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ABSTRACT
Coronavirus (COVID-19) was first observed in Wuhan, China, and quickly
propagated worldwide. It is considered the supreme crisis of the present era and one
of the most crucial hazards threatening worldwide health. Therefore, the early
detection of COVID-19 is essential. The common way to detect COVID-19 is the
reverse transcription-polymerase chain reaction (RT-PCR) test, although it has
several drawbacks. Computed tomography (CT) scans can enable the early detection
of suspected patients, however, the overlap between patterns of COVID-19 and other
types of pneumonia makes it difficult for radiologists to diagnose COVID-19
accurately. On the other hand, deep learning (DL) techniques and especially the
convolutional neural network (CNN) can classify COVID-19 and non-COVID-19
cases. In addition, DL techniques that use CT images can deliver an accurate
diagnosis faster than the RT-PCR test, which consequently saves time for disease
control and provides an efficient computer-aided diagnosis (CAD) system.
The shortage of publicly available datasets of CT images, makes the CAD system’s
design a challenging task. The CAD systems in the literature are based on either
individual CNN or two-fused CNNs; one used for segmentation and the other for
classification and diagnosis. In this article, a novel CAD system is proposed for
diagnosing COVID-19 based on the fusion of multiple CNNs. First, an end-to-end
classification is performed. Afterward, the deep features are extracted from each
network individually and classified using a support vector machine (SVM) classifier.
Next, principal component analysis is applied to each deep feature set, extracted
from each network. Such feature sets are then used to train an SVM classifier
individually. Afterward, a selected number of principal components from each deep
feature set are fused and compared with the fusion of the deep features extracted
from each CNN. The results show that the proposed system is effective and capable
of detecting COVID-19 and distinguishing it from non-COVID-19 cases with an
accuracy of 94.7%, AUC of 0.98 (98%), sensitivity 95.6%, and specificity of 93.7%.
Moreover, the results show that the system is efficient, as fusing a selected number of
principal components has reduced the computational cost of the final model by
almost 32%.
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INTRODUCTION
Late December 2019, the coronavirus disease (COVID-19) was detected in Wuhan City,
Hubei Province, China. It then propagated worldwide, and was declared a pandemic by the
World Health Organization (WHO) at the end of January 2020 (Butt et al., 2020).
The pandemic of the novel coronavirus is still progressively increasing and propagating
around the world. So far, the pandemic has spread to more than 30 provinces of China and
other countries (Li et al., 2020b). The number of patients that were verified to have
COVID-19 has increased to over 775,000 in more than 160 countries, but the number of
persons diseased is likely to be much greater. Over 36,000 individuals have died from the
COVID-19 disease (up to 30 March 2020) (Dong, Du & Gardner, 2020).

Nowadays, COVID-19 is considered the most significant and crucial hazard to
worldwide health (Dong, Du & Gardner, 2020). The WHO encouraged efforts to reduce
the spread of the infection, however, many countries have faced some major care crises
(Arabi, Murthy & Webb, 2020; Grasselli, Pesenti & Cecconi, 2020). The epidemic of
COVID-19 led to a tremendous increase in the need for hospital beds, as well as necessary
medical equipment. Moreover, doctors and nurses are at a high risk of infection. The new
coronavirus has led to severe health problems such as heart complications, acute
respiratory condition, and secondary infections, in quite a great portion of infected people.
It consequently led to significant deaths. Therefore, the early detection and initiation of
treatment in severe cases is essential (Butt et al., 2020).

The reverse transcription-polymerase chain reaction (RT-PCR) test is a widely used tool
to diagnose COVID-19 cases. However, it suffers from some drawbacks, such as its
time-consuming procedure and expensive cost. Moreover, the sensitivity of the RT-PCR
test is inadequate, resulting in false negatives, and subsequently more infections (Ai et al.,
2020). Furthermore, the insufficient amount of tests and the need for well-equipped
laboratories for analysis, could critically delay the accurate detection of COVID-19 cases.
This shows the unexpected challenges faced, in trying to avert the spread of the virus
globally (Xie et al., 2020). These limitations have encouraged researches to look for a faster
alternative solution to detect coronavirus.

Deep learning (DL) techniques are considered the new class of machine learning (ML)
approaches. The explanation of different DL techniques will be discussed later in the
Materials and Methods section. Recently, DL has been extensively used in the medical area
(Zemouri, Zerhouni & Racoceanu, 2019). This is due to the advantage they offer over
classical ML approaches. DL methods have the ability to present optimum representations
and significant information from the raw images without image enhancement,
segmentation, and feature extraction processes. This leads to an improved diagnosis
process and lower complexity, when compared to classical ML approaches (Attallah,
Sharkas & Gadelkarim, 2020; Fujita, 2020). Consequently, DL based-CAD systems that use
medical images are recommended as another tool in the diagnosis and control of the novel
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coronavirus. Such CAD systems offer a quick and easy solution for medical diagnosis of
COVID-19 (Iwasawa et al., 2020). Moreover, these CAD systems have the potential to
deliver an accurate and fast second opinion, to help radiologists in giving an accurate
diagnosis based on medical images (Ardakani et al., 2020). Furthermore, a CAD system
can avoid diagnostic errors caused by human which might occur due to the exertion done
during clinical examinations and radiologists’ visual fatigue (Ragab, Sharkas & Attallah,
2019; Ragab et al., 2019). This can assist in managing the current pandemic, speed up
the detection of the disease, avoid its fast spread, and help doctors to improve the quality of
patient management, even in extraordinary workload situations.

Computed tomography (CT) images are well-known imaging technique that can be
employed by CAD systems for the early detection of the COVID-19 disease, and
distinguishing it from non-COVID-19 cases (Butt et al., 2020). The authors in Fang et al.
(2020) have shown that the sensitivity of detecting COVID-19 using CT medical images is
much higher than the RT-PCR test. Several studies have demonstrated that CT is an
efficient tool in detecting, visualizing, and diagnosing COVID 19-disease (Fang et al., 2020;
Xie et al., 2020). The representative appearance of COVID-19 in CT images allows
such images to differentiate COVID-19 from non-COVID-19 pneumonia. This task is
difficult when it depends only on human examination. This is because of the overlap of
specific patterns with other types of pneumonia (Shi, Han & Zheng, 2020). However,
DL techniques can distinguish between COVID-19 and non-COVID-19 cases (Butt et al.,
2020). Therefore, DL methods could be used to enhance the radiologist’s diagnostic
capabilities for detecting COVID-19 from CT images.

The authors in Butt et al. (2020) proposed the use of ResNet-23 and ResNet-18
convolutional neural network (CNN) architectures. They differentiated COVID-19 and
non-COVID-19 cases achieving an area under the receiver-operating curve (AUC) of
99.6%, a sensitivity of 98.2%, and a specificity of 92.2%. The authors in Li et al. (2020a)
introduced a method based on ResNet-50 to detect COVID-19 from CT images. The
sensitivity, specificity, and AUC produced were 87%, 92%, and 0.95 (95%), respectively.
EfficientNet-B4 was used in Bai et al. (2020) to distinguish between corona and
non-coronavirus achieving 87%, 89%, 86%, and 0.9 (90%) for accuracy, sensitivity,
specificity, and AUC, respectively. On the other hand, the authors in Amyar, Modzelewski &
Ruan (2020) constructed two U-Nets. The highest accuracy, sensitivity, specificity,
and AUC attained were 86%, 94%, 79%, and 0.93 (93%), respectively. The authors in Chen
et al. (2020) employed the U-Net architecture to distinguish between COVID-19 and
non-COVID-19 cases. A sensitivity of 100%, a specificity of 93.6%, and an accuracy of 95.2%
were obtained. A U-Net was used for lung segmentation in Zheng et al. (2020) followed by a
3D CNN for predicting the probability of COVID-19. The proposed method reached a
sensitivity of 90.7%, a specificity of 91.1%, and an AUC of 0.959 (95.9%). Whereas, a 2D
Deeplab-v1 model was used in Jin et al. (2020a) for segmenting the lung followed by the
ResNet-152 model for identifying COVID-19 cases. The results achieved a sensitivity of
94.1%, a specificity of 95.5%, and an AUC of 0.979 (97.9%). The authors in Jin et al. (2020b)
proposed the fusion of UNet++ for segmenting lesions and a ResNet-50 for classification.
The sensitivity and specificity of ResNet-50 CNN were 97.4% and 92.2%, respectively.
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Moreover, ResNet-50 CNNwas also employed in Song et al. (2020), achieving an accuracy of
86%, a sensitivity of 96%, a precision of 79%, and an AUC of 0.95 (95%). The authors in
Wang et al. (2020) extracted the deep features using Inception CNN architecture and then
used these features to train Adaboosted decision tree classifiers. An accuracy of 82.9%, a
sensitivity of 81%, a specificity of 84%, and an AUC of 0.9 (90%) were attained.

A summary of recent similar related studies is shown in Table 1. As it is clear some of
the related work is based on either an individual CNN or fusing two CNNs, where the first
CNN is for segmenting the lung and the other is for the classification and diagnosis of
COVID-19. The effect of fusing multiple CNNs for classification and diagnosis was not
considered in the previous studies. Moreover, reducing the huge deep feature space was
not examined in the previous studies. Therefore, in this article, a novel CAD system
based on the fusion of multiple CNN for detecting COVID-19 and differentiating it from
non-COVID-19 cases is proposed. The proposed CAD employs four types of CNNs
different from those used in the literature. These CNNs include AlexNet, GoogleNet,
ResNet-18, and Shuffle-Net. The proposed CAD examines the use of principal component
analysis (PCA), to reduce the dimensionality of the deep feature space extracted from each
CNN individually, and use them to train support a vector machine (SVM) classifier.
Then, the effect of fusing these principal components on the classification performance of
the SVM classifier is evaluated. The proposed CAD system classifies COVID-19 and
non-COVID-19 by four different scenarios. The first one is an end-to-end CNN using
four fine-tuned pre-trained CNNs. In the second scenario, the deep features of each CNN
architecture is extracted and classified separately using the SVM classifier. In the third
scenario, selected principal components are chosen from each deep feature set, and used to
train SVM. Finally, in the fourth scenario, all principal components selected from the four
deep features sets, are fused and classified using SVM.

METHODS AND MATERIALS
Dataset description
The details of the dataset used in this article are available in Zhao et al. (2020). It consists of
347 COVID-19 images and 397 non-COVID-19 images with several types of pathology.
The length of CT images ranges from 153 to 1,853 pixels with a mean of 491 pixels,
whereas the width ranges from 124 to 383 pixels with a mean of 1,485 pixels. Samples of
the CT images for COVID-19 and non-COVID-19 cases available in the dataset are shown
in Fig. 1.

Convolutional neural networks
The CNN is a class of DL techniques that are extensively employed for solving issues
regarding health informatics (Jin et al., 2020b) and in specific classification and diagnosis
of medical images (Ravì et al., 2016). Thus, different CNN architectures were employed
in this article. A CNN consists of several layers such as convolutional layers, pooling
layers, and fully connected (fc) layers. In the convolutional layer, a number of filters of a
specific size are convolved with the portion of the input image equivalent to the same size
of the filter. Afterward, a feature map is generated which corresponds to the location
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of the features in the original image. This feature represents the spatial information of the
pixel values of the input image. Next, the pooling layer down-samples the huge dimension
of the feature map. Finally, the fc layer performs the classification process like the

Table 1 A summary of recent related studies.

Paper Dataset Method Results

Butt et al. (2020) 219 COVID-19
339 Others

ResNet-18 and ResNet-23 Accuracy = 95.2%

AUC = 0.996 (99.6%)

Sensitivity = 98.2%

Specificity = 92.2%

Li et al. (2020a) 468 COVID-19
2,996 Others

ResNet-50 Accuracy = 89.5%

AUC = 0.95 (95%)

Sensitivity = 87%

Specificity = 92%

Bai et al. (2020) 521 COVID-19
665 others

EfficientNet-B4 Accuracy = 87%

AUC = 0.9 (90%)

Sensitivity = 89%

Specificity = 86%

Amyar, Modzelewski & Ruan (2020) 449 COVID-19
595 others

Two U-Nets Accuracy = 86%

AUC = 0.93 (93%)

Sensitivity = 94%

Specificity = 79%

Chen et al. (2020) 4382 COVID-
19
9,369 others

U-Net++ Accuracy = 95.2%

Sensitivity = 100%

Specificity = 93.6

Zheng et al. (2020) 313 COVID-19
229 Others

U-Net and CNN Accuracy = 90.9%

AUC = 0.959 (95.9%)

Sensitivity = 90.7%

Specificity = 91.1%

Jin et al. (2020a) 496 COVID-19
1,385 Others

Deeplab-v1 and
ResNet-152

Accuracy = 94.8%

AUC = 0.979 (97.9%)

Sensitivity = 94.1%

Specificity = 95.5%

Jin et al. (2020b) 723 COVID-19
413 Others

U-Net and ResNet-50 Accuracy = 94.8%

Sensitivity = 97.4%

Specificity = 92.2%

Song et al. (2020) 219 COVID-19
399 Others

ResNet-50 Accuracy = 86%

AUC = 0.95 (95%)

Sensitivity = 96%

Precision = 79%

Wang et al. (2020) 325 COVID-19
740 Others

Inception and Adaboosted
decision tree

Accuracy = 82.9%

AUC = 0.9 (90%)

Sensitivity = 81%

Specificity = 84%
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traditional artificial neural network (ANN). The key benefit of CNN over the traditional
ANN, is that the feature map is now a spatial demonstration of the variables existing in the
dataset, and the features produced will be significant and descriptive (Greenspan, Van
Ginneken & Summers, 2016). Moreover, CNN does the feature extraction process itself,
which is not the case in traditional ANN where handcrafted feature extraction techniques
should be used separately then used as input to ANN (Valliani, Ranti & Oermann, 2019).
Four CNNs corresponding to the state-of-the-art networks used for medical images are
employed in this article. These networks include AlexNet, GoogleNet, ResNet-18, and
ShuffleNet architectures. These networks have not yet been used to detect and classify
COVID-19 in the literature.

AlexNet CNN
The AlexNet CNN network was introduced in 2012 by the authors in Krizhevsky,
Sutskever & Hinton (2012). It was proposed after LeNet was created by LeCun et al. (1998).
The authors created the AlexNet model, which won the ImageNet Large-Scale Visual
Recognition Challenge in 2012. The structure of AlexNet contains 23 layers, which
includes five convolutional layers, five rectified linear unit (ReLu) layers, two layers for
normalization, three pooling layers, three fc layers, a layer of probabilities using softmax
units, and lastly one layer for classification terminating in 1,000 neurons for 1,000
categories. AlexNet CNN was initially trained with ImageNet data, using more than 15
million labeled images with almost 22,000 classes.

GoogleNet CNN
Researchers at Google designed the GoogleNet architecture in 2014. Its construction is
much deeper than AlexNet and consists of 22 layers. GoogleNet architecture is based on
the inception block, which considers dropping the number of parameters in a CNN.
Therefore, it contains a lower number of parameters, almost 12 times lower than AlexNet,
which leads to faster convergence. The GoogleNet structure won the ImageNet Large-Scale

Figure 1 Samples of CT images from the dataset; (A–D) COVID-19 CT images and (E–H) non-
COVID-19 CT images. Full-size DOI: 10.7717/peerj.10086/fig-1
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Visual Recognition Challenge (ILSVRC14) in 2014, for achieving the best performance
(Szegedy et al., 2015). The main module of this structure is nine inception blocks that occur
at every layer of the GoogleNet. These blocks are scaled upon each other with a maximum
pooling layer. Lastly, an fc layer exists just before the output layer.

ShuffleNet CNN
Recognizing important patterns from images, requires the construction of bigger and
deeper CNN. Producing accurate CNNs regularly requires a huge number of layers and
channels, which leads to a very high computation cost (Girshick et al., 2014). To overcome
this problem, an extremely efficient CNN was proposed called ShuffleNet. ShuffleNet was
first introduced in 2018 by Zhang et al. (2018), for applications that have very limited
computing power such as mobile applications. This novel network structure presents two
new processes namely; pointwise group convolution and channel shuffle. The former
procedure uses 1 × 1 convolution to lower the computation cost, while obtaining
acceptable accuracy compared to the state-of-the-art CNN such as ResNet and Xception,
which turns out to be less effective in tremendously small networks due to the costly dense
1 × 1 convolutions. The later operation assists the data flowing across feature channels.
The channel shuffle operation lets a group of convolutions attain input data from several
groups, where the output/input channels are completely associated. Specifically for the
feature map produced in the previous group layer, the channels in each group are split into
separate subgroups. Afterward, each group of the preceding layer is fed by a separate
subgroup.

ResNet-18 CNN
One of the recent architectures that are commonly used for medical imaging applications
is ResNet. It received the first place in ILSVRC and the COCO 2015 competition in
ImageNet Detection, ImageNet localization, Coco detection, and Coco segmentation.
The main building block in ResNet is the residual block introduced by He et al. (2016).
Such block offers short cut connections within the convolution layers, which allow the
network to skip several convolution layers at a time. In other words, the residual block
offers two choices, it can accomplish a set of functions on the input, or it can pass this
phase completely. Therefore, the ResNet structure is considered more efficient and
produces better performance than other CNNs such as AlexNet and GoogleNet. In this
article, ResNet-18 was employed which contains 17 convolutional layers and one fully
connected layer at the end of the network.

Proposed MULTI-DEEP CAD system
A novel CAD system “MULTI-DEEP”, for detecting COVID-19 and distinguishing it
from non-COVID-19 is proposed, which CAD is based on the fusion of multiple CNNs.
It employs several CNNs that are different from those used in the literature. It consists
of four approaches; end-to-end classification, deep feature extraction, principal
component selection, and detection. In the end-to-end DL classification approach, four
CNNs of different architectures were constructed with the images available in the dataset.
Each of the CNNs performs the classification and diagnosis procedure individually.
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Afterward, in the deep feature extraction approach, valuable features were extracted from
each deep CNN separately. Next, in the principal component selection approach, PCA was
applied on each deep feature set individually, and the optimal number of principal
components was selected for each feature set separately. In the detection approach, SVM
classifiers were constructed to test the performance of the proposed CAD system. The four
approaches of the proposed CAD system were tested with four different scenarios, to verify
that the fusion of multiple CNNs was capable of enhancing the accuracy of the CAD
system and it was better than using individual CNNs. Thus, the first three scenarios were
done to examine the performance of the CAD system using individual CNNs either by
end-to-end DL classification or by extracting deep features from each CNN and reducing
them by PCA, then using them individually to train SVM classifiers. This process was
done in the first three scenarios. In the first scenario, four pre-trained end-to-end networks
were fine-tuned to classify COVID-19 and non-COVID-19 cases. In the second scenario,
the deep features were extracted from each CNN and then used individually to
construct SVM classifiers. Additionally, in the third scenario, PCA was applied on each
deep feature set separately, and then a chosen number of principal components was
used to train SVM classifiers individually. The performance of the CAD system using
individual CNNs (the first three scenarios) was compared with the fusion of multiple
CNNs in the fourth scenario. In this last scenario, the deep features were fused to examine
the influence of fusing the four deep features, and determine its impact on both detection
accuracy and computational efficiency. Moreover, PCA was performed on the fusion
feature set. Figure 2 illustrates the MULTI-DEEP CAD system. Note that, a pre-processing
step was done to resize all the images to be equal to the required input size of the CNN
architectures, as each CNN requires a different input image size.

End-to-end deep learning approach
In this approach, the transfer learning method was employed. Transfer learning is a
technique that allows a pre-trained CNN that has been trained with a huge dataset
containing thousands of images like ImageNet, to be used in a similar classification task.
In other words, a pre-trained CNN which was previously learned with a similar task to the
one at hand is used for a new medical task (Zemouri, Zerhouni & Racoceanu, 2019;
Greenspan, Van Ginneken & Summers, 2016). Transfer learning is an important step to
solve convergence and overfitting issues that could happen during the first few epochs.
Therefore, four pre-trained CNNs of different architectures were employed. These
networks include AlexNet, GoogleNet, ResNet-18, and ShuffleNet architectures. A
summary of the architecture of the four networks is shown in Table 2. These CNNs were
used individually to detect COVID-19 and distinguish them from non-COVID-19 cases.

Deep feature extraction approach
Pre-trained CNNs can either be trained from images to perform classification tasks, or be
used as a feature extractor where significant deep features are extracted from the fc layers
of the CNNs. In this approach, as an alternative of employing the CNNs as classifiers,
deep features are pulled out from the “fc7” of the fine-tuned AlexNet, dropout layer named
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“pool 5 drop 7 × 7 s1” of the pre-trained GoogleNet, “node 200” of pre-trained ShuffleNet,
and “global average pooling 2D layer” (fifth pooling layer) of the fine-tuned ResNet-18.
The number of deep features generated from each CNN is 544, 4096, 1024, and 512 for
SuffleNet, AlexNet, GoogleNet, and ResNet-18, respectively.

Principal component selection approach
The deep features extracted in the previous approach are of large dimension. Therefore, in
this approach PCA is employed to reduce the dimension of the feature space vector. PCA is
a popular feature reduction approach, used to compress the data size by operating a
covariance investigation among variables of a dataset. It drops out the sum of observed
variables to lessen the principal components. Such principle components demonstrate the
variance of the observed variables (Smith, 2002). First, PCA is employed on each deep
feature individually. Afterward, the optimal number of principal components for each
deep feature set is chosen using a forward selection procedure. Finally, these selected
numbers of principal components are fused and used to train SVM classifiers in the
next approach.

Table 2 A summary of the architecture of the four pre-trained CNNs used.

CNN architecture Number of layers Input size Output size

AlexNet 8 227 × 227 4,096 × 2

GoogleNet 22 224 × 224 1,024 × 2

ResNet-18 18 224 × 224 512 × 2

ShuffleNet 50 224 × 224 544 × 2

Figure 2 The proposed different scenarios for the MULTI-DEEP CAD system.
Full-size DOI: 10.7717/peerj.10086/fig-2
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Detection approach
In this approach, the detection process is performed using four different scenarios.
The first scenario presents the detection of COVID-19 using the four pre-trained CNNs.
The other three scenarios include the use of a cubic SVM classifier, for detecting COVID-19
and distinguishing it from non-COVID-19 cases. In the second scenario, each deep
feature extracted in the deep feature extraction approach is used to construct and train four
cubic SVM classifiers individually. In the third scenario, the principal components selected
from the PCA applied to each deep feature set are used to train the cubic SVM classifier
individually. In the fourth scenario, the effect of fusing the four deep features is investigated
to determine its impact on both detection accuracy and computational efficiency. Moreover,
PCA is applied to the fused features to reduce their dimension and examine if using
PCA on the fused features will enhance the performance of the SVM classifier.

EXPERIMENTAL SET UP
Parameter Setting
Several parameters are tuned for the pre-trained CNNs. The number of epochs is 20, and
the initial learning rate for the four CNNs is 10−4. The mini-batch size and validation
frequency are 10 and 4, respectively. The L-regularization is 0.0005. Further parameters are
kept unchanged. These configurations are to confirm that the parameters are fine-tuned
for the detection of medical data. Stochastic gradient descent with momentum is used
for optimization. To validate the performance of the proposed MULTI-DEEP CAD
system, 5-fold cross-validation is used. Note that the kernel function used for the SVM
classifier is cubic, as it achieved the best performance.

Augmentation
Augmentation is an important process done to increase the size of the dataset, since
training the classification model with a small amount of data might over-fit (Ravì et al.,
2016). In other words, the classification of the model will memorize the details of the
training set, and will not perform well on testing sets. In this article, the augmentation
techniques used to create new lung CT images from the training data, are flipping,
translation, and scaling. Each CT image was translated in x and y-directions with pixel
range (−30 to 30). Moreover, each original image was flipped. They were also scaled with a
scaling range (0.9–1.1).

PERFORMANCE EVALUATION
The performance of the proposed MULTI-DEEP CAD system is measured with several
metrics such as accuracy, sensitivity, specificity, precision, F1-score, and area under
receiving operating characteristics (AUC). The equations used to calculate such metrics are
shown below Eqs. (1)–(5).

Accuracy ¼ TPþ TN
TNþ FPþ FNþ TP

(1)
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Sensitivity ¼ TP
TPþ FN

(2)

Specificity ¼ TN
TNþ FP

(3)

Precision ¼ TP
TPþ FP

(4)

F1‐Score ¼ 2� TP
2� TPþ FPþ FN

(5)

where TP is the number of COVID-19 images that are correctly classified, TN is the
number of non-COVID-19 images that are correctly classified. FP is the number of
non-COVID-19 images that are misclassified as COVID-19. FN is the number of
COVID-19 images that are misclassified as non-COVID-19.

RESULTS
This study proposed a novel CAD system called MULTI-DEEP, based on the fusion of
multiple CNNs to detect and classify COVID-19 and non-COVID-19 cases.
The framework was composed of four different scenarios. In this section, each scenario is
illustrated and the results of the four scenarios are discussed.

Scenario I
In this scenario, four pre-trained CNNs were used to detect COVID-19 and non-COVID-19
cases individually. The results of this scenario are shown in Table 3.

The highest performance was achieved by ResNet-18 with an accuracy of 78.29%, an
AUC of 0.8386 (83.86%), a sensitivity of 0.769 (76.9%), a specificity of 0.799 (79.9%),
a precision of 0.81 (81%), and an F1-score of 0.789 (78.9%). Whereas, the accuracies and
AUC of other CNNs covered the ranges (71.99–75.89%) and (0.7754–0.8166) respectively.
In addition, the sensitivity, specificity, precision, and F1-score fluctuated within the ranges
(0.687–0.762), (0.724–0.768), (0.715–0.81), (0.728–0.758) respectively. Additionally, the
execution time of ResNet-18 was 19 min and 31 s, which proved to be the best performance
compared to other networks.

Scenario II
In this scenario, deep features were extracted from each pre-trained CNN, and were used
to train SVM classifiers individually. The performance results of the SVM classifiers,
constructed with deep features extracted from AlexNet, GoogleNet, ResNet-18, and
ShuffleNet CNNs, are shown in Table 4.

The deep features of ResNet-18 CNN achieved the highest performance compared to
other CNN deep features, achieving an accuracy and AUC of 92.5% and 0.97 (97%),
respectively, as shown in Fig. 3A. Moreover, the other scores attained were the highest
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values as well. The sensitivity, specificity, precision, F1-score, AUC, and the execution time
reached 0.933 (93.3%), 0.918 (91.8%), 0.916 (91.6%), 0.925 (92.5%), and 1.947 s,
respectively, as demonstrated in Table 4. Figure 3 shows the receiver operating
characteristics (ROC) curve, and the computed AUC for the SVM classifier constructed
with the deep features of ResNet-18 and ShuffleNet, as these networks achieved the highest
results.

Figure 3 ROC curve for SVM classifier trained with deep features extracted from (A) pre-trained
ResNet-18 and (B) pre-trained ShuffleNet. Full-size DOI: 10.7717/peerj.10086/fig-3

Table 4 Performance metrics of SVM classifier trained individually with each deep feature extracted from the pre-trained CNNs.

Accuracy (std) AUC (std) Sensitivity (std) Specificity (std) Precision (std) F1 score (std) Time (s) (std)

AlexNet 90.9% (0.002) 0.95 (0) 0.922 (0.005) 0.896 (0.003) 0.891 (0.005) 0.907 (0.003) 20.991 (3.066)

GoogleNet 89.2% (0.004) 0.95 (0) 0.914 (0.029) 0.86 (0.009) 0.849 (0.006) 0.881 (0.016) 3.867 (0.274)

ResNet-18 92.5% (0.005) 0.97 (0) 0.933 (0.005) 0.918 (0.07) 0.916 (0.007) 0.925 (0.006) 1.947 (0.25)

ShuffleNet 91.1% (0.002) 0.98 (0.001) 0.919 (0.003) 0.904 (0.004) 0.902 (0.005) 0.911 (0.003) 2.54 (0.168)

Note:
Bold values indicate the highest results.

Table 3 Performance metrics of the four pre-trained CNNs of scenario I.

Accuracy (%) AUC Sensitivity Specificity Precision F1 score Time

AlexNet 73.21 0.7754 0.74 0.724 0.715 0.728 19 min 43 s

GoogleNet 75.89 0.8166 0.762 0.756 0.753 0.758 19 min 31 s

ResNet-18 78.29 0.8382 0.769 0.799 0.81 0.789 19 min 31 s

ShuffleNet 71.99 0.7903 0.687 0.768 0.81 0.744 25 min 26 s

Note:
Bold values indicate the highest results.
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Scenario III
In Scenario III, PCA was applied to each deep feature extracted from each pre-trained
CNN. Then, a selected number of principal components from each deep feature set was
used to train SVM classifiers individually. The number of principal components was
selected in a forward sequential procedure. The accuracy of the constructed SVM
classifiers with a number of principal components is shown in Fig. 4.

It was noticeable from Fig. 4 that only 50 principal components for the ResNet-18 and
the ShuffleNet deep features provide the highest accuracy. Therefore, 50 components were
selected for deep features extracted from ResNet-18 and the ShuffleNet. However, for
the GoogleNet deep features, the highest accuracy was achieved using 50 and 100 principal
components. While the highest accuracy achieved for the AlexNet deep features, required
100 and 150 principal components. Therefore, four-fused feature sets were generated to
train the SVM classifier and then compared to determine the best combination, which
had an impact on the accuracy. Table 5 shows a comparison between the accuracies
achieved by SVM classifiers, trained with the four feature sets corresponding to different
combinations of selected principal components chosen from the four pre-trained CNNs.

Figure 4 The performance of the SVM classifier constructed with various principal components.
Full-size DOI: 10.7717/peerj.10086/fig-4

Table 5 Performance metrics of the SVM classifiers constructed with the four feature sets formed from different combinations of the selected
number of principal components.

Accuracy (std) AUC (std) Sensitivity (std) Specificity (std) Precision (std) F1 score (std) Time (s) (std)

Feature set (1)
(250 features)

93.4% (0.002) 0.98 (0.001) 0.945 (0.006) 0.922 (0.003) 0.919 (0.004) 0.933 (0.003) 2.071 (0.269)

Feature set (2)
(300 features)

94% (0.002) 0.98 (0.001) 0.949 (0.001) 0.932 (0.001) 0.93 (0.001) 0.94 (0.001) 2.105 (0.001)

Feature set (3)
(350 features)

92.6% (0.003) 0.972 (0.005) 0.935 (0.006) 0.916 (0.005) 0.913 (0.005) 0.924 (0.004) 2.002 (0.194)

Feature set (4)
(300 features)

93% (0.003) 0.98 (0.001) 0.935 (0.005) 0.926 (0.005) 0.925 (0.006) 0.93 (0.001) 2.088 (0.293)

Note:
Bold values indicate the highest results.
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Feature set (1) contained 50 Components from each of ResNet-18, GoogleNet, and
ShuffleNet, and 100 components fromAlexNet.Whereas, Feature set (2) had 50 components
from each of ResNet-18, GoogleNet, and ShuffleNet, and 150 components from AlexNet.
Feature set (3) composed of 50 components from each of ResNet-18 and ShuffleNet,
100 components from GoogleNet, and 150 components from AlexNet. Feature set (4) had
50 components from each of ResNet-18 and ShuffleNet, and 100 components from
GoogleNet and AlexNet. It was clear from Table 5 that the highest SVM performance was
achieved when constructed using Feature set (2). Feature set (2) yields to an accuracy of
0.94 (94%), an AUC of 0.98 (98%), a sensitivity of 0.949 (94.9%), a specificity of 0.932
(93.2%), a precision of 0.93 (93%), and an F1-score of 0.94 (94%).

Scenario IV
In this scenario, the four deep features extracted from each pre-trained CNN were fused to
study the influence of this fusion on the performance of the SVM classifier, and compare it
with the fusion of the selected principal components of scenario III. The results of this
fusion compared to scenario III were shown in Table 6.

Scenario IV results were also compared to the fusion of the four deep features after
applying PCA, as shown in Table 6. The Table shows that feature set (2) of scenario III
(corresponding to the fusion of 50 principal components from each ResNet-18,
GoogleNet, and ShuffleNet, and 150 principal components from AlexNet), has better
performance than the fusion of all deep features, after applying PCA on the fused deep
features. The scores of scenario III achieved an accuracy of 94%, a sensitivity of 0.949
(94.9%), a specificity of 0.932 (93.2%), an AUC of 0.98 (98%), a precision of 0.93 (93%),
and an F1-score of 0.94 (94%). However, the scores of the fusion of deep features achieved
an accuracy of 92.2%, a sensitivity of 0.93 (93%), a specificity of 0.918 (91.8%), an AUC of
0.97 (97%), a precision of 0.916 (91.6%), and an F1-score of 0.923 (92.3%). Scenario IV
achieved an accuracy of 94.7%, which was slightly higher than 94% of the accuracy
achieved in scenario III, as shown in Table 6. This means that scenario III (corresponding
to the fusion of 50 principal components from each ResNet-18, GoogleNet, and
ShuffleNet, and 150 principal components from AlexNet) had almost the same
performance of scenario IV, but with more efficient computational cost as the execution
time of scenario III was 2.368 s, which was lower than that of scenario IV (33.765 s).
A comparison between the highest achieved performances in each of the four scenarios is
illustrated in Fig. 5.

Table 6 Performance metrics of scenario IV compared to scenario III and deep features fusion with PCA.

Accuracy (std) AUC (std) Sensitivity (std) Specificity (std) Precision (std) F1 score (std) Time (s) (std)

Fusion with PCA 92.2% (0.001) 0.97 (0) 0.93 (0.001) 0.918 (0.005) 0.916 (0.006) 0.923 (0.003) 2.368 (0.354)

Feature set (2)
(Scenario III)

94% (0.002) 0.98 (0.001) 0.949 (0.001) 0.932 (0.001) 0.93 (0.001) 0.94 (0.001) 2.105 (0.001)

Fusion without PCA
(Scenario IV)

94.7% (0.004) 0.98 (0.001) 0.956 (0.007) 0.937 (0.005) 0.934 (0.006) 0.945 (0.003) 33.765 (1.46)

Note:
Bold values indicate the highest results.

Attallah et al. (2020), PeerJ, DOI 10.7717/peerj.10086 14/22

http://dx.doi.org/10.7717/peerj.10086
https://peerj.com/


DISCUSSION
Coronavirus has led to the worst worldwide health crisis in recent history. The rapid
diagnosis of COVID-19 is essential to control the spread of such a disease, and the current
pandemic situation. The common method used to diagnose COVID-19 cases is the
RT-PCR test, however, it has several limitations. Among these limitations are low
sensitivity, insufficient availability of such a test, and the crucial need for a well-equipped
laboratory for analysis (which is a key challenge especially in developing countries),
delayed responses and the high cost of this test. All these limitations exposed the need for a
quick alternative that enables the front-line specialists to achieve a fast and precise
diagnosis.

Computed tomography imaging technique has proven to be efficient in visualizing
lungs, and may facilitate the primary detection of suspected individuals. However, CT
imaging alone was not enough for an accurate diagnosis. This was due to the similarity
between configurations of COVID-19 and other types of pneumonia, which might confuse
radiologists trying to distinguish COVID-19. Nonetheless, CAD systems based on DL
techniques have shown to be more capable of discriminating between COVID-19 and
non-COVID-19 cases, and can achieve an accurate diagnosis sooner than the clinical
exam, which accordingly reduces the time needed for disease control (Butt et al., 2020;
Shi, Han & Zheng, 2020).

The ease of accessibility of CT imagining techniques makes CT-imaging a preferable
tool for coronavirus diagnosis in many counties such as China (He et al., 2020). Moreover,
the cost of the diagnoses is an important factor for choosing the tool for the novel
virus diagnosis. The relative low cost of CT in China makes it as well a favorable diagnostic
tool (He et al., 2020). RT-PCR test is considered an expensive diagnostic tool in many
countries including developing countries in Africa such as South Africa, Algeria, Egypt,
Morocco, and Tunisia. This is due to the lack of availability of such test which increase its
price (Kobia & Gitaka, 2020). The presently available RT-PCR kits are variable, there

Figure 5 A comparison of the highest accuracy achieved for each scenario.
Full-size DOI: 10.7717/peerj.10086/fig-5
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are more than seven platform used for the novel coronavirus diagnosis (Al-Tawfiq &
Memish, 2020; Van Kasteren et al., 2020). Such tests may result in initial false negative
outcomes (Long et al., 2020). Examples of such kits are Altona Diagnostics, BGI, CerTest
Biotec, KH Medical, Primer Design, R-Biopharm AG, and Seegene (Van Kasteren et al.,
2020). RT-PCR platforms are presenting sensitivities ranging between 45% and 60%;
therefore, specifically in the initial course of an infection, the test repetition may be
essential to achieve a diagnosis. This is difficult to attain with the global shortage of testing
kits specially in developing counties (Al-Tawfiq & Memish, 2020). Moreover, RT-PCR
tests may take few hours to complete, however they are restricted by the time needed to
transfer and arrange sample for testing. Nowadays, due to the increase in the demand of
such test, the laboratories have been flooded with samples leading to significant delays in
diagnostic duration (Kim, Hong & Yoon, 2020; Ai et al., 2020; Young et al., 2020).
In addition, the availabilities of such labs are limited in some developing countries like
Egypt, in contrast to the CT machines, which are located in many hospitals and scan
centers. The authors in Shen et al. (2020) showed that CT results are obtainable in time
which are lower than RT-PCR test. Also, Ai et al. (2020) compared the speed accuracy, and
sensitivity of TaqMan One-Step RT-PCR kits with CT and the results showed that CT
is more sensitive and faster than RT-PCR kit used. This make the use CT more preferable
specially when used with artificial intelligence techniques such DL (Kobia & Gitaka, 2020).
Several studies showed that using CAD systems based on DL and CT images are
considered a rapid, more accurate, and sensitive than the RT-PCR test. This is because
when a CT image enters the CAD system, it is automatically classified to COVID-19 and
non-COVID-19 in less than an hour with a better accuracy and sensitivity than the
RT-PCR test (Das et al., 2020; Manigandan et al., 2020; Song et al., 2020; Maghdid et al.,
2020).

In this article, we proposed a fast solution, that may serve as an alternative to the
RT-PCR test. The proposed solution introduced a novel CAD system, based on the fusion
of multiple CNNs trained with CT images. This study is a crucial trial comprising a
simple construction, low cost, and automatic CAD system that can achieve a high
accuracy, based on the fusion of multiple CNNs. During these difficult days of the
worldwide pandemic, the proposed MULTI-DEEP CAD system has great potential to be
used as a tool for COVID-19 detection. It was verified that CT provides a convenient and
effective method to primary identify suspicious cases (Xu et al., 2020; Long et al., 2020).
Thus, the proposed system can detect COVID-19 cases early, thereby avoiding the fast
spread of the disease. The proposed CAD system is a CNN-based model. CNN methods
provided that the characteristic lung lesions exist at the time of testing are more capable of
distinguishing between COVID-19 and non-COVID-19 cases than a manual diagnosis
from CT images (Butt et al., 2020).

The outperformance of CNN was proven in the related studies by various authors
(Bai et al., 2020; Chen et al., 2020; Ardakani et al., 2020), who compared the performance
of their CAD system based on DL techniques, with that of a trained radiologist without
the help of a CAD system. These studies indicated that the performance of DL based CAD
systems outperformed manual diagnosis by a trained radiologist without the help of a
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CAD system. The authors in Bai et al. (2020) showed that their DL based CAD system
achieved higher test accuracy (96% vs. 85%), sensitivity (95% vs. 79%), and specificity (96%
vs. 88%) than radiologists. Whereas in Ardakani et al. (2020) the performance of the
radiologist was lower than the authors’ proposed DL-based CAD system, with a sensitivity
of (89.21% vs. 98.04%), specificity of (83.33% vs. 98.04%), and accuracy of (86.27% vs.
99.5%). On the other hand, in Chen et al. (2020), the authors showed that their DL based
CAD system can reduce the manual radiologist’s diagnosis time by 65%.

As it was obvious from Fig. 5 that scenario III, corresponding to the fusion of the
selected number of principal components from each deep feature set, has increased the
accuracy to 94% compared to 92.5% achieved in scenario II using SVM classifier trained
using only deep features extracted from ResNet-18 CNN. Although, the accuracy was
slightly improved to 94.7% when fusing all deep features extracted from the four
pre-trained CNNs without PCA, the execution time in scenario III is 2.105 s, which was
lower than the 33.765 s of scenario IV, and much lower than the 19 min 31 s of scenario I.
This means that the fusion of the selected principal components led to a more efficient
CAD system.

MULTI-DEEP has achieved accuracy, AUC, sensitivity, and specificity of 94.7%, 98%,
95.6%, and 93.7% for identifying COVID-19 and non-COVID-19 cases. By comparing the
results of the proposed MULTI-DEEP CAD system with the related work presented in
Table 1, it was noticed that the CNN architectures used were different from those used in
MULTI-DEEP. Regarding the ResNet CNN architectures, it was obvious that the
researchers used it with different layer structures than in Butt et al. (2020), Li et al. (2020a),
Jin et al. (2020a, 2020b), and Song et al. (2020). Butt et al. (2020) used the ResNet-18
and ResNet-23 CNNs to classify COVID-19 and non-COVID-19 samples, achieving an
accuracy of 86.7%, which is lower than that of MULTI-DEEP. On the other hand, Jin et al.
(2020a) performed the classification using ResNet-152 CNN reaching an accuracy of
94.8%, which is almost the same accuracy of MULTI-DEEP, which was constructed with a
fewer number of images. It is expected that the performance of the proposed MULTIDEEP
will be enhanced when the number of images is increased. Shi, Han & Zheng (2020),
Song et al. (2020), and Jin et al. (2020b) used the ResNet-50 CNN achieving an accuracy of
89.5%, 86%, and 94.8%, respectively. The accuracies achieved by Li et al. (2020a) and
Song et al. (2020), are much lower than the proposed MULTI-DEEP, but the accuracy
attained by Jin et al. (2020b) is almost the same as the proposed method and this is because
of the large amount of data employed by Jin et al. (2020b). Furthermore, when Amyar,
Modzelewski & Ruan (2020) and Chen et al. (2020) employed the U-Net for the
segmentation and/or classification processes, the accuracy reached 86%, and 95.2%
respectively. The high accuracy achieved by Chen et al. (2020) is due to the huge number of
images used to train their U-NETs compared to the proposed MULTI-DEEP and this is
one of the limitations of MULTI-DEEP. However, MULTI-DEEP achieved acceptable
performance, even with a smaller number of images. Zheng et al. (2020) employed a U-Net
for segmenting CT images, and then the authors constructed a CNN with eight layers.
The accuracy attained was 90.9%, which was much lower than achieved in MULTI-DEEP.
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It is quite obvious from the previous comparison that the proposed MULTI-DEEP
performs competitively, compared to the most recent CAD systems shown in the
literature. The results of MULTI-DEEP verify that it can be used to overcome the
limitation of using CT imaging alone to diagnose the COVID-19 virus. The satisfactory
accuracy achieved by the proposed model, even with its primary outcomes, unlocks the
door for the production of a comprehensive product by IT (information technology)
solution companies. This product can work mobile and appeal to the end-user, which are
the radiologists or medical experts, to facilitate the diagnosis process of the COVID-19.
It can be made as a mobile application or webpage, where a CT image is imported to the
application or webpage and a decision is exported.

The possible scenario where this algorithm can be used, is when a patient is
suffering from any coronavirus symptoms. The medical expert can take a CT scan of them
instead of the RT-PCR test, then import the CT image into the proposed CAD system for a
quicker, more accurate, simpler, and less expensive decision. This decision made by
MULTI-DEEP will assist the specialist in improving the quality of patient management,
even in extraordinary workload situations. As mentioned before, the proposed CAD
system is preferable to the RT-PCR test, due to the various limitations of the latter test.
The proposed CAD system can be tested on any suspected patient to determine if they are
infected with COVID-19.

A limitation of this study that could be considered in future research, is the relatively
small number of COVID-19 images used. The performance of the proposed CAD system
is likely to improve when the training data is increased. Besides, at the moment the
proposed model can only distinguish COVID-19 from non-COVID-19 cases. It is essential
to distinguish COVID-19 cases from other types of pneumonia as well. Future research
will be done to expand the model so that it can correctly diagnose other types of
pneumonia. One more limitation is that the performance of the CAD system was not
compared with a trained radiologist. Future work will also focus on using multimodal
imaging techniques, using more types of CNNs, and finally employing a segmentation
technique to distinguish lung from other tissue, and comparing its performance to that of
the proposed CAD system.

CONCLUSIONS
Several studies have verified that DL can help radiologists to accurately diagnose
COVID-19. The key goal of this article was to construct an efficient CAD system capable of
accurately detecting COVID-19, and differentiating it from non-COVID-19 cases.
The proposed MULTI-DEEP CAD system was based on the fusion of multiple CNNs.
It went through four experiments to achieve a more efficient CAD system. The
experiments showed that fusing deep features extracted from several pre-trained CNNs,
improved the performance of the proposed CAD system. The experiments also proved that
fusing the optimal number of principal components selected from each deep feature,
has decreased the computational cost of the CAD to almost 32%, which lead to a more
efficient CAD system. The results verified that the proposed MULTI-DEEP CAD system
could successfully detect COVID-19 with high accuracy. Additionally, it showed its
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competitive performance compared to similar studies. Therefore, MULTI-DEEP can be
employed by radiologists to facilitate the diagnosis process of COVID-19. MULTI-DEEP
may assist in managing the current pandemic, speed up the detection of the disease, avoid
its fast spread, and help doctors to improve the quality of patient management, even in
extraordinary workload situations. MULTI-DEEP should undergo further field testing
before it can be employed by radiologists. In addition, it will likely have to undergo
regulatory approval by health authorities before its implementation into hospitals.
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