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ABSTRACT
Local ancestry estimation infers the regional ancestral origin of chromosomal segments
in admixed populations using reference populations and a variety of statistical
models. Integrating local ancestry into complex trait genetics has the potential to
increase detection of genetic associations and improve genetic prediction models in
understudied admixed populations, including African Americans and Hispanics. Five
methods for local ancestry estimation that have been used in human complex trait
genetics are LAMP-LD (2012), RFMix (2013), ELAI (2014), Loter (2018), andMOSAIC
(2019). As users rather than developers, we sought to perform direct comparisons of
accuracy, runtime, memory usage, and usability of these software tools to determine
which is best for incorporation into association study pipelines. We find that in the
majority of cases RFMix has the highest median accuracy with the ranking of the
remaining software dependent on the ancestral architecture of the population tested.
Additionally, we estimate the O(n) of both memory and runtime for each software and
find that for both time and memory most software increase linearly with respect to
sample size. The only exception is RFMix, which increases quadratically with respect
to runtime and linearly with respect to memory. Effective local ancestry estimation
tools are necessary to increase diversity and prevent population disparities in human
genetics studies. RFMix performs the best across methods, however, depending on
application, other methods perform just as well with the benefit of shorter runtimes.
Scripts used to format data, run software, and estimate accuracy can be found at
https://github.com/WheelerLab/LAI_benchmarking.

Subjects Bioinformatics, Genetics
Keywords Local ancestry, Human genetics, Admixture, Benchmarking, Population genetics

INTRODUCTION
Humans are a chromosomal mosaic of their ancestors. Through sexual reproduction and
recombination, chromosomes resemble a subset of their ancestors’ chromosomes in varying
sizes and locations across the genome (Gravel, 2012). Large scale studies of the genetics
underlying human disease have been limited to predominantly European populations and
thus lack global diversity, which exacerbates health disparities (Popejoy & Fullerton, 2016;
Sirugo, Williams & Tishkoff, 2019). It is well documented that prediction accuracy with
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polygenic risk scores decreases with increasing genetic distance (Martin et al., 2017; Mogil
et al, 2018). In addition, many underrepresented populations in human genetics include
recently admixed individuals, meaning their ancestors were previously isolated from each
other on different continents until the last few centuries. This leads to chromosomal tracts
originating from different continental populations in modern populations like African
Americans and Hispanics.

Population structure is a potential confounding factor in all genetic association studies.
Global ancestry is the proportion of different ancestral populations represented across
the entire genome. Genotypic principal components are used to adjust for these average
genomic background effects in genetic association studies (Price et al., 2006). Correcting
only for global ancestry does not precisely account for ancestry at any specific locus. Local
ancestry is the number of alleles derived from distinct ancestral populations at a given locus
and may improve power to detect genetic associations in admixed populations (Duan et
al., 2017; Martin et al., 2017b; Zhang & Stram, 2014; Liu et al., 2013. For example, a recent
expression quantitative trait locus (eQTL) mapping study in African Americans found a
greater replication rate of eQTLs discovered via models that adjust for local ancestry, rather
than models that adjust for global ancestry (Zhong, Perera & Gamazon, 2019).

Several models have been developed to estimate local ancestry in admixed
populations (Gravel, 2012; Baran et al., 2012; Maples et al., 2013; Guan, 2014; Thornton
& Bermejo, 2014; Dias-Alves, Mairal & Blum, 2018; Salter-Townshend & Myers, 2019).
By leveraging population or continental-specific SNPs, chromosomal tracts can be
differentiated into their ancestral segments. Chromosomal regions are compared to
reference populations of less recently admixed ancestry to find which sections of the
chromosomes descend from which continental region (Gravel, 2012; Bryc et al., 2015).
These estimates depend largely on the reference populations used, the genetic distance
between the reference samples, the quality of the input genotypes, and, most importantly,
the statistical models. LAMP-LD demonstrates strong ancestry estimation in recently
admixed cohorts of African and Hispanic descent (Baran et al., 2012). ELAI and Loter
both report stable performance in instances of ancient admixture (ngenerations≥ 100),
outcompeting methods that prioritize recent admixture (Guan, 2014; Dias-Alves, Mairal
& Blum, 2018). Additionally, Loter reports high performance in nonhuman species (Dias-
Alves, Mairal & Blum, 2018). Similar to LAMP-LD, RFMix and MOSAIC each specialize in
multi-way admixture. Unlike LAMP-LD, neither are constrained in the number of ancestral
populations. Both RFMix and MOSAIC are reported to have robust performance even
when reference panels are not closely related to the study population, though MOSAIC
reported the added benefit of elucidating the relationship between all provided references
and the study population in selecting the optimal references, thus circumventing the need
to clarify the relationship between study and available reference populations (Maples et al.,
2013; Salter-Townshend & Myers, 2019).

To satisfy the need for increased diversity in genome-wide association studies (Popejoy &
Fullerton, 2016;Sirugo, Williams & Tishkoff, 2019), local ancestry estimation methods will
become increasingly important in human genetics. While a recent review compared the
underlying models of several local ancestry estimation software tools (Geza et al., 2018),
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accuracy and run time were not directly compared. A study from 2017 compared run time
and memory usage of four older tools (Hui et al., 2017), but did not include the widely
used RFMix (Maples et al., 2013) and newer tools MOSAIC (Salter-Townshend & Myers,
2019) and Loter (Dias-Alves, Mairal & Blum, 2018). Here, we independently compare five
local ancestry estimation methods for accuracy and feasibility by simulating admixed
chromosomes from both two and three ancestral continental populations.

METHODS
Simulating genotypes
Our workflow is summarized in Fig. 1. We note that all populations are admixed at some
point in their histories. In this paper, we define non-admixed populations as those whose
individuals cluster tightly in multi-population principal component analysis and are thus
typically used as ancestral reference populations in local ancestry studies. We chose three
1000 Genomes (1000G) populations (Auton et al., 2015) to serve as non-admixed ancestral
populations. From each of these populations we randomly selected 10% of individuals to
use as founders for simulation of admixed individuals and the remaining individuals made
up the non-admixed reference populations. The three 1000G populations from which we
drew samples are: Utah residents with Northern and Western European ancestries (CEU)
for use as an European ancestral group; Yoruba in Ibadan, Nigeria (YRI) for use as an
African ancestral group; and Peruvians from Lima, Peru (PEL) for use as a Native American
ancestral group. We note that individuals in the PEL population have Native American,
European and African admixture, however, the PEL have more Native American ancestries
than all of the other American populations in 1000G (µ= 0.77, 95%CI [0.75–0.80] (Martin
et al., 2017), where µis the estimated mean proportion of Native American ancestries). We
restricted this analysis to individuals in the PEL population with Native American ancestry
proportions greater than µto serve as a reasonable proxy for a Native American ancestral
population. Simulated admixed populations fall into one of three categories: two-way
admixture between YRI and CEU representing a common pattern of descent for African
American individuals (AFA); two-way admixture between PEL and CEU representing one
common pattern of descent for some Hispanic individuals (HIS); and three-way admixture
between PEL, YRI, andCEU, representing another common pattern of descent among some
Hispanic individuals (3WAY) (Bryc et al., 2015; Martin et al., 2017). For each admixture
group, we simulated 1,000 individuals and selected 100 that had European ancestries within
10% of the admixture proportions described in Table 1 based on empirical proportions
estimated in Bryc et al. (2015) andMartin et al. (2017a). Global ancestry percentages across
individual haplotypes are shown in Figs. S1–S3.

We used the admixture simulation tool developed by the creators of RFMix to generate
simulated admixed chromosomes (Maples et al., 2013). Because lengths and recombination
rates differ among human chromosomes (Farr, Micheletti & Ruiz-Herrera, 2012), we chose
to simulate admixture using a portion of SNPs on chromosome 1 and all SNPs on
chromosome 22. We used the 44,332 SNPs in common among the reference populations
within the first 10Mb of chromosome 1 and the 158,159 common SNPs on chromosome
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Figure 1 Process for simulating admixed individuals and estimating ancestries. (1) From non-admixed
populations from 1000G we randomly select 10% of all individuals to use as founders for admixture sim-
ulation. The rest are used as reference panels for ancestry estimation. (2) We generate admixed individ-
uals that are chromosomal mosaics of the founder group using the admixture simulation tool created by
the authors of RFMix (Maples et al., 2013). (3) Using the remaining 1000G populations as reference pan-
els, we estimate ancestries on the simulated population for all five software tools and compare estimation
accuracy.

Full-size DOI: 10.7717/peerj.10090/fig-1

22. LAMP-LD v 1.0 has a computational limit of 50,000 SNPs. In keeping with this,
after simulating the entirety of chromosome 22, we independently selected 50,000
SNPs from each cohort using the --thin-count 50000 option in PLINK (Chang et
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Table 1 Proportions of ancestry among simulated cohorts.We simulated 1,000 admixed individuals.
From these we selected 100 individuals with a true proportion of European (CEU) ancestries within 10%
of the proportions listed here for use in accuracy testing.

Ancestral panel %YRI %CEU %PEL

AFA 80% 20% 0%
HIS 0% 70% 30%
3WAY 30% 60% 10%

al., 2015) and subset each cohort accordingly. In an effort to remove the noise that is
introduced by admixed PEL individuals, we limit this population to only those individuals
with a proportion of Native American ancestry that is above the mean estimated by
Martin et al. (2017a) (µNAT = 0.77). The code used to run simulation can be found at
https://github.com/WheelerLab/LAI_benchmarking.

Running each software
We used individuals remaining within the non-admixed ancestral group after founder
selection as the required reference group for running each of the five software. We ran each
software using default parameters or using the minimum number of settings necessary as
this is representative of how most new users will interact with each software. We ran each
software as follows:
LAMP-LD v1.0

unolanc 300 15 <snp position file> <ancestral haploypes 1>
<ancestral haploypes 2> <ancestral haploypes 3> <admixed
haploypes> <output name>

unolanc2way 300 15 300 15 <snp position file> <ancestral
haploypes 1> <ancestral haploypes 2> <admixed haploypes>
<output name>

MOSAIC v1.3

Rscript mosaic.R <admixed population name> <folder
containing required input> -c <chr range> -a <number of
ancestries to infer> -m <maximum number of cores> --gens
<number of generations>

Loter

loter_cli -r <reference panel genotype/haplotype> -a
<admixed genotype/haplotype> -f <genotype file format>
-o <output name> -n <number of cores> -v

ELAI v1.01

elai-lin -g <ancestral haploypes 1> -p 10 -g <ancestral
haploypes 2> -p 11 -g <ancestral haploypes 3> -p 12 -g
<admixed haploypes> -p 1 -pos <snp position file> -C 3
-o <output name>

elai-lin -g <ancestral haploypes 1> -p 10 -g <ancestral
haploypes 2> -p 11 -g <admixed haploypes> -p 1 -pos
<snp position file> -C 2 -o <output name>
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RFMix v1.5.4

python RunRFMix.py -e 2 -w 0.2 --num-threads <maximum
number of cores> --forward-backward PopPhased
<population haploypes> <population classes file> <snp
position file> -o <output name>

In all cases we ran software on one core. In cases with three ancestries, 11 was used
for number of generations. In cases with two ancestries, 8 was used for number of
generations. In most cases each software requires a genetic map file or SNP position
file, the number of generations since admixture, and reference/admixed genotypes in a
software specific format. As this genotype data was already phased, we do not consider
phasing in this paper, though it could be considered a necessary step 0 of this process. As
each software carries different requirements for formatting, we have constructed a pipeline
for formatting and running each software. All scripts used to run each software can be
found at https://github.com/WheelerLab/LAI_benchmarking.

Benchmarking each software
Weused the bash command time -v to benchmark time andmemory of each software run.
To benchmark time and memory usage with increasing sample size, we used the methods
described above and simulated an additional 2000 two-way admixed AFA individuals
to test time and memory burden at each level of 20, 50, 100, 500, 1000, 1500, and 2000
individuals. We performed regression analysis of time and memory complexity in base R
for each software.

We compared the estimated ancestries to the simulated (‘true’) ancestries to determine
software accuracy. For each individual we calculated the true positive call rate (TPCR),
which is the proportion of correct ancestry calls at each locus (SNP) in each individual.
We then tested for differences in TPCR between software methods in each simulated
population via Tukey’s test.

RESULTS
We prioritize benchmarking each software in the context of recently admixed populations
to assess accuracy and estimate previously unreported time and memory complexity. We
selected five software tools for a combination of their novelty and relative popularity.
LAMP-LD (Baran et al., 2012), ELAI (Guan, 2014), and RFMix (Maples et al., 2013) are
each established local ancestry software that have been cited numerous times in the field
of population genetics. Conversely, MOSAIC (Salter-Townshend & Myers, 2019) and Loter
(Dias-Alves, Mairal & Blum, 2018) are fairly new, having been published in the last two
years at the time of writing. A brief summary of their differences can be found in Table 2.

Simulating admixed individuals
We simulated admixed populations with ancestry proportions similar to those observed in
previous studies (Bryc et al., 2015; Martin et al., 2017). These include two-way admixture
between YRI and CEU representing a common pattern of descent for African American
individuals (AFA); two-way admixture between PEL and CEU representing one common
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Table 2 Software descriptions. Features and requirements of each software as described in the original
publication.

Software Algorithm Pre-phasing Genmap n ancestral pops

LAMP-LD single layer HMM not required no 2,3,5
RFMix random forest required yes n≥ 2
ELAI two layer HMM not required no n≥ 2
Loter single layer HMM required no n≥ 2
MOSAIC two layer HMM required yes n≥ 2

Notes.
HMM, hidden Markov model.

pattern of descent for some Hispanic individuals (HIS); and three-way admixture between
PEL, YRI, and CEU, representing another common pattern of descent among some
Hispanic individuals (3WAY) (Bryc et al., 2015; Martin et al., 2017). For each admixture
group, we simulated 1000 individuals and selected 100 that had European ancestries within
10% of the admixture proportions listed in Table 1. We summarize this workflow in Fig.
1, see Methods for details.

Runtime and memory usage
Runtime increases with number of individuals
We simulated an additional 2000 individuals based on the AFA admixture proportions at 7
generations since admixture. We randomly subset this set of people to 2,000, 1,500, 1,000,
500, 100, 50, and 20 individuals to test how each software scales with an increasing sample
size (Fig. 2). We find that the runtimes of four of the five software tools scale linearly with
the number of samples, with the exception of RFMix, which scales quadratically (Table 3).
We also note that MOSAIC runtime decreases when n= 2000. MOSAIC will exit early
the iteration of its expectation-likelihood algorithm when the log-likelihood decreases
resulting in in cases where it finishes faster than would be expected by a standard linear
model (Salter-Townshend & Myers, 2019).

Memory increases linearly with number of individuals
We simultaneously measured the memory burden expected for each level of sample size
(Fig. 3). We found that all software expand linearly or near linearly (Table 4). Loter had
the steepest memory requirement and ELAI had the smallest slope. ELAI has the most
stable memory requirement across sample sizes. At high sample sizes ELAI had the lowest
memory overhead, but at low sample sizes (n≤ 100) the memory requirement was third
highest.

Increasing number of ancestries can increase runtime and memory burden
We tested if increasing the number of ancestral populations increases the computational
burden of each software. We found that increasing the number of ancestral populations
increases the memory usage in ELAI and LAMPLD (Fig. 4) and the runtime in RFMix and
ELAI (Fig. 5). For the remaining software, increasing the number of ancestries did not
significantly increase the memory usage or runtime.
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Figure 2 Software runtime versus sample size.We tested the runtime of each software on one core at a
sample sizes of 20, 50, 100, 500, 1,000, 1,500, and 2,000. Points represented sample sizes tested versus run-
time in hours, which are connected by line segments colored by software. We simulated n African Amer-
ican individuals from CEU and YRI ‘‘founder’’ populations with average admixture proportions of 20%
and 80%, respectively. We find that the runtime of ELAI, LAMP-LD, MOSAIC, and Loter all increase lin-
early with the number of samples. The runtime of RFMix increases quadratically.

Full-size DOI: 10.7717/peerj.10090/fig-2

Table 3 Linear runtime estimatedO(n). We fit linear and quadratic models between the runtime and
sample size for each software. We report the model R2 and ANOVA p-value for each combination of soft-
ware and model.

Software Linear R2 Linear p-value Quadratic R2 Quadratic p-value

RFMix 0.853 0.00294 0.977 1.57×10−05

MOSAIC 0.673 0.0146 0.387 0.0802
ELAI 0.999 8.97×10−11 0.921 0.000383
Loter 0.999 2.62×10−13 0.91 0.000438
LAMP-LD 0.999 7.90×10−14 0.917 0.000427
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Figure 3 Software memory usage versus sample size.We tested the maximum memory usage of each
software on one core at a sample size of 20, 50, 100, 500, 1,000, 1,500, and 2,000. Points represented sam-
ple sizes tested versus memory in gigabytes (GB), which are connected by line segments colored by soft-
ware. We simulated n African American individuals from CEU and YRI ‘‘founder’’ populations with av-
erage admixture proportions of 20% and 80%, respectively. We find that maximum memory usage for all
software increases linearly with the number of samples.

Full-size DOI: 10.7717/peerj.10090/fig-3

Table 4 Linear maximummemory usage estimatedO(n). We fit a linear model between the maximum
memory usage and sample size for each software. We report the model R2 and ANOVA p-value for each
combination of software and model.

Software Linear R2 Linear p-value Quadratic R2 Quadtratic p-value

RFMix 0.999 8.61×10−12 0.9205 0.000394
MOSAIC 0.997 6.049×10−08 0.894 0.000813
ELAI 0.999 1.03×10−11 0.9154 0.000459
Loter 1 1.25×10−14 0.9154 0.000459
LAMP-LD 1 < 2.2×10−16 0.9165 0.000445
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Figure 4 Software memory usage versus number of ancestral populations. Comparison between mem-
ory usage in megabytes (MB) of each software and the number of ancestries estimated in 100 individuals
simulated per chromosome in each population. Memory usage differed by number of ancestral popula-
tions using ELAI and LAMP-LD. One-way ANOVA results for each software: (A) ELAI p = 3.78× 10−4,
(B) LAMP-LD p= 3.67×10−2, (C) Loter p= 0.637, (D) MOSAIC p= 0.65, (E) RFMix p= 0.204.

Full-size DOI: 10.7717/peerj.10090/fig-4

Accuracy varies by cohort composition
For each admixture group (Table 1), we simulated 100 individuals and ran local ancestry
estimation and accuracy benchmarking. Each software performs with high fidelity in
the majority of instances but we note a noticeable difference in the performances of the
AFA and HIS cohorts. We attribute this to the introduction of the PEL population as
both founders and reference, as they contain a significant amount of admixture in and
of themselves. As PEL admixture overlaps with the other two reference populations, it is
expected that they will introduce noise into local ancestry estimation. In all instances RFMix
had the highest median TPCR (Fig. 6). We pooled the TPCRs between chromosomes per
software to test which pairs of software performed differently in each simulated population
using Tukey’s test. In the case of the simulated AFA cohort, both LAMP-LD and RFMix
performed significantly better than each of ELAI, MOSAIC, and Loter and both ELAI and
Loter performed significantly better than MOSAIC. All other pairs were not significantly
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Figure 5 Software runtime versus number of ancestral populations. Comparison between runtime
in seconds (s) of each software and the number of ancestries estimated in 100 individuals simulated per
chromosome in each population. Runtimes differed by number of ancestral populations using ELAI and
RFMix. One-way ANOVA results for each software: (A) ELAI p = 5.98× 10−3, (B) LAMP-LD p = 0.906,
(C) Loter p= 0.985, (D) MOSAIC p= 0.555, (E) RFMix p= 2.01×10−3.

Full-size DOI: 10.7717/peerj.10090/fig-5

different (Fig. S4). In the case of the HIS cohort, RFMix performed significantly better
than all other software; ELAI, MOSAIC, and LAMP-LD performed significantly better than
Loter; and ELAI performed significantly better than MOSAIC (Fig. S5). In the case of the
3WAY cohort, RFMix performed significantly better than all other software, LAMP-LD and
ELAI were both significantly better than both Loter andMOSAIC, andMOSAIC performed
significantly better than Loter (Fig. S6). In themajority of cases for both chromosome 1 and
chromosome 22, RFMix demonstrates the highest true positive rate for each population
tested (Fig. 6).

Software is highly correlated on real data
We ran each software as described on real admixed individuals from the ASW (African
Ancestry in Southwest US) population of the 1000 Genomes project with the YRI and CEU
populations as reference panels. Local ancestry estimates were highly correlated between
each software (Table 5). Additionally, to show the robustness of these estimates, we plot
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Figure 6 Distribution of accuracy for ancestry estimation. For each category of admixture, (A) 3WAY,
(B) AFA, (C) HIS, we estimate ancestries on 100 simulated individuals. Accuracy is then calculated as
the true positive call rate for the estimated ancestries per each software. True positive call rate (TPCR) is
defined as the proportion of loci in each individual with an ancestry correctly estimated by a given soft-
ware. RFMix had the highest TPCR across most pairwise comparisons. Tukey’s test results are presented in
Figs. S4–S6.

Full-size DOI: 10.7717/peerj.10090/fig-6

the mean local African ancestry estimated by each software against the first principal
component of the genotypes, which is known to be an estimate of global African ancestry
(Fig. 7) (Zhong, Perera & Gamazon, 2019). The local ancestry estimate was highly correlated
with PC1 for all software tools (R2> 0.960, Table 5), with no significant difference between
tools (p> 0.621).

DISCUSSION
Local ancestry estimation is a key step in adjusting for potential population stratification
in admixed populations and in elucidating the effect of ancestry specific loci on complex
traits. Given the wide variety of tools available to perform local ancestry estimation, it is
necessary to explore how each performs in a particular context. Here, we focused on recent
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Table 5 Between software Pearson correlation using real data.We ran all five software on 61 real ad-
mixed individuals from the 1000 Genomes ASW (African Ancestry in Southwest US) population. Here we
report the squared pairwise Pearson correlations of local ancestry estimates. Additionally, in the last col-
umn, we report the squared correlation of each software’s estimated mean African ancestry with genotypic
principal component 1.

ELAI LAMP-LD Loter RFMix MOSAIC PC1

ELAI 1 – – – – 0.965
LAMP-LD 0.977 1 – – – 0.968
Loter 0.976 0.981 1 – – 0.967
RFMix 0.974 0.977 0.977 1 – 0.967
MOSAIC 0.959 0.959 0.962 0.961 1 0.960

human admixture within African American and Hispanic populations, and performed
complexity and accuracy analyses of five different software tools using simulated and real
data.

We did not consider instances of ancient admixture despite ELAI and Loter reporting
robust performance in such instances (Guan, 2014; Dias-Alves, Mairal & Blum, 2018). In
addition, Loter was designed to be compatible with many different species and both Loter
and ELAI may require more fine-tuning of software parameters beyond the default settings
than the other methods, especially in cases of 3-way admixture.

Here we report on how memory and time usage scale with number of individuals and
not SNPs, as it is more common to scale studies by population size than by genome size.
However, it is expected that most if not all software will increase in both time and memory
usage given an increased number of SNPs. We find consistently that RFMix and ELAI had
high performance relative to other software, with RFMix beating ELAImarginally in several
cases. While RFMix has a relatively low memory overhead, its runtime scales quadratically,
severely limiting its scalability at standard GWAS sample sizes.

An important consideration in all cases is the availability of high quality reference data.
Currently, Native American genetic data is not widely available due to historical misuse of
DNA that have raised barriers between tribal communities and the genetics community
(Garrison, 2013; TallBear, 2013). Here, individuals in the PEL population with estimated
Native American ancestries greater than 77% were a proxy for non-admixed individuals
of Native American descent. However, this introduced noise because these individuals in
PEL contain significant continental admixture. This noise likely caused the HIS and 3WAY
simulated populations to underperform compared to the AFA population. In spite of this,
these simulations show robust performance of several software.

All the software are highly accessible for a user with root access. For individuals working
without root access, RFMix, ELAI, and LAMP-LD are distributed with precompiled
binaries andMOSAIC is distributed with a simple R interface that requires no compilation.
Loter is simple to compile and install even without root access given that all prerequisites
are installed on the machine. Each software differs in its flexibility and degree of user
control. LAMP-LD and Loter are the easiest to run but have relatively few options and
simple documentation. Loter also has the benefit of being the only software that directly
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Figure 7 Estimated African ancestry proportion in the ASW population (African Ancestry in South-
west US) is correlated with the first principal component.We plot the the mean local ancestry propor-
tion of African ancestries estimated by each software against the first principal component of genotypes, a
known estimate of global African ancestry, to validate the robustness of local ancestry estimates. The local
ancestry estimate was highly correlated with PC1 for all software tools (R2 > 0.96), with no significant dif-
ference between tools (p> 0.62).

Full-size DOI: 10.7717/peerj.10090/fig-7

accepts VCF files as input, though generating the inputs of the other software is fairly
straightforward. Each accepts some variation of files that can be generated by the popular
bcftools (Li, 2011) or PLINK (Chang et al., 2015). RFMix, MOSAIC, and ELAI each have a
large number of customizable user options pertaining to their respective algorithms that
the savvy user can use to optimize their analysis. Subsequently, the documentation of
these three software are fairly detailed. MOSAIC is additionally written with several useful
visualization functions for its output. Among these five software, only LAMP-LD does not
preserve the phase data of its input genotypes.
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CONCLUSION
We find that in cases of two-way simulated admixture, each software performs similarly
well with RFMix having the highest median performance in all tested populations. While
RFMix performs the best across methods, its scalability with regards to time may give
weight to considering other software. However this issue can be circumvented by dividing
haplotypes across multiple runs. Robust, scalable local ancestry estimation software are
crucial for equitable implementation of genetics and genomics in medicine.
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