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ABSTRACT
Background. Oil spills can cause severe damage within a marine ecosystem. Following
a spill, the soluble fraction of polycyclic aromatic hydrocarbons is rapidly released into
the water column. These remain dissolved in seawater over an extended period of time,
even should the insoluble fraction be removed. The vertical distribution of the aromatic
hydrocarbon component and how these become transferred is poorly understood in
brackish waters. This study examines the vertical distribution of polycyclic aromatic
hydrocarbons having been released from a controlled film of spilled oil onto the surface
of brackish water.
Methods. The study was undertaken under controlled conditions so as to minimize
the variability of environmental factors such as temperature and hydrodynamics. The
distribution of polycyclic aromatic hydrocarbons was measured in the dissolved and
suspended phases throughout the 1 m water column with different intensity of water
sampling: 1, 2, 4, 7, 72, 120, 336, 504 and 984 h.
Results. The total concentration of polycyclic aromatic hydrocarbons ranged from
19.01 to 214.85 ng L–1 in the dissolved phase and from 5.14 to 63.92 ng L–1 in
the suspended phase. These hydrocarbons were released immediately following a
controlled spill attaining 214.9 ng L–1 in the dissolved phase and 54.4 ng L–1 in the
suspended phase near the cylinder bottom after 1–2 h. The 2–3 ring polycyclic aromatic
hydrocarbons dominated in the dissolved phase (60–80%), whereas the greater amount
of 4–6 ring polycyclic aromatic hydrocarbons (55–90%) occurred in the suspended
phase. A relatively low negative correlation (rS = –0.41) was determined between
the concentration of phenanthrene and suspended matter, whereas a high negative
correlation (r =−0.79) was found between the concentration of pyrene and suspended
matter. Despite the differences in the relationships between the concentration ratio
and amount of suspended matter the obtained regressions allow roughly to predict the
concentration of polycyclic aromatic hydrocarbons.

Subjects Aquatic and Marine Chemistry, Environmental Contamination and Remediation
Keywords Oil spill, Polycyclic aromatic hydrocarbons, Vertical distribution, Suspended and
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INTRODUCTION
On account of the low exchange rate of water with the North Sea, with the high residence
time of approximately twenty years, makes the Baltic Sea sensitive to pollutants (Zettler et
al., 2013). This sea has one of the greatest volumes of shipping (Ruczyńska, Szlinder-Richert
& Malesa-Ciećwierz, 2011), where about 90% of oil and its products are being transported
in Europe (HELCOM, 2018). There has been a decline of large oil spills by shipping since
2000 due to improvements in ship safety and management. During 2017 there were two
spills of >700 Mt and four in the range of 7–700 Mt. Although the actual number of
small spills is not fully known (ITOPF, 2018). Such spills release a significant amount of
hydrocarbons and their derivatives. However, there are also other sources from incomplete
combustion of fossil organic matter and fossil fuel (Li & Chen, 2003; Saha et al., 2009;
Eide et al., 2011; Kuo et al., 2011). Oil spills cause damage within the marine ecosystems
by impacting the populations of sensitive species, reducing sediment quality and causing
impacts to aquaculture and fisheries (Baksh et al., 2018; Khan et al., 2018).

Polycyclic aromatic hydrocarbons (PAHs) are toxic and carcinogenic compounds which
occur in crude oil (Page et al., 2002; Kottuparambil & Agusti, 2018). The soluble fraction of
PAHs is rapidly released following a spill and remain dissolved in seawater for an extended
period of time, even should the insoluble fraction be removed (Gonzalez et al., 2009;
Eide et al., 2011). Their subsequent breakdown can lead to the formation of even more
toxic compounds such as nitrated PAHs some of which are considered to have a higher
mutagenicity (Topinka et al., 1998). PAHs can affect marine organisms. This depends on
their concentration in the dissolved phase because dissolved organic matter is more readily
available to biota (Mott, 2002).

Since PAHs have a relatively low solubility in water they are preferentially associated
with particles in the coastal marine waters, which settle-out as sediments (Hatzianestis &
Sklivagou, 2002; Karlsson & Viklander, 2008; Guigue et al., 2014). However, separate studies
Bouloubassi & Saliot (1991) and Tedetti et al. (2011) found concentrations of PAHs in the
dissolved phase were similar or even greater than those recorded in the particulate phase.
This means there is a lack of systematic assessment of PAHs between the dissolved and
suspended phases on account of themany transformation processes during their occurrence
in the water column of such oil products.

Most studies (Wang, Shen & Zheng, 2005; Wang et al., 2008; Zadeh & Hejazi, 2012) have
focused on the horizontal modelling of oil spills and the transfer processes that take place
on the water surface (Wang & Zhang, 2012; Pilzis, Vaisis & Romagnoli, 2017; Long et al.,
2018). The vertical distribution of hydrocarbons and processes of oil spill transfer is less
well known.

This study evaluated the vertical distribution of PAHs in brackish water under
experimental conditions. We targeted individual PAHs released from the surface oil
and the spatial differences of PAHs in the dissolved and suspended phases. For prediction
of distribution of PAHs in different phases, the relationships between the concentration
ratio and the amount of suspended matter were tested.
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MATERIALS & METHODS
Experimental design
The research was carried out under laboratory conditions (Klaipeda University) during
2017–2018. An oil spill was imitated in the polyvinylchloride cylinders (height—1.1 m,
diameter—0.2 m) with infusive systems for vertical water sampling. Three cylinders were
filled up with 34 L of brackish water of the Baltic Sea (salinity –6.2, temperature 14 ◦C)
and with 50 g of crude oil (its density at 20 ◦C—0.8665 kg dm−3). For the control, three
other cylinders were filled up with natural brackish water. The cylinders were sealed
with a transparent methacrylate plate. Water chemical composition in the cylinders was
monitored over a period of 40 days. The samples of 50 mL of water were taken from 2
layers of water-column in the cylinder: (1) surface (∼5 cm under the film of crude oil)
and (2) near-bottom (∼5 cm above the bottom). Different intensity of water sampling was
chosen to find short-term patterns (ranging from hours immediately after the spill to days
and weeks) in a release of petroleum hydrocarbons from an oil film: 1 h, 2 h, 4 h, 7 h, 72 h
(3 days), 120 h (5 days), 336 h (14 days), 504 h (21 days) and 984 h (41 days).

Chemical analysis
The water samples were filtrated through glass fibre filters (Whatman GF/F with 0.7 µm
effective pore size; precombusted at 450 ◦C for 5 h). The GF/F filters were placed in pre-
cleaned glass dishes, wrapped with aluminium foil and stored at − 18 ◦C until extraction.
Then, GF/F filters were dried and weighed to calculate a content of suspended matter. The
GF/F filters with trapped particulatematterwere then extracted by hexane/dichloromethane
(Sigma Aldrich, CHROMASOLV R©, ≥95%) (1:1, v/v) in an ultrasonic bath (Ultrasonic
baths Sonorex Digitec, Type DT 100) for three times (each time for 30 min). The three
extracts were all combined and transferred to a flask. The extract was concentrated to
nearly dry by rotary evaporation (IKA RV–10 Digital), then solvent exchanged into hexane
around one mL and was analyzed afterwards.

The filtrated water samples (dissolved organic matter) were extracted 3 times using the
mixture of 20 mL of hexane and dichloromethane (1:2). Collected extracts were transferred
through analytically pure anhydrous sodium sulphate (Sigma Aldrich, anhydrous, Redi-
Dri R©, ACS reagent, ≥ 99%). The extract was concentrated to nearly dry by rotary
evaporation, then solvent exchanged into hexane around onemL. The extracts were cleaned
up using a five mL 2:3 (v/v) alumina:silica gel chromatography column. PAHs were eluted
with 10 mL of n-hexane/dichloromethane (1:1 v/v). The fractions were concentrated to
one mL under a stream of pure nitrogen and stored at 4 ◦C prior to instrumental analysis.

A concentration of PAHs was determined using the gas chromatograph Shimadzu
GC-2010 Plus with the Flame-Ionization Detector (GC-FID) and the Shimadzu
7683 Auto-sampler. The chromatograph was calibrated with Polynuclear Aromatic
Hydrocarbons Mix Analytical Standard (Supelco, 48905-U, 16 compounds), 2000 µg
mL−1 each component in methylene chloride: benzene (1:1). The PAHs with 2–6
aromatic rings were detected: Naphthalene (Naph), Phenanthrene (Phe), Anthracene
(Ant), Fluoranthene (Flt), Pyrene (Pyr), Chrysene (Chr), Benzo[k]fluoranthene
(BkF), Benzo[a]anthracene (BaA), Benzo[a]pyrene (BaP), Indeno[1,2,3-c,d]pyrene
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(IndP) and Benzo[ghi]perylene (BP), Acenaphthene, Acenaphthylene, Benzo[b
]fluoranthenem, Dibenz[a,h]anthracene, Fluorene. The chromatography column: Rxi R© –
1ms, Crossbond R© 100% dimethylpolysiloxane, length – 20 m, diameter – 0.18 mm, 0.18
um df. Temperature was set up from 55 to 300 ◦C at a rate of 10 ◦C per minute and
was maintained at 300 ◦C for 15 min. Carrier gases was helium (0.99 mL min−1). The
detector temperature was 320 ◦C. Each concentration of PAHs was measured 3 times. A
total concentration of PAHs was obtained by sum of individual concentrations of PAHs.

A concentration ratio was determined as proportion of compounds associated with
suspended particles phase (Cs) and compounds in a dissolved phase (Cw): concentration
ratio = Cs/Cw.

Statistical analysis
Generalized additive models were used to estimate temporal trends in the total
concentrations of PAHs. Generalized additive models are able to model non-linear
relationships between time and a response variable and can handle the irregular spacing in
time series (Simpson, 2018). Thin-plate regression splines with at least 3 degrees of freedom
and the gamma value of 1.4 were used to parametrise the smooth functions of time (Wood
& Augustin, 2002). The estimated degree of freedom (edf), F and P values were provided
only for significant temporal trends. Values of edf≤ 1 indicate linear trend, whereas values
of edf> 1indicate nonlinear trends. Generalized additive models were performed using the
mgcv package (Wood, Pya & Säfken, 2016) in R 3.4.4 (R Core Team, 2020; RStudio Team,
2020).

The effects of layers (near-bottom and surface), phases (dissolved and suspended) and
time of sampling on concentrations of PAHs were tested with generalized least squared
models because of violation of the homogeneity of variance assumption. The fullmodel with
all factors (predictors) was compared with models allowing different variance structures
according to the type of predictors using the Akaike’s information criteria (Zuur et al.,
2009). The backward selection of significant predictors was performed comparing the full
model with reduced model. The generalized least squared models were implemented with
nlme package (Pinheiro et al., 2020) in R.

The multiple, all pairwise comparisons of means between the treatments (layers,
phases and time) were tested by the Games-Howell post hoc test due to violation of the
homogeneity of variance assumption. The test was performed with the PMCMRplus
package (Pohlert, 2019) in R.

Depending on how data fit a normal distribution, the Pearson product-moment
correlation coefficient (r) or the Spearman’s rank correlation coefficient (rS) was
determined between the concentration ratio for Phenanthrene and Pyrene and the amount
of suspended matter. Simple linear regression models were fitted for both relationships
using the lm function in R and coefficients of determination (r2) were determined. The
results of all statistical tests were regarded significant with P < 0.05.
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Figure 1 Temporal patterns of the mean (±standard deviation) concentration of total PAHs in the
dissolved and suspended phases near the surface (A) and bottom (B) layers of the cylinders.Different
letters indicate significant differences among the means (P < 0.05, Games-Howell post-hoc test), where
capital letters stand for dissolved phase, and small letters stand for suspended phase.

Full-size DOI: 10.7717/peerj.10087/fig-1

Table 1 Statistical significance of trends in the total concentrations of PAHs in different layers and
phases.

Layer Phase Estimated degree
of freedom

F value P value

Surface Dissolved 1.015 6.112 <0.001
Surface Suspended 3.584 21.750 <0.001
Bottom Dissolved 0.87 1.86 <0.01
Bottom Suspended 0.848 2.373 <0.005

RESULTS
The PAHs with 2–6 aromatic rings were determined: Naphthalene (Naph), Phenanthrene
(Phe), Anthracene (Ant), Fluoranthene (Flt), Pyrene (Pyr), Chrysene (Chr),
Benzo[k]fluoranthene (BkF), Benzo[a]anthracene (BaA), Benzo[a]pyrene (BaP),
Indeno[1,2,3-c,d]pyrene (IndP) and Benzo[ghi]perylene (BP).

Linearly decreasing trends of the total concentrations of PAHs (Fig. 1 and Table 1) were
recorded in the dissolved phase of surface layer and both phases of bottom layers, while a
nonlinear (i.e., bell-shaped) decreasing trend was found in the suspended phase of surface
layer.

The mean of total sum of PAHs concentrations significantly differed between the layers,
phases and time (i.e., statistically significant their interaction: F = 43.694, df = 1, P <

0.001). In the surface layer, the total concentration of PAHs ranged from 19.01 to 198.19
ng L−1 in the dissolved phase (Fig. 1), whereas in the suspended phase it was from 10.05
to 63.92 ng L−1. The concentration of PAHs in this phase ranged 37–68% from the total
amount of PAHs. In the bottom layer, the total concentration of PAHs ranged from 28.29
to 214.85 ng L−1 in the dissolved phase, whereas in the suspended phase it was from 5.14
to 63.24 ng L−1.

In the surface layer, the means of total sum of PAHs concentrations in the dissolved
phase after 1 and 2 h were significantly (P < 0.05) higher than later mean and the means
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Figure 2 Distribution of 2–3 rings and 4–6 rings PAHs in the dissolved phase (A) and in the suspended
phase (B) in the surface and bottom layers of the cylinders.

Full-size DOI: 10.7717/peerj.10087/fig-2

in the suspended phase (Fig. 1A). In the dissolved phase, the means of total sum of PAHs
concentrations after 984 h was significantly lower than the means after 4–504 h. In the
suspended phase, the means of total sum of PAHs concentrations after 7,504 and 984 h
were significantly lower than the other means.

In the bottom layer, the mean of total sum of PAHs concentration in the dissolved
phase after 2 h was significantly (P < 0.05) higher than after other hours and the means
in the suspended phase (Fig. 1B). In the dissolved phase, the mean of total sum of PAHs
concentration after 4 h was significantly lower than the means after 1–2, 7–72 and 366 h.
In the suspended phase, the means of concentrations after 1–4 h were significantly higher
than the means after other hours.

The biggest difference in the distribution of PAHs was found during the first two hours
after the spill, especially in the suspended phase (Fig. 2). In the dissolved phase, 2–3 rings
PAHs dominated (60–80%), while the highest amount of 4–6 rings PAHs (55–90%) were
recorded in the suspended phase. Two hours after the spill, the amount of 2–3 rings PAHs
increased more than 80% in the dissolved and the suspended phases and dominated in
both phases.

The similar patterns were observed in the changes of the mean concentrations of 2–3
and 4–6 rings PAHs in different layers and phases (Fig. 3). For 2–3 rings PAHs, decreasing
trends of the total concentrations of PAHs were determined in the surface layer for
suspended phase and in the bottom layer for both phases (Table 2). For 4–6 rings PAHs,
decreasing trends of the total concentrations of PAHs were determined in the surface
layer for dissolved phase and in the bottom layer for both phases. A bell-shaped trend was
estimated in the surface layer for suspended phase.

The mean concentrations of 2–3 and 4–6 rings PAHs significantly differed between the
layers, phases and time (i.e., their statistical interactions respectively for 2–3 and 4–6 rings
PAHs: F = 9.067, df = 1, P < 0.005 and F = 26.834, df = 1, P < 0.001). For 2–3 rings
PAHs in the surface layer, only the mean concentration of PAHs in the dissolved phase
after 1 h was significantly (P < 0.05) higher than the one after 984 h (Fig. 3A). In the
suspended phase, only the mean concentration of PAHs after 336 h was significantly higher
than the means after 7 and 984 h. In the bottom layer, the mean concentration of PAHs in
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Figure 3 The mean (±standard deviation) concentrations of 2–3 rings and 4–6 rings PAHs in the dis-
solved and suspended phases near the surface and bottom layers of the cylinders. The 2–3 rings PAHs
near the surface (A) and bottom (B) layers of the cylinders and 4–6 rings PAHs phases near the surface (C)
and bottom (D) layers of the cylinders.

Full-size DOI: 10.7717/peerj.10087/fig-3

Table 2 Statistical significance of trends in the total concentrations of 2–3 and 4–6 rings PAHs in dif-
ferent layers and phases.

Rings Layer Phase Estimated degree
of freedom

F value P value

2–3 Surface Dissolved <0.001 0.000 0.226
2–3 Surface Suspended 0.912 3.272 <0.001
2–3 Bottom Dissolved 0.86 1.94 <0.01
2–3 Bottom Suspended 1.617 4.410 <0.005
4–6 Surface Dissolved 3.01 2.83 <0.05
4–6 Surface Suspended 1.009 10.490 <0.001
4–6 Bottom Dissolved 0.78 1.54 <0.01
4–6 Bottom Suspended 3.987 147.300 <0.001

the dissolved phase after 120 h was significantly higher than the one after 1 h (Fig. 3B. The
mean concentration of PAHs in the suspended phase after 7 h was significantly lower than
the means after 336 and 504 h; the mean after 336 h was significantly (P < 0.05) higher
than the one after 984 h.

For 4–6 rings PAHs in the surface layer, themean concentration of PAHs in the dissolved
phase after 1 h was significantly (P < 0.005) higher than the means after all hours, except
after 2, 7 and 120 h (Fig. 3C). In the same layer, the mean concentrations of PAHs in the
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Figure 4 Temporal patterns of the mean (±standard deviation) concentrations of 2–3 rings and 4–
6 rings PAHs compounds in the dissolved phase and suspended phase. The 2–3 rings PAHs in the dis-
solved (A) and suspended (B) phases and 4–6 rings PAHs in the dissolved (C) and suspended (D) phases.

Full-size DOI: 10.7717/peerj.10087/fig-4

suspended phase after 4, 336 and 504 h were significantly (P < 0.05) higher than the other
means . In the bottom layer, the mean concentration of PAHs in the dissolved phase after
2 h was significantly (P < 0.001) higher than the other means, except after 1 h, which did
not significantly differ from the rest means. In the same layer, the mean concentration of
PAHs in the suspended phase after 336 h was significantly (P < 0.05) higher than the other
means, except the one after 504 h.

For 2–3 rings PAHs in the dissolved phase, the decreasing trends of Phe and Naph
concentrations were determined (Fig. 4 and Table 3). In the same phase, a bell-shaped
trend was recorded for Ant concentrations. In the suspended phase, nonlinear trends were
determined for different PAHs compounds: a sharp decrease up to 7 h and a bell-shaped
trend later for Naph, a bell-shaped trend for Phe and Ant concentrations.

For 4–6 rings PAHs in the dissolved phase, the decreasing trends of Pyr, Chr and BkF
concentrations were determined (Fig. 4 and Table 3). BaP, IndP and BP were detected only
after 1 h. In the same phase, a U-shaped trend was recorded for Flt concentrations. In the
suspended phase, only a bell-shaped trend was determined for BaA concentrations. Chr
was detected only after 4 h.

For 2–3 rings PAHs, the mean concentrations of toxic compounds (Ant, Phe and
Naph) significantly differed between the phases and time (i.e., their statistical interactions
respectively: F = 472.486, df = 1, P < 0.001; F = 47.712, df = 1, P < 0.001 and F = 43.919,
df = 1,P < 0.001). Themean concentrations of Ant in the dissolved phasewere significantly
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Table 3 Statistical significance of trends in the total concentrations of 2–3 and 4–6 rings PAHs com-
pounds in different phases.

Rings Compound Phase Estimated degree
of freedom

F value P value

2–3 Ant Dissolved 2.58 2.43 <0.05
2–3 Ant Suspended 3.957 127.2 <0.001
2–3 Naph Dissolved 3.763 15.52 <0.001
2–3 Naph Suspended 26.022 1.664 <0.001
2–3 Phe Dissolved 0.834 2.918 <0.01
2–3 Phe Suspended 3.514 6.513 <0.001
4–6 BkF Dissolved 1.00 41.17 <0.01
4–6 Chr Dissolved 0.970 12.530 <0.001
4–6 Flt Dissolved 2.818 34.24 <0.001
4–6 Flt Suspended <0.001 0.000 0.423
4–6 Pyr Dissolved 5.205 0.753 <0.001
4–6 Pyr Suspended 0.61 0.56 0.06
4–6 BaA Suspended 3.994 250.500 <0.001

higher (P < 0.001) than the one in the suspended phase (Fig. 4). In the dissolved phase,
the mean concentration of Ant after 4 h was significantly (P < 0.05) lower than the means
after 2 and 7-984 h. In the suspended phase, the mean concentrations of Ant after 336 h
were significantly (P < 0.05) higher than the means 1–72 h. The mean concentrations of
Phe in the dissolved phase were significantly higher (P < 0.05) than in the suspended phase
only after 1 and 2 h. In the dissolved phase, the mean concentrations of Phe after 1 and
2 h were significantly (P < 0.05) higher than the means later. The mean concentrations
of Naph in the dissolved phase were significantly higher (P < 0.05) than the one in the
suspended phase only after 72 h. In the dissolved phase, the mean concentration of Naph
after 1 h was significantly (P < 0.05) higher than the means after 2, 7 and 336 h. In the
suspended phase, the means concentration of Naph after 1 and 2 h were significantly (P <

0.05) higher than the means after 4, 7, 336 and 984 h.
For 4–6 rings PAHs, the mean concentrations of toxic compounds (Pyr and Flt)

significantly differed between the phases and time (i.e., their statistical interactions
respectively: F = 28.620, df = 1, P < 0.001 and F = 46.488, df = 1, P < 0.001). The
mean concentration of Pyr in the dissolved phase was significantly higher (P < 0.001)
than the one in the suspended phase only after 1 h (Fig. 4). In the dissolved phase, the
mean concentration of Pyr after 1 h was significantly (P < 0.05) higher than the means
after 7-504 h. In the same phase, the mean concentration of Flt after 7 h was significantly
(P < 0.05) lower than the means after 1, 4 and 72 h. In the suspended phase, the mean
concentration of Pyr after 7 h was significantly (P < 0.05) lower than the means after 1–4
and 504 h.

The sediment-water concentration ratio of Phe an Pyr (Fig. 5) were the lowest on
the surface during the first hours after the spill (−1.21–(−1.01) and −0.61–(−0.49),
respectively). After 4 h, Pyr reached the highest values of concentration ratio (0.87) near
the bottom layers. Later, the concentration ratio values of Phe and Pyr decreased until
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Figure 5 Variation of concentration ratio of Phenantrene (A) and Pyrene (B) in the surface and bot-
tom layers of the cylinders. The dotted line represents 0 for y axis.

Full-size DOI: 10.7717/peerj.10087/fig-5

Figure 6 Relationships between the concentration of ratio of Phenantrene (A) and Pyrene (B) and the
amount of the suspendedmatter. The line –fitted regression model.

Full-size DOI: 10.7717/peerj.10087/fig-6

they get again high in the samples taken after 504 h in the surface layer (0.28 and 0.37,
respectively).

There was low negative correlation between concentration ratio of Phe and the
concentration of suspended matter (Fig. 6) but it was not significant (rS =−0.41, P = 0.27,
N = 9). However, concentration ratio of Pyr significantly negatively correlated with the
concentration of suspended matter (r =−0.79, P < 0.05, N = 7). The linear regression
models were fitted for both relationships: log(yPyr ) = 1.19–21.95*suspended matter
(r2= 0.62) and log(y Phe) = 0.57–17.79*suspended matter (r2= 0.21).
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DISCUSSION
In this study over the forty-one days we found a significant variation in the dissolved
and suspended phases of PAHs throughout the water column. Since PAHs tend to be
hydrophobic most of these were found in the suspended phase (Tedetti et al., 2011; Chiffre
et al., 2015). However, in our study, there was the significantly lower mean concentration
of PAHs in the suspended phase when compared with the dissolved phase. This could be
explained should the colloidal phase, including small particles, was not trapped within the
filters (Brown & Peake, 2003). In this case, the concentration of PAHs in the dissolved phase
was higher than what has been recorded in the literature (Dachs et al., 2002; Huang et al.,
2017). This could be due to the analyzed distribution of PAHs in the natural environment,
where water is mixed both vertically and horizontally (by wind and tidal vectors).

In our study, the release of PAHs from the surface film followed immediately after the
spill (Fig. 1). This is in agreement with results from other studies (Gonzalez et al., 2009;
Eide et al., 2011), where PAHs soluble fraction is rapidly released into the water column
and the PAHs remain dissolved in seawater over an extended period of time, even should
the insoluble fraction have been removed. The mean concentrations of PAHs in our study
did not significantly change throughout the water column after 1–2 h. It was some time
later (after 4–7 h) before the release of PAHs from the film slowed. This could have been
due to absorbed PAH component having either precipitated onto the bottom layer (Payne,
Clayton & Kirstein, 2003) or attached to particles (Karlsson & Viklander, 2008).

With respect to the temporal changes of the mean concentrations of PAHs, there were
recorded several exceptional concentrations (including relatively low standard deviations)
compared to the nearest estimates, especially near the bottom layer, e.g., for 2–3 rings
PAHs, after 120 h in the dissolved phase; for 4–6 rings PAHs, after 336 h in both phases
(Fig. 3). Most probably, the overestimations of the mean concentrations resulted from the
sampling error affected by bottom of cylinder.

In general, the mean concentrations of PAHs near the bottom layer were significantly
higher in the dissolved phase than in the suspended one for 2–3 and 4–6 rings PAHs.
These differences can be explained by the fact that a large part of PAHs in the dissolved
phase is in the colloidal form or in very small particles, which could not be trapped by the
filter as suspended particles (Brown & Peake, 2003). If the balance between the dissolved
and suspended phases is disturbed, PAHs can desorb from the suspended phase into the
dissolved one (Witt, 2002). This can explain why the concentrations of 2–3 rings PAHs
in the suspended phase increased in the samples taken after 72–336 h (Fig. 3). However,
Fernandes et al. (1997) showed that PAHs associated with the suspended phase do not
release into the dissolved phase but can be found as occluded or strongly bound with
fined-grained particles, which cannot be trapped by filters.

The PAH compounds are very toxic and their presence in the environment can be
considered as an ecological indicator. For instance, a concentration of Naph is particularly
important for toxicity, and together with other low-molecular-weight PAHs are monitored
for ecosystem recovery after oil spills (Page et al., 2002; Boehm & Page, 2007). In this
study, the temporal distribution patterns of 2–3 rings PAHs, Naph, Phe and Ant made
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61% of all PAHs found in the dissolved phase during the 1st hour. Similar results were
also recorded during other studies (Olivella, 2006; Deyme et al., 2011). In the dissolved
phase, the concentrations of these compounds were significantly higher compared to the
suspended phase (Fig. 4). It was found that the concentration of Naph in the dissolved
phase was relatively high during the first two hours after the spill. This is in agreement with
the results from another experiment, where Naph dominated in the water column and
was the most detectable in the dissolved phase (Luo et al., 2004). During the first hours in
our study, Naph was also dominant (84%) in the suspended phase (Fig. 4). This indicates
that the oil spill happened not long ago and the oil film was not affected by noticeable
weathering processes (Elordui-Zapatarietxe et al., 2010). In the suspended phase, relatively
high concentrations of this compound were detected until 336 h from the spill and only
the traces of this compound were recorded later. Dominance of Naph in PAHs can also
depend on the content of hydrocarbons in the crude oil (Gonzalez et al., 2009).

The concentrations of 4–6 rings PAHs in the dissolved phases could be reduced
throughout the study period due to the low content of these compounds in the crude
oil. Another reason for this could be the ongoing oxidation processes of 4–6 rings PAH
compounds.

In this study considering Kow, low-molecular-weight PAHs dominated in the dissolved
phase (72 ± 23%), which confirms the results obtained by Stortini et al. (2009). High
concentrations of high-molecular-weight PAHs in the suspended phase were found only
after few hours from the spill (Fig. 4).

The changes in distribution of concentration ratio of Phe and Pyr after 504 h (Fig. 5) can
be explained by the fact that balance was disturbed by newly released PAHs from the oil
film. Due to it, distribution is always in the non-equilibrium phase. It can also be noticed
that concentration ratio values of Pyr in the near bottom layer were higher than that of
Phe. These data are in agreement with the observed trend that hydrophobic compounds
tend to associate more with suspended particles (Witt, 2002; Wu et al., 2011).

There were differences in the relationships between concentration ratio and the amount
of the suspended matter (Fig. 6). A moderate negative correlation (r =−0.79) was
determined between Pyr and the concentration of suspended matter. This could be
explained by the surface layer as hydropofobicity of Pyr, which is higher than that of
Phe. It leads to higher potential to interact with the suspended matter and conditions
to remove PAHs from the water column (Weber et al., 2006). In natural environment,
pollutant sorption to suspended matter influences their toxicity, bioavailability and further
fate, which can be identified as key mechanism of PAHs accumulation in sediments
(Qiao, Huang & Wang, 2008). Despite the differences in the relationships between the
concentration ratio and amount of suspended matter we obtained linear regressions that
allow roughly to predict the concentration of PAHs from the concentration of suspended
matter. The relatively low explained variance in the concentration ratio of Phe is most likely
due to low number of observations (7); however, the general trends of both regressions
(i.e., beta coefficients) were similar.
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CONCLUSIONS
Experimentally it was found that the release of PAHs from the film had immediately
started after the spill. The highest concentrations of PAHs were detected 214.85 ng L−1

in the dissolved phase and 63.92 ng L−1 in the suspended phase after 1 h. This highlights
the amount of release of PAHs before the start of liquidation works after the oil spill. The
concentration of PAHs in the dissolved phase ranged from 36.8 to 68.0% of all PAHs
amount, showing that it can strongly be influenced by PAHs transfer and bioavailability.

The 2–3 rings PAHs dominated (45.0–94.0%) in the dissolved phase and were released
during whole period of the study. The 4–6 rings PAHs were found in lower concentrations
(in some samples < 6.0%) in the dissolved phase. In the suspended phase, higher
concentrations of high-molecular-weight PAHs were found only after a few hours from
spill. It can also be noticed that concentrations of PAHs near the bottom layer were
significantly higher in the dissolved phase than in the suspended phase for 2–3 and 4–6
rings PAHs.

The concentration ratio of Phe and Pyr varied throughout the experiment, showing
that the balance between the dissolved and suspended phases had not stabilized in the
water column after oil spills. Moreover, low values of concentration ratio showed that
the major part of PAHs was distributed in the dissolved phase. Despite the differences in
the relationships between the concentration ratio and amount of suspended matter the
obtained regressions allow roughly to predict the concentration of polycyclic aromatic
hydrocarbons.
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