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ABSTRACT
The massive die-off of the long-spined sea urchin, Diadema antillarum, a significant
reef grazer, in the mid 1980s was followed by phase shifts from coral dominated to
macroalgae dominated reefs in the Caribbean. While Diadema populations have re-
covered in some reefs with concomitant increases in coral cover, the additional threat
of increasing temperatures due to global climate change has not been investigated in
adult sea urchins. In this study, I measured acute thermal tolerance of D. antillarum
and that of a sympatric sea urchin not associated with coral cover, Echinometra
lucunter, over winter, spring, and summer, thus exposing them to substantial natural
thermal variation. Animals were taken from the wild and placed in laboratory tanks
in room temperature water (∼22 ◦C) that was then heated at 0.16–0.3 ◦C min−1 and
the righting behavior of individual sea urchins was recorded. I measured both the
temperature at which the animal could no longer right itself (TLoR) and the righting
time at temperatures below the TLoR. In all seasons, D. antillarum exhibited a higher
mean TLoR than E. lucunter. The mean TLoR of each species increased with increas-
ing environmental temperature revealing that both species acclimatize to seasonal
changes in temperatures. The righting times of D. antillarum were much shorter than
those of E. lucunter. The longer relative spine length of Diadema compared to that of
Echinometra may contribute to their shorter righting times, but does not explain their
higher TLoR. The thermal safety margin (the difference between the mean collection
temperature and the mean TLoR) was between 3.07–3.66 ◦C for Echinometra and
3.79–5.67 ◦C for Diadema. While these thermal safety margins exceed present day
temperatures, they are modest compared to those of temperate marine invertebrates.
If sea temperatures increase more rapidly than can be accommodated by the sea
urchins (either by genetic adaptation, phenotypic plasticity, or both), this will have
important consequences for the structure of coral reefs.

Subjects Animal Behavior, Conservation Biology, Environmental Sciences, Evolutionary Studies,
Marine Biology
Keywords Sea urchins, Thermal tolerance, Coral reefs, Global climate change

INTRODUCTION
Adult sea urchins are grazers and have been dominant herbivores in many Caribbean reefs

for decades and perhaps millennia (Lessios, Garrido & Kessing, 2001; Levitan, Edmunds

& Levitan, 2014). A convincing and well-documented example of their influence on

coral reef community structure occurred in the mid 1980’s when Caribbean sea urchin
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populations of Diadema antillarum experienced a massive die-off. The subsequent

overgrowth of macroalgae resulted in decreased coral cover and recruitment and

concomitant biodiversity losses from which reefs have not fully recovered (Jackson, 2001;

Levitan, Edmunds & Levitan, 2014; Miller et al., 2009). Nevertheless, rebounds in Diadema

populations in certain Caribbean locations are correlated with greater coral recruitment

and coral growth (Edmunds & Carpenter, 2001; Knowlton, 2001; Carpenter & Edmunds,

2006; Idjadi, Haring & Precht, 2010), which might presage an increase in fish diversity

(Rogers, Blanchard & Mumby, 2014). The proximate cause of the Diadema die-off was likely

a disease agent that has never been identified (Beck, Miller & Ebersole, 2014), but additional

environmental stressors such as increasing ocean temperature due to global climate change

may also be deleterious for marine ectotherms such as echinoids particularly in intertidal

and subtidal tropical habitats (Nguyen et al., 2011).

Tropical sea temperatures are predicted to increase by as much as 4.8 ◦C by the end

of this century (IPCC, 2014). Threshold temperatures for coral bleaching have been

evaluated in light of those predictions (e.g. Tolleter et al., 2013; Hoegh-Guldberg, 1999;

Donner, 2011). There is also a growing literature on the effects of anticipated future

temperature increases on fertilization and early development of echinoids (Brennand et

al., 2010; Byrne, 2011; Byrne et al., 2009; Sewell & Young, 1999). The few previous studies

of thermal tolerance in adult sea urchins, however, did not evaluate results in the context

of global climate change (Lawrence, 1973; Lawrence & Cowell, 1996; Ubaldo, Uy & Dy,

2007). Moreover, no thermal tolerance data exist for the Caribbean keystone species,

Diadema antillarum. Additionally, characterizing the thermal tolerance of sea urchins

might permit predictions about changes in their geographic ranges (Ling et al., 2009).

I studied the thermal tolerance of the long-spined sea urchin, Diadema antillarum, and

compared it to the sympatric rock-boring sea urchin, Echinometra lucunter, which, unlike

Diadema, is not associated with low macroalgal cover (Furman & Heck Jr, 2009). My study

site was in Grand Cayman, British West Indies, on the western side of the island within the

Marine Protected Area (McCoy, Dromard & Turner, 2009). I collected urchins from depths

ranging from just below the surface to 3 m. The animals were collected opportunistically

based on their accessibility and whether they would be too large to accommodate in the

lab or too small to be adults. Both species occurred at depths of 3 m, but only Echinometra

occurred at the shallowest depths; I never found Diadema less than about 30 cm below

the water surface. I would expect therefore that Echinometra might be exposed to higher

daily temperatures than Diadema and thus might have a higher thermal tolerance (Nguyen

et al., 2011). On the other hand, the rock boring behavior of Echinometra might mitigate

temperature fluctuations given that they were always wedged into crevices during the day,

while I found Diadema in exposed areas of the reef during the day.

I measured the thermal tolerance of individuals of these species over three seasons,

and thus three different temperature regimes to determine if they acclimatized to changes

in environmental water temperature. Finally, I measured variation in thermal tolerance

among individuals of the two species as such variation might serve as a substrate for

natural selection in warming seas.
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MATERIALS AND METHODS
Collection site
Sea urchins of both Diadema antillarum and Echinometra lucunter were collected (under

a permit granted by the Cayman Islands Department of Environment), by snorkeling

in a small rectangular inlet south of George Town harbour, Grand Cayman, located at

19◦16′42.69′′N,81◦23′34.79′′W, (in the Marine Protected Area between study sites GCM9

and GCM5 of McCoy, Dromard & Turner (2009)). The inlet was roughly 36 m long ×14 m

wide with a gently sloped floor that reached the more open sea at a depth of about 3 m. The

walls of the inlet were composed of eroded ironshore (Logan, 2013), with many cracks and

crevices in which sea urchins, particularly E. lucunter, were found (Fig. 1A). The floor of

the inlet was coral rubble and sand where patches of D. antillarum were found (Fig. 1B).

Both species were collected in the afternoon during the winter (February, 2013), spring

(May, 2010) and summer (August, 2011) in order to assess the extent of acclimatization of

thermal tolerance among animals that had likely been exposed to substantial inter-seasonal

temperature variation. I measured the temperature at both shallow (10 cm below the

surface) and deeper collection sites (2.5 m below the surface) during each collection

visit using a Fisher Scientific Precision Thermometer, (accurate to 0.01 ◦C) or a mercury

thermometer (accurate to 0.1 ◦C). Unexpectedly, there was no temperature difference with

depth. I confirmed this by collecting temperatures at 15-min intervals for several days to

a full week in both shallow and deeper collection sites (Onset HOBO temperature probes

and data logger). The shallow site was not a sequestered intertidal pool but rather was

flushed with seawater constantly, perhaps accounting for the absence of a temperature

differential between shallow and deeper sites. Therefore, collection temperatures are

reported as the combined mean from the shallow and deep sites for each season.

Animal maintenance in the laboratory
Animals were maintained in a laboratory at the Cayman Islands Department of

Environment building in George Town, Grand Cayman. Between 4 and 8 sea urchins of

either species were maintained in a 50 l tank of aerated seawater at room temperature

(22.5 ± 0.7 ◦C) and under natural light. All animals were tested within 3 days of collection.

Animals were not fed while in the laboratory.

Measures of thermal tolerance: righting time and temperature at
loss of righting
I measured both the righting time as temperature was increased and the temperature at

which each sea urchin could no longer right itself (TLor) after inversion as indicators of

thermal tolerance. The latter measurement is repeatable and indicates the temperature at

which the neuromuscular system of the animal no longer has sufficient integrity to mediate

righting. It has been a reliable indicator of stress in many animal species including echi-

noids (Lawrence & Cowell, 1996; Challener & McClintock, 2013; Ubaldo, Uy & Dy, 2007).

Each sea urchin was tested individually and placed in a tank with a volume of room

temperature aerated seawater sufficient to cover the urchin and provide room for me

Sherman (2015), PeerJ, DOI 10.7717/peerj.1006 3/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.1006


Figure 1 Sea urchins in field sites. (A) Echinometra lucunter. (B) Diadema antillarum.

to invert the animal. The experimental substrate was smooth without sand or gravel.

The water was aerated through the entire experiment, which also mixed the water as it

was heated. At the beginning of each trial (in room temperature water), the sea urchin

was placed on its aboral surface (using wooden spatulas) and the time for the animal to

right itself completely (its oral surface contacting and parallel to the tank bottom) was

recorded. The testing tanks were large and could not be heated sufficiently using available
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heaters. In order to heat the water, therefore, small volumes of test water were removed

(without disturbing the test animal) and were replaced by comparable volumes of aerated

and heated water from a different tank (with a smaller volume that was easier to heat).

With practice following pilot studies, I was able to reliably increase the water temperature

in the test tank at a rate of 0.16–0.3 ◦C min−1. I constantly mixed the water in the test

tank with a paddle and measured the water temperature with a Fisher Scientific Precision

Thermometer, (accurate to 0.01 ◦C) which remained in the test tank. As the water was

heated, the animal was inverted periodically (roughly once for each degree increase, and

more frequently as loss of righting ability approached) and the righting time was recorded.

The end point of the loss of righting was taken as the temperature at which the animal

no longer could right itself (within 15 min of inversion), and was designated the TLoR.

The animals were not dead at loss of righting, as they continued to move their spines and

mouthparts. Moreover, after the TLoR was noted, each animal was immediately placed

in room temperature seawater after which coordinated movement was restored. The sea

urchins did not appear to habituate to inversion as the righting times for an individual did

not get progressively longer through the experiment until TLoR was imminent.

In order to determine if age (size) influenced the TLoR, I measured the test diameter of

each sea urchin following the experiment with vernier calipers (to the nearest mm). If the

test shape of the sea urchin was not a circle, I measured the major axis. D. antillarum have

spines of very different length while those of E. lucunter are more similar in length and

this difference in morphology appeared to affect how the animals maneuvered themselves

during righting. Therefore, I also measured the length of a spine that appeared to be among

the longest on each animal.

In other studies (e.g. Lawrence, 1973), inverted animals were placed in water of

particular temperatures and then righting time was measured, whereas in this study,

the water was heated until the animal could no longer right itself. Heating rates affect

the thermal tolerance of many marine invertebrates (Nguyen et al., 2011). The data in the

present study reflect acute responses to increasing temperatures of animals taken from the

wild that had been acclimatized to winter, spring, or summer temperatures.

The mean collection temperatures (±SEM) were 27.2 ◦C (±0.12) in February,

28.8 ◦C (±0.13) in May, and 30.4 ◦C (±0.09). In Fig. 2, I compared the mean collection

temperatures of this study with data from the Cayman Islands provided by the National

Oceanic and Atmospheric Administration (NOAA) NOAA Coral Reef Watch (2000,

sampled twice weekly). I used NOAA data from 2010–2013 in the months of February,

May and August to determine if my collection temperatures were representative of typical

seasonal Cayman Islands reef water temperatures. In both data sets, there are comparable

changes in mean temperatures with season. Moreover, the temperatures I measured are

consistent with those reported in the NOAA data albeit slightly higher by 0.58–0.8 ◦C.

I collected temperatures during the day while the NOAA data were collected at night,

accounting for the slightly greater temperatures reported here (Fig. 2).
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Figure 2 Sea temperatures reported in this study compared to reef sea temperatures of the Cayman
Islands in February, May, and August, 2010–2013, reported by NOAA Coral Reef Watch. Bars represent
means with vertical lines representing 1 SEM. Sample sizes are indicated above bars. The difference
between mean temperature in this study and that of NOAA data are indicated by a Δ below the x-axis.
A two-way ANOVA revealed that temperatures increased with month (p < 0.0001) in both data sets and
that the NOAA data (recorded at night) were significantly lower than the data from the present study,
which were recorded during the day (p < 0.0001). There was no interaction of temperature and study
(p = 0.541).

Statistical analyses
To determine if there were differences between species and among collection temperatures

in loss of righting temperatures (TLoR), I performed a two-way ANOVA with species

and collection temperatures as fixed factors and TLoR as the dependent variable. At

temperatures below the TLoR (≤30.9 ◦C) I analyzed whether species and collection

temperatures affected righting times using a multiple regression analysis. I also compared

the ratio of the length of a long spine to test diameter between the two species using the

Student’s t-test. Finally, I performed linear regression analyses to determine if size (test

diameter) was a predictor of TLoR for each species in each season.

RESULTS
The mean temperatures for loss of righting (TLoR) of both species were greater than the

collection temperatures and increased with increasing collection temperature, so that those

collected in the winter had the lowest thermal tolerance and the summer collected sea

urchins had the highest (Fig. 3). D. antillarum lost righting ability at significantly higher

temperatures than E. lucunter at all collection temperatures (Fig. 3). The 2-way ANOVA

showed that both species (p < 0.0001) and collection temperature (p < 0.0001) were

significant predictors of TLoR but their interaction was not (p = 0.12). The difference

between the mean collection temperature and the mean TLoR, which can be thought of as

the thermal safety margin (Nguyen et al., 2011), was more than 3 ◦C for E. lucunter in all

seasons (Table 1). The thermal safety margin of D. antillarum was almost 6 ◦C in winter
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Figure 3 Temperature at the loss of righting (TLoR) of D. antillarum and E. lucunter at different
collection temperatures. The symbols represent mean TLoR with vertical lines representing 1 SEM.
Sample sizes are indicated above or below the symbol. The dotted line represents the line of equality,
TLoR = sea temperature. The thermal safety margin is the distance between the fitted lines and the
line of equality. The main effects of species (F1,46 = 29.51,p < 0.0001) and collection temperature
(F2,46 = 48.17,p < 0.0001) were significant predictors of TLoR but their interaction was not (F2,46 =

2.189,p = 0.12).

Table 1 Difference between mean TLoR and mean collection temperature (thermal safety margin) for
both species.

D. antillarum E. lucunter

FEBRUARY 5.64 ◦C 3.66 ◦C

MAY 3.79 ◦C 3.07 ◦C

AUGUST 5.67 ◦C 3.63 ◦C

and summer but only 3.79 ◦C in the spring. Thus, the TLoR of E. lucunter increased roughly

linearly with seasonal temperature. However, the TLoR of D. antillarum, while greater than

that of E. lucunter, did not change from winter to spring, although it was higher in the

summer (Fig. 3; Table 1).

There was variation in TLoR within both species (Table 2). Diadema exhibited the largest

range in TLoR during the winter (5.3 ◦C) while Echinometra exhibited the largest range in

TLoR during the summer (3.6 ◦C).

The rock boring E. lucunter took longer to right themselves compared to D. antillarum

at all temperatures below the TLoR (p < 0.0001; Fig. 4). Collection temperature also

affected the righting times below the TLoR (p = 0.025), likely due to the slower righting
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Table 2 Ranges in TLoR of both species across the 3 collecting seasons. Numbers in parentheses
represent the difference between the highest and lowest TLoR for each species.

D. antillarum E. lucunter

FEBRUARY 30.0–35.3 ◦C (5.3) 29.9–32.3 ◦C (2.4)

MAY 31.3–34.2 ◦C (2.9) 30.3–33.4 ◦C (3.1)

AUGUST 35.2–36.7 ◦C (1.5) 32.0–35.6 ◦C (3.6)

times of winter collected Diadema. The temperature at which the sea urchins were tested

did not have a significant effect on righting times (p = 0.561). Typically, the E. lucunter that

righted themselves took between 100 and 240 s while D. antillarum righted themselves in

less than 100 s. I have provided video examples of the righting behavior of both species in

the Supplemental Information.

When the long-spined sea urchin righted itself, it appeared to rely on the levering action

of the longer spines, which exceeded the diameter of the test, to rock the animal onto its

side. The rock boring sea urchin, on the other hand, used its tube feet rather than its spines,

which were shorter than the test diameter, to push and pull itself onto its side. The greater

mean ratio of the length of a spine to test diameter in Diadema (1.38 ± 0.1) compared to

Echinometra (0.78 ± 0.04) is illustrated in Fig. 5 (p < 0.0001).

TLoR did not vary with test diameter in either species (Fig. 6; for D. antillarum, p

values for all seasons >0.4; for E. lucunter, p values for all seasons >0.1). Although the

test diameters overlapped between the two species, on average Diadema were larger than

Echinometra.

DISCUSSION
Temperature affects the physiological responses of tropical marine animals more than

other possible stressors of climate change (Przeslawski et al., 2008). Both species of

sea urchin in this study exhibited acclimatization to seasonal temperature changes in

experiments measuring acute thermal tolerance (Fig. 3), their TLoR increasing with

increases in environmental temperature. Nevertheless, like other tropical animals, the

safety margin of thermal tolerance above ambient temperatures (∼3–6 ◦C, Table 1) was

small compared to that of temperate animals (Przeslawski et al., 2008; Nguyen et al., 2011).

It is possible that the thermal safety margins of the sea urchins would be different with a

slower rather than acute temperature increase that would more closely resemble natural

temperature changes. However, Nguyen et al. (2011) demonstrated that subtidal tropical

animals exhibited lower thermal tolerances when heated at slower rates. So the thermal

tolerances reported in this study likely represent the highest tolerances that these animals

can exhibit given how rapidly they were heated. Nevertheless, different thermal tolerance

end points and different heating rates (e.g., Hernández et al., 2004; Nguyen et al., 2011)

make comparisons of particular thermal tolerances across different studies difficult.

Diadema exhibited the largest range in TLoR during the winter and the smallest range

during the summer, while Echinometra showed the opposite tendency, with the largest
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Figure 4 Mean righting times (±SEM) at increasing experimental temperatures (below TLoR) of (A)
Diadema and (B) Echinometra collected during the winter, spring, and summer. For clarity, the data are
displayed in bins of experimental temperatures of 1.9 ◦C. Species (p < 0.0001) and collection temperature
(p = 0.025) significantly affected righting time but the temperatures at which the sea urchins were tested
did not (p = 0.561). Model: F3,431 = 56.58; p < 0.0001;R2

= 0.28. Note that the y-axes are scaled
differently.
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Figure 5 Mean ratio of longest spine per test diameter (±SEM) of Diadema and Echinometra (t =

10.74,df = 51;p < 0.0001). Sample sizes are indicated above the bars.

range in TLoR in the summer (Table 2). These variations in thermal tolerance suggest

some capacity for evolutionary adaptation to temperature changes if the variation among

adults has a genetic component. The sea urchins also exhibited variation in righting

times at temperatures below the TLoR (Fig. 4) and this variation may affect their daily

movements such as foraging, in warming seas. Like other benthic invertebrates, sea urchins

have pelagic larvae, which may be exposed to different conditions from those of adults.

Since larvae disperse widely (Lessios, 1988), urchins have the potential to establish in new

areas, facilitating range changes in response to global climate change (Ling et al., 2009;

Przeslawski et al., 2008). Alternatively, if sea urchins cannot adapt to the rapid changes in

their environments, local populations may become extinct.

The proximate causes of interspecific differences in thermal tolerance responses

are unclear (Figs. 3 and 4). Both species were exposed to similar daily and seasonal

temperature variations. One possible proximate cause of the faster righting time of

Diadema is the difference in spine length relative to test size (Fig. 5). The Diadema

used their relatively long aboral spines as levers to topple them over when righting. The

Echinometra, having much shorter spines, used their tube feet to right themselves, which

was a more time-consuming process. The different uses of spines versus tube feet have been

reported in other motor behaviors of sea urchins as well by Domenici, González-Calderón

& Ferrari (2003). They, however, found that size affected motor behavior on vertical and

horizontal surfaces, whereas size had no effect on righting behavior in my study (Fig. 6),

nor did it affect thermal safety margins in other tropical ectotherms (Nguyen et al., 2011).

The different relative length of spines might explain why Echinometra took longer to right

themselves at temperatures below TLoR. However, it would not account for the lower TLoR

(Fig. 3) and smaller thermal safety margin (Table 1) of Echinometra. Righting behavior

may have more survival value to Diadema than Echinometra. Both species forage at night

(Hendler et al., 1995) but only Diadema were found in the open during the day and I have

Sherman (2015), PeerJ, DOI 10.7717/peerj.1006 10/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.1006


Figure 6 TLoR as a function of test size in (A) Diadema and (B) Echinometra collected in the winter,
spring, and summer. None of the slopes is significantly different from 0. Diadema: pwinter = 0.396;
pspring = 0.528; psummer = 0.818. Echinometra: pwinter = 0.783; pspring = 0.689 psummer = 0.10. Note
that the x-axes are scaled differently.
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observed fish flipping them over in order to eat them. The rock-boring urchins, on the

other hand, as the name implies, are jammed into crevices and typically not found in the

open during the day. At night, the temperature can fall by as much as 1 ◦C in the summer

(E Sherman, 2011, unpublished data) so Echinometra are less likely to be exposed and

vulnerable during higher daytime temperatures.

Phase shifts from coral to macroalgal dominance following the Diadema antillarum die

off in the Caribbean have been widely reported (e.g., Jackson, 2001; Lessios, 1988). There

appears to be great regional variation in the recovery of different populations of these sea

urchins (Carpenter & Edmunds, 2006; Levitan, Edmunds & Levitan, 2014; Miller et al.,

2009). Regions in which Diadema are increasing in number are correlated with increases in

coral settling and cover (Carpenter & Edmunds, 2006; Knowlton, 2001; Furman & Heck Jr,

2009; Idjadi, Haring & Precht, 2010). Unlike D. antillarum populations, E. lucunter popu-

lations have been relatively stable throughout the Caribbean and have not been associated

with changes in coral density (Furman & Heck Jr, 2009). Both species of sea urchins in the

present study were collected from local populations in a small area in a Grand Cayman reef.

It is not clear, therefore, how representative their thermal tolerance responses are compared

to sea urchins from other areas. Both species demonstrated a significant capacity to accli-

matize to different seasonal temperatures, which may serve them well as sea temperatures

increase. Nguyen et al. (2011) suggested that temperature increases as low as 2–3 ◦C above

present levels are likely to be stressful to tropical marine ectotherms. The sea urchins in this

study, however, appear to be able to tolerate such changes. Additional studies are required

to determine the capacity of sea urchins to adapt to acute versus long-term thermal stress

and the costs of such adaptation as global sea temperatures increase.

CONCLUSION
Tropical sea temperatures may increase by as much as 4.8 ◦C by the end of this century

(IPCC, 2014). It remains to be seen if sea urchins will be able to adapt to these higher

temperatures. Moreover, other stressors (such as ocean acidification, infectious disease,

runoff from land) are likely to have synergistically deleterious effects on tropical marine

ectotherms (Przeslawski et al., 2008). Populations may adapt to higher sea temperatures

by natural selection given the within season variation in thermal tolerance exhibited

by sea urchins in this study. The sea urchins revealed at least seasonal plasticity in their

capacity to acclimatize to different temperatures. Alternatively, if sea temperatures increase

more rapidly than can be accommodated by sea urchins, local populations may become

extinct. Changes in the number of Diadema antillarum, in particular, will have important

consequences for the structure of coral reefs.
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