes as the group marker information
increases (20 markers genes of one group, 40 markers gene for two groups and so on). We
can see that as the number of group information increases, the performance fluctuates but
clustering accuracy is higher than only adding one group information.
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To evaluate the clustering stability, we calculate the consensus matrix for NMF, rNMF
and rssNMF over 30 runs. A consensus matrixM is a n×nmatrix that stores, for each pair
of samples, the proportion of clustering runs in which two samples are clustered together.
A consensus matrix can be obtained by taking the average over the connectivity matrices
for all runs. The connectivity matrix C is also an n×nmatrix and defined based on a single
run:

Cij =

{
1, i and j are in the same clulster
0, i and j are not in the same cluster

So, if sample i and j are in the same cluster for 30 runs, then Mij will equal to 1,
corresponding to red (0 corresponds to blue). Figure 3 present the factorizing matricesW ,
H and consensus matrix taking the average over 30 runs and the consensus matrix from
NMF, rNMF and rssNMF on the dataset Yan. The color bar represents different group
of cells or genes. More specifically, we assign genes to different cell groups according to
the gene score, which is described in section Biological Significance Analysis section. The
values in each row of W an column of H have been normalized between 0 and 1. We can
see that all of the three methods have a stable clustering result on most samples and only
small part of samples are clustered into multiple clusters in dataset Yan. Generally, rssNMF
has the highest clustering accuracy and better stability than the other two methods.

Biological significance analysis
In this section, we choose dataset Yan for biological significance analysis and dataset
Yan are human embryonic stem cells including zygote, 2-cell, 4-cell, 8-cell, morula and
blastocyst. In Fig. 3, each column of matrixW defines a metagene (biological procesess or
pathways) or a metasample (cell cluster) then entry wij can be regarded as the coefficient
of gene I in metagene or metasample j (Brunet et al., 2004). Correspondingly, a column
vector hj represents the expression contribution of sample j to k biological processes, and
Hij can be seen as the contribution of metagene or metasample i in sample j. The class of
samples is denoted by column annotation bar. We can see that for some samples (columns
of H ), it is hard to visually determine which cluster it belongs to since the depth of color
is close in different clusters. Another obvious feature is that compared with NMF and
rNMF, the pattern of H in rssNMF is clearer and more concentrated, which makes the
classification characteristics of samples more explicit. We suppose that the addition of prior
information makes the differences between different clusters more obvious, thus achieving
better classification results.

For the basis matrix W , the ith row of W represents the contribution of gene i to all
metagenes so the expression level of a specific gene in one cell is determined by the linear
combination of its contribution to all biological processes. From Fig. S3 we can see that
a gene can participate in multiple biological processes, but it is more reasonable to focus
on the process with the largest value. We define a gene score to determine cluster-specific
genes and the assignment of cluster-specific genes is shown in row annotation bar of matrix
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Figure 3 Factorizing matricesW (basis matrix: A, D, G), H (coefficient matrix: B, E, H) and consen-
sus matrix (C, F, I) respectively obtained fromNMF (A, B, C), rNMF (D, E, F) and rssNMF (G, H, I) for
dataset Yan with 124 cells and nine clusters. The annotation color bar denotes nine clusters. The rows an-
notation of W and columns of H indicate the assignment of genes and samples for clusters. The paramete
α= 2 for rNMF and rssNMF and β = 2 for rssNMF.

Full-size DOI: 10.7717/peerj.10091/fig-3

W . The gene score for the ith gene is:

Gene_score(i)= 1+
1

log2(k)

k∑
j=1

p
(
i,j
)
log2

(
p(i,j)

)
,

where p(i,�) is the probability that the ith gene contributes to cluster �, i.e.,
p(i,�)=Wi�/

∑k
j=1Wij . The gene score is a real value and ranges from [0,1]. The higher

gene score is, the more cluster-specific the corresponding gene. Simply we can think that
a gene is highly-expressed if the gene has high Gene_score in a specific cluster over other
clusters.

As shown in the A, D and G which are the basis matrix W from NMF, rNMF and
rssNMF in the Fig. 3, we assign all the genes to a specific cluster using gene score by
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different colors as shown in the left color bar. For the basis matrix W , the rows indicate
genes and the columns indicate clusters andthe depth of the color in the matrix indicates
the size of the value inW . Deep color represents a larger value and we can assign the cluster
genes visually. After classifying each gene, we need to validate the biological significance
of feature genes detected in different cluster. Table S1 present the results of enrichment
analysis for cluster-specific genes.

We use the KEGG database to investigate the functional genes selected for all clusters.
KEGG is a database resource for understanding high-level functions and utilities of the
biological system, such as the cell, the organism and the ecosystem, from molecular-level
information, especially large-scale molecular datasets generated by genome sequencing and
other high-throughput experimental technologies. Through functional enrichment analysis
of genes in each cell cluster, we can understand what biological processes are involved in
the cell cluster and further infer the role of the cluster in the biological microenvironment.

Embryonic stem cells are highly undifferentiated cells. It has developmental omnipotence
and can differentiate all tissues and organs of adult animals, including germ cells. The
research and utilization of ES cells is one of the core topics in the field of bioengineering.
The enrichment results (Table S1) show that embryonic stem cells are in an active
metabolic and proliferative state, such as Ribosome pathway in cluster 3, 5, 6, 7 and
8. Ribosomes are organelles that are responsible for making proteins and are widespread.
Themanufacture of ribosomes requires hundreds of cytokines that are not found inmature
particles. In the absence of these factors, ribosome production will stagnate. Once ribosome
production is stagnant, cell growth is terminated even under optimal growth conditions.
Besides, various metabolic pathways such as TCA cycle, oxidative Phosphorylation and
cholesterol metabolism also occur in multiple clusters, indicating that these clusters
are in an active proliferation state. In addition, we can infer the differentiation path of
stem cells from the results of enrichment. Cluster 6 contains two distinctive pathways,
Cardiac muscle contraction and Retrograde endocannabinoid signaling. Both Cardiac
muscle contraction and Retrograde endocannabinoid signaling are involved in nerve signal
transduction and are usually active in the nervous system and cardiac conduction system.
Endogenous cannabinoids (endocannabinoids) serve as retrograde messengers at synapses
in various regions of the brain. Therefore, it can be inferred that cells in cluster 6 are
differentiating toward the ectoderm and will form epidermis and nervous system in the
future. Thermogenesis pathway appears in cluster 5, 6 and 7 and this pathway usually
activates in brown adipose tissues. Brown adipose tissues originate from mesenchymal
stem cells which differentiate from ectoderm. This is consistent with our view that cluster
7 belongs to ectoderm cell groups.

DISCUSSION
Considering data noises and absorbing prior knowledge at the same time in single-cell RNA-
sequencing data, the clustering accuracy is significantly improved compared with NMF,
which is an unsupervised clustering method. Compared to NMF, our model has higher
clustering accuracy and can discover hidden structures in the data after adding the prior
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information. Ourmethod also achieves better performance in part of the datasets compared
to other unsupervised clustering method such as SC3, which is seen as a benchmark in
scRNA-seq clustering analysis. We notice that rssNMF gets higher accuracy upon datasets
that most unsupervised methods perform bad such as datasets Leng, Kowalczyk and Zeisel.
We supposed that in the situation that cells are much alike each other, semi-supervised
approach can get better performance over unsupervised clustering method. In addition,
our approach can be used in a wider range of areas, such asmedical text informationmining
and biological network motif identification, provided that there are noises in the data and
that the characteristics of some of the samples are known. However, our method still has
some limitations. Firstly, the objective function of rssNMF is based on Frobenius norm,
without considering other objective functions, such as KL divergence and L2,1 norm. Some
studies have found that KL divergence can achieve higher accuracy in clustering analysis
of gene expression data than Frobenius norm. Therefore, a semi-supervised NMF model
based on different objective functions deserves further exploration. Second, the choice of
weighting matrix in rssNMF is arbitrary and we use heat kernel weighting in our model.
Other weight matrix such as 0-1 weighting, and Dot-Product weighting have not been tried.
In general, the choice of weighting matrix is empirical and depends on the dataset. Third,
rssNMF does not take into account the statistical dependency between latent variables. In
rssNMF, the gene expression level of single cell is determined by the linear combination
of potential biological processes (metagenes), and the dependence relationship between
these biological processes is neglected. In fact, different biological processes are interrelated
and regulated with each other. In Fig. S3, we can see that the CELL CYCLE intersects
the MAPK signaling pathway, Apoptosis and Ubiquitous mediated proteolysis, and NMF
cannot identify the relationship between them.

CONCLUSIONS
We present a novel robust semi-supervised NMFmodel called rssNMF for scRNA-seq data
and the model remarkably improve clustering accuracy when the cell marker information
for one group or more groups are available. Compared to NMF and other common
clustering algorithms, our model has higher clustering accuracy and can discover hidden
structures in the data after adding the prior information. Our model also outperforms
SC3 in part of the datasets while the prior information is available. What’s more, the
model is robust to noises and outliers compared with standard NMF model. Our model
can also be applied into other clustering tasks as long as feature information of some
samples are known, such as electronic health records, single cell methylation sequencing
and proteomics.
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