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Abstract  1 

Background and objectives: Glycemic control is of paramount importance in the 2 

intensive care unit. Presently, Several BG control algorithms have been developed for 3 

clinical trials, but they are mostly based on experts’ opinion and consensus. There are 4 

no validated models predicting how glucose levels will change after initiating of insulin 5 

infusion in critically ill patients. The study aimed to develop an equation for initial 6 

insulin dose setting. 7 

Methods: A large critical care database was employed for the study. Linear regression 8 

model fitting was employed. Retested blood glucose was used as the independent 9 

variable. Insulin rate was forced into the model. Multivariable fractional polynomials 10 

and interaction terms were used to explore the complex relationships among 11 

covariates. Overall fit of the model was examined by using residuals and adjusted 12 

R-squared. Regression diagnostics were used to explore the influence of outliers on 13 

the model.  14 

Main results: A total of 6487 ICU admissions requiring insulin pump therapy were 15 

identified. The dataset was randomly split into two subsets at 7 to 3 ratio. The initial 16 

model comprised fractional polynomials and interactions terms. However, this model 17 

was not stable by excluding several outliers. We fitted a simple linear model without 18 

interaction. The selected prediction model (Predicting Glucose Levels in ICU, PIGnOLI) 19 

included variables of initial blood glucose, insulin rate, PO volume, total parental 20 

nutrition, body mass index (BMI), lactate, congestive heart failure, renal failure, liver 21 

disease, time interval of BS recheck, dextrose rate. Insulin rate was significantly 22 

associated with blood glucose reduction (coefficient: -0.52, 95% CI: -1.03, -0.01). The 23 

parsimonious model was well validated with the validation subset, with an adjusted 24 

R-squared of 0.8259.  25 

Conclusion: The study developed PIGnOLI model for the initial insulin dose setting. 26 

Furthermore, experimental study is mandatory to examine whether adjustment of 27 

insulin infusion rate based on PIGnOLI will benefit patients’ outcomes.28 
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 1 

Introduction 2 

Blood glucose (BG) control is of paramount importance in critically ill patients. A large 3 

body of evidence on BG control in intensive care unit (ICU) has emerged (1-3) and 4 

has lead to elaboration of international guidelines (4, 5), which state that both 5 

hypoglycemia and hyperglycemia are associated adverse outcomes. However, these 6 

guidelines simply give a target of BG to achieve without elaborating on specific 7 

algorithms to achieve such a target range.  8 

 9 

There are many algorithms on the dosing of insulin to control BG. In the well-known 10 

NICE-SUGAR study (6), specific protocol on the dosing of insulin was given, aiming to 11 

reach a steady BS within target ranges in both aims. This protocol categorized dosing 12 

strategies on whether insulin was first initiated or continued. In another study 13 

conducted in Australia, a locally developed protocol was found to be effective in 14 

maintaining BG in target range (7). However, several common features of these 15 

protocols include: 1) they were developed largely by expert opinion and experiences. 16 

These experts can be nurses, pharmacists, intensivists and investigators; 2) they only 17 

take into account a limited number of clinical variables such as the measured BG and 18 

the trend of BG changing after initiation of insulin pump. However, as we can see 19 

from our clinical practice, sensitivity to insulin varies substantially from patients to 20 

patients, and there are numerous factors that can influence insulin sensitivity. These 21 

factors included but no are not limited to the history of diabetes, severity of illness, 22 

liver function and route of glucose intake.  23 

 24 

It is important optimal in clinical practice critically ill patients to have the ability to 25 

predict response to medicationsthat we can accurately control BG within a short 26 

period of time. Regression modeling has been used to In the present study we aimed 27 

to develop a protocol for insulin dosing by using linear regression modelmodel 28 
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predicted drug response. Medication dosing by using this approach is useful for 1 

drugs that have narrow therapeutic window and require frequent dosing adjustment 2 

to reach a predefined target range. In critical care setting, heparin dosing is a good 3 

example and has been investigated by using this regression modeling approach (8). 4 

The present study aimed to build a linear regression model by using retested BG as 5 

dependent variable. An equation links retested BG and other confounding variables 6 

would be developed to facilitate accurate control of BG in ICU patients. In other 7 

words, the The objective of this study was to derive a mathematical model to predicting 8 

the change in glucose level Predicting Glucose Levels in ICU (PIGnOLI), a mathematical 9 

model predicting the change in glucose level resulting from the initiation of insulin infusion 10 

in critically ill patients. 11 

 12 

Methods 13 

Design 14 

The retrospective study encompassed was an analysis of a Multiparameter Intelligent 15 

Monitoring in Intensive Care II (MIMIC-II), a large clinical database of critically ill patients, 16 

and it was retrospective in nature.  17 

Setting  18 

The study was conducted in intensive care unit.  19 

Data source 20 

 21 

Critical care big data was utilized for the present study. One reason was that big data 22 

could support complex model building and the problem of overfitting could be 23 

addressed (9, 10). I used data from Multiparameter Intelligent Monitoring in Intensive 24 

Care II (MIMIC-II), MIMC-II is a large registry of 30,000 intensive care unit patients. This 25 

database comprised  treated at ICU patients from Beth Israel Deaconess Medical 26 

Center, Boston, Massachusetts. Patients’ information on demographics, laboratory 27 

findings, imaging study, vital signs and progress notes were available (11). MIMIC 28 

contains data on over 30,000 patients admitted during [insert date or year range] 29 
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 1 

Values on BG were recorded in medical chart as chart event, and each value has a 2 

corresponding time stamp and a unique ICU stay identity. These BG values can be 3 

matched to a patient with ICU stay identity. All data were extracted by using 4 

structural query language (SQL) programming language from the database. The 5 

Institutional Review Boards of the Massachusetts Institute of Technology (Cambridge, 6 

MA) and Beth Israel Deaconess Medical Center (Boston, MA) approved the 7 

establishment of the database. De-identification was performed to ensure patients’ 8 

confidentiality. Access to the database was approved after completion of the NIH 9 

web-based training course named “Protecting Human Research Participants” by the 10 

author Z.Z. (certification number: 1132877). 11 

 12 

Selection of Subjects  13 

All adult patients were potentially eligible for our study. Those without need for 14 

insulin use were excluded.  15 

Outcomes 16 

The primary outcome was retested BG level. The Vvalue, date and time of each s on BG 17 

were recorded in medical chart record.as chart event, and each value has a 18 

corresponding time stamp and a unique ICU stay identity. These BG values can be 19 

matched to a patient with ICU stay identity.  20 

 21 

Clinical Variables 22 

Specific SQL programming languages for data extraction are shown in supplemental 23 

file (Supplemental Digital Content_1_data extraction). Comorbidities including 24 

diabetes, liver failure, congestive heart failure and renal failure were extracted 25 

because we felt that they may influence the sensitivity to insulin therapy. Laboratory 26 

parameters including bilirubin, C-reactive protein, serum creatinine and lactate were 27 

extracted. A total number of 1,117,076 BG measured with finger stick and in 28 

chemistry were extracted. A total number of 480,560 episodes of insulin rate were 29 
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extracted.  1 

 2 

Simultaneous use of intravenous (IV) total parental nutrition (TPN) and dextrose 3 

were extracted from the database. Different concentrations of dextrose were 4 

transformed to 5% dextrose (e.g. a volume of 10 ml 10% dextrose equals to 20 ml 5% 5 

dextrose). A total of 558,634 episodes of oral feeding (PO) containing glucose were 6 

extracted for its volume and time. All events were based upon charted The chart 7 

time, instead of real time, was used for all abovementioned events, because in 8 

MIMIC II the observation time is 'charttime' and the record time is 'realtime'. 9 

Data analysis  10 

The objective of the analysis was to establish a linear regression equation between 11 

retested BG and insulin rate, controlling for other potential confounders. A 12 

data-driven approach means that the form of the equation was determined by data, 13 

depending on statistical significance. All variables thought to be associated with 14 

insulin sensitivity were extracted from the database and were considered for their 15 

inclusion in the model at outset. 16 

 17 

I employed multivariable fractional polynomial (MFP) method to construct the main 18 

effect model. The method combines backward elimination of statistically 19 

non-significant covariates with an iterative examination of the scale of continuous 20 

variables. MFP specifies two levels of significance levels: α1=0.15 for the test for 21 

exclusion and addition of variables to the equation and α2=0.05 to assess 22 

significance of fractional polynomial transforms of continuous variables. One degree 23 

of freedom was assigned to dichotomous variables and two-term fractional 24 

polynomials with 4 degrees of freedom were assigned to continuous variables. 25 

Continuous variables were modeled using closed test procedure, determining 26 

whether the covariate should be dropped from model at α1. Then α2=0.05 was 27 

employed to test the need for transformation of the variable. With closed test 28 

procedure, the best two-term transformation was compared to the linear term. If 29 
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two term model is significantly better than the linear one at α2=0.05, two term 1 

model is then compared to one-term model. Otherwise, linear term was retained in 2 

the model. Interactions were explored and terms with p<0.05 were retained in the 3 

model.  4 

 5 

The overall fit of the model was assessed by using R-squared which is a reflection of 6 

the variance that can be explained by the model. Influential observations were 7 

evaluated by examining the leverage, Cook’s D and DFITS. Influential observations 8 

were excluded and the model was refitted by using MFPIGEN module. If the new 9 

model was significantly different from the original one, the original model would be 10 

reconsidered for more parsimonious one. For example, some fractional 11 

transformation would be dropped and interaction terms could be dropped if the 12 

likelihood ratio test showed p>0.05. R-squared of the new parsimonious model 13 

would be compared to the original one to see whether the fitness was good enough. 14 

The whole dataset was split into two subsets, the training subset and the validation 15 

subset. Observed values of covariates were substituted into the fitted model to 16 

derive linear prediction. We then performed regression model with linear prediction 17 

of the training subset as dependent variable and linear prediction of the validation 18 

subset as independent variable. The regression coefficient should be close to 1 and 19 

statistically significant at p<0.05 if the model fits well to the validation subset.  20 

 21 

All statistical analyses were performed by using Stata 13.1 (StataCorp College Station, 22 

TX 77845, USA) and R software (R 3.1.1). Statistical significance was considered at 23 

p<0.05.  24 

 25 

Results 26 

A total of 6487 ICU admissions requiring insulin pump therapy were identified from 27 

the dataset. The dataset was randomly split into two subsets at 7 to 3 ratio. The 28 
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training subset comprised 4593 observations and the validation subset comprised 1 

1894 observations.  2 

Model exploration and development 3 

The results of initial model fitting are shown in table 1. The continuous variables 4 

including glucose, interval, dextrose rate and insulin rate were FP transformed and 5 

there were significant interactions between insulin rate and two terms of glucose. 6 

Glucose was transformed by two-term FP with the power of -0.5 and 1. Interval was 7 

transformed by two-term FP with the power of -2 and 1. Dextrose rate was 8 

transformed by one term FP with the power of 0.5. There were two interaction terms 9 

between insulin rate and glucose because glucose was modeled with two terms. The 10 

overall fit of the model was thought to be good with an adjusted R-squared of 11 

0.8449.   12 

 13 

Influential observations were examined by using regression diagnostics 14 

(Supplemental Digital Content_2_diagnostics). By excluding these influential 15 

observations, we refitted the model and found that FP terms and coefficients were 16 

remarkably changed (table 2). Glucose was transformed by two-term FP with the 17 

power of -2 and 1. Interval was transformed by two-term power of 3 and 3. The 18 

results showed that the model was not stable, probably due to complexity of the FP 19 

assignment and multiple testing during model fitting. The FP terms were influenced 20 

by several influential observations.  21 

Parsimonious model was fitted to address the problem of instability. Graphical 22 

presentation showed that although the interaction term was statistically significant, 23 

the magnitude was of marginal clinical significance (figure 3 in Supplemental Digital 24 

Content_2_diagnostics). Therefore, we opted not to incorporate interaction terms in 25 

the parsimonious model. Figure 1 shows the scatter points predicted by FP model 26 

and simple linear model, and the two lines were close to each other. Visual 27 

inspection of the graph indicates the use of parsimonious model would not 28 

compromise the prediction accuracy of the model.  29 
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 1 

Final model and model validation 2 

The final Predicting Glucose Levels in ICU (PIGnOLI) model was is shown in table 3. 3 

The acronym for the model was developed in the website (http://acronymcreator.net/). 4 

Insulin rate was significantly associated with blood glucose reduction (coefficient: 5 

-0.52, 95% CI: -1.03,-0.01). Initial blood glucose was the most important determinant 6 

of retested blood glucose (coefficient: 0.89, 95% CI:0.88, 0.90). Oral intake, TPN and 7 

dextrose infusion were all associated with blood glucose control. Furthermore, 8 

serum lactate and BMI were positively associated with retested blood glucose. Time 9 

interval was negatively associated with retested blood glucose level (coefficient: 10 

-0.18; 95% CI: -0.22, -0.14). The PIGnOLI model showed an adjusted R-squared of 11 

0.84, which was not significantly different from the FP model with interaction terms 12 

(R-squared=0.84). PIGnOLI model was tested in the validation subset and the result 13 

showed that the coefficient between estimated retest glucose and observed retest 14 

glucose was 0.99 (95% CI:0.97-1.01; p<0.001). The adjusted R-squared was 0.8259, 15 

suggesting that the model was well calibrated with the validation subset.   16 

  17 

Discussion  18 

The This study developed the PIGnOLI model for BG control in critically ill patients. A 19 

data-driven approach could be applied in our study because there is large volume of 20 

retrospective data available for analysis. The widespread use of electronic medical 21 

record systems have made this strategy possible. The present study provides a 22 

framework for predicting and modeling BG response. This approach may be useful 23 

for predicting medication response in this and other disease states. 24 

 25 

Although there is large body of evidence suggesting the importance of BG control in 26 

the intensive care unit (ICU), there is no empirical data on how to control BG (12). 27 

Several BG control algorithms have been developed for clinical trials, but they are 28 



 10 

mostly based on experts’ opinion and consensus. As a result, many patients assigned 1 

to a specific BG range cannot reach that range, or many times of insulin rate 2 

adjustment were are required before an optimal target was is reached. Furthermore, 3 

substantial number of patients experience under-controlled or over-control ofled BG 4 

because of insulin misuse and/or other disease-related factors. It is optimal in clinical 5 

practice that we can accurately control BG within a short period of time. In the 6 

present study, we developed an equation for insulin adjustment, by considering 7 

comorbidities, laboratory findings and demographics. Glucose intakes such as TPN, 8 

dextrose infusion and PO intake during the analysis time were all considered.  9 

 10 

Glycemic control in the present clinical practice is not based on data-driven approach. 11 

For example, in the well-known NICE-SUGAR study (6), insulin dosing algorithm was 12 

based on whether insulin was first initiated or continued. Insulin rate was 13 

determined on the value of BG, taking previous BG into consideration. This protocol 14 

did not take into account of other variables such as concomitant dextrose infusion, 15 

baseline renal and liver functions. In another study conducted in Australia, a locally 16 

developed protocol was found to be effective in maintaining BG in target range (7). 17 

The insulin rate was set according to the amount of BG fall, without considering 18 

other potential influential factors.   19 

 20 

The predictors in the PIGnOLI model have biologic and clinical plausibility. For example, 21 

congestive heart failure was positively associated with blood glucose. Patients with 22 

heart failure requires higher dose of insulin infusion rate than those without this 23 

comorbidity. Although the underlying mechanisms for this phenomenon are largely 24 

unknown, several recent studies supported our result. In a cohort of 3,748 25 

nondiabetic participants aged ≥65 years, Guglin M and coworkers(13) found that 26 

baseline heart failure was associated with subsequent development of diabetes 27 

mellitus within 3-4 years. Another study involving patients with advanced cardiac 28 

failure showed that using Left ventricular assist devices significantly improved 29 

glycemic control (14). These evidence support the notion that congestive heart 30 
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failure may cause BG to be resistant to insulin therapy. It is not surprising that BG is 1 

also associated with liver disease, because it is well established that Liver disease 2 

may liver contributes to hyperglycemia via insulin resistance and increase hepatic BG 3 

output (15, 16). With respect to the association of renal failure with glycemic control, 4 

although the present study failed to found a significant association at p=0.05, we still 5 

incorporated this factor into our model because renal function has been identified to 6 

be tightly related to BG levels (17). Serum lactate is a biomarker of tissue perfusion, 7 

and it increases markedly with hypoperfusion and hypoxia. Our previous work has 8 

demonstrated that lactate is a strong predictor of clinical outcome in critically ill 9 

patients (18-20). There is no direct evidence on how lactate mediates glycemic 10 

control in critically ill patients. We propose that since lactate is biomarker of 11 

circulatory shock, it is also a biomarker of stress response during severe illness. Stress 12 

response is a well-established contributor to insulin resistance and observed 13 

hyperglycemia (21).  14 

 15 

Glycemic control in ICU is a complex work that requires considering all aspects of 16 

factors, particularly at the initiation of insulin therapy when we have no idea about 17 

the degree of insulin response of the patient. At the outset of model building, we 18 

selected all possible covariates that may influence glycemic control and let the 19 

dataset decide which variables to be included and what FP transformations to apply. 20 

Data-driven approach can be applied in our study because there is large volume of 21 

retrospective data available for analysis. Electronic medical record system has been 22 

widely used in hospitals worldwide, which producing large amount of information. 23 

The financial cost by using such big data for the research purpose is minimal as 24 

compared to other clinical trials. The present study provided a framework on how to 25 

employ big data to explore medication dosing.  26 

Many drugs require careful dosing because their therapeutic and toxic doses are 27 

close to each other. Insulin is one of such drug that its therapeutic dose varies 28 

substantially across individual patients. More importantly, inappropriate dosing may 29 

cause catastrophic consequences such as infection, permanent neurologic defect and 30 
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coma. Therefore, close monitoring of BG and frequent adjustment of insulin dose are 1 

mandatory. Due to the complexity of PIGnOLI model that may hinder its use in clinical 2 

practice, I programed PIGnOLI model in Excel format (Supplemental Digital 3 

Content_3_PIGnOLI) to ease its use (figure 2). The users can input required variables 4 

and predict retested BG after predefined time interval (<120 min).  5 

 6 

Several limitations need to be acknowledged in our study. The study restricted to 7 

dosing at the initiation of insulin pump and subsequent adjustment was not 8 

addressed. The difficulty lay in the complexity of data preprocessing. In future study I 9 

will try to resolve these technical difficulties and provide further algorithms on how 10 

to adjust insulin dose by incorporating initial response to insulin therapy in addition 11 

to covariates as reported in the present study. This analysis included only patients 12 

receiving insulin via pump and would not necessarily be generalizable to patients 13 

receiving insulin by some other route. However, insulin pump is the most attractive 14 

mean to give insulin for critically ill patients, mostly due to its accuracy in dosing and 15 

the property of short acting. Our study may suffer from the problem of multiple 16 

testing and model overfitting. This happened in our first model, in which several FP 17 

terms and complex interactions were incorporated. However, this model was found 18 

to be unstable by excluding several outliers. Therefore, we opted to employ simple 19 

linear terms and clinical irrelevant interactions were excluded. The PIGnOLI model 20 

was validated in split subset and was well fitted to the independent subset.    21 

 22 

In conclusion, the study developed PIGnOLI model for the initial insulin dose setting. 23 

It may be favorable if this algorithm can be used in clinical setting for accurate BG 24 

control for critically ill patients. Furthermore, experimental study is mandatory to 25 

examine whether insulin adjustment based on PIGnOLI model will benefit patients’ 26 

outcomes. Before we can use PIGnOLI model in clinical practice, it is also mandatory 27 

to compare the episodes of hypoglycemia and duration of hyperglycemia between 28 

groups using and without using PIGnOLI model.  29 

. 30 
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Figure legends 1 

Figure 1. Graphical presentation of the BG predicted by the model including FP terms (red 2 

line) and the model with linear terms (blue line). Both models appeared similar in 3 

predicting BG. The initial BG was controlled at its mean value of 195.9 mg/dl.  4 

Figure 2. A snapshot of the calculator for setting initial dose of insulin.  5 

    6 

  7 
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Table 1 Multivariable linear regression model to predict retested blood glucose 1 

(mg/dl) after initiation of insulin infusion 2 

Covariates§ Coefficient  Standard 

error 

Lower 

limit of 

95% CI 

Upper 

limit of 

95% CI 

p 

glucose-0.5Igluc_1 34.33 8.81 17.07 51.59 <0.001 

Glucose-1.96Igluc_2 94.00 1.60 90.85 97.14 <0.001 

Iinsu_1 -1.06 0.33 -1.70 -0.42 <0.001 

(Iinte_1time 

interval)2 – 8.13 

-0.002 0.0006 -0.004 -0.001 <0.001 

Iinte_2time interval 

– 0.35 

-18.90 2.30 -23.41 -14.39 <0.001 

(Idext_1dextrose 

rate)0.5 

22.02 8.58 5.20 38.84 0.01 

PO volume -0.02 0.01 -0.03 0.00 0.06 

TPN volume 0.07 0.03 0.02 0.12 0.01 

Lactate  0.87 0.23 0.41 1.32 0.00 

History of 

Ccongestive heart 

failure 

2.64 1.18 0.33 4.95 0.03 

History of Rrenal 

failure 

-3.13 1.87 -6.78 0.53 0.09 

History of Lliver 

disease 

4.50 2.03 0.52 8.47 0.03 

Igluc_1× Iinsu_1 10.92 4.34 2.41 19.43 0.01 

Igluc_2× Iinsu_1 1.60 0.67 0.28 2.91 0.02 

Constant 186.52 0.98 184.61 188.44 <0.001 

Number of obs =4593, F(14, 4578) = 1787.14, Prob > F =0.0000, R-squared = 0.8453, 3 

Adj R-squared =0.8449, Root MSE=30.569 4 
§ Some covariates were centered and transformed with fractional polynomials: 5 

Iinsu_1=insulin rate-2.85; Igluc_1=glucose-0.5; Igluc_2=glucose-1.96; 6 

Iinte_1=interval-2-8.13; Iinte_2=interval-0.35; Idext_1=dextrose rate0.5;  7 

 8 
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Table 2 refitting the regression model after excluding influential observations 1 

Covariates§ Coefficient  Standard 

error 

Lower limit 

of 95% CI 

Upper limit 

of 95% CI 

p 

Igluc__1 10.865 2.589 5.789 15.941 <0.001 

Igluc__2 92.193 0.985 90.261 94.125 <0.001 

Iinsu__1 -0.861 0.316 -1.481 -0.241 0.007 

Iinte__1 -5.530 7.977 -21.168 10.109 0.488 

Iinte__2 77.272 19.426 39.189 115.356 <0.001 

Idext__1 5.584 1.703 2.247 8.922 0.001 

Idext__2 -4.011 1.106 -6.180 -1.843 <0.001 

PO volume -0.013 0.008 -0.029 0.002 0.094 

TPN volume 0.091 0.030 0.031 0.150 0.003 

Lactate  0.865 0.227 0.421 1.310 <0.001 

Congestive 

heart failure 

2.376 1.151 0.120 4.632 0.039 

Renal 

failure 

-2.983 1.817 -6.546 0.580 0.101 

Liver 

disease 

4.254 1.977 0.379 8.129 0.031 

Igluc_1× 

Iinsu_1 

0.489 1.163 -1.792 2.769 0.674 

Igluc_2× 

Iinsu_1 

0.189 0.358 -0.513 0.891 0.598 

Constant 185.875 0.910 184.091 187.659 <0.001 

Number of obs =4585, F(15, 4569) = 1760.88, Prob > F =0.0000, R-squared = 0.88525, 2 

Adj R-squared =0.8520, Root MSE=29.784 3 
§ Some covariates were centered and transformed with fractional polynomials: 4 

Iinsu_1=insulin rate-2.85; Igluc_1=(glucose/100)-2; Igluc_2=(glucose/100)-1.96; 5 

Iinte_1=(interval/100)3; Iinte_2=(interval/100)3×ln(interval/100); Idext_1=[(dextrose 6 

rate+0.01)/100]0.5-9.3× 10−6; Idext_2=[(dextrose rate+0.01)/100]3×ln[(dextrose 7 

rate+0.01)/100]+3.6× 10−5. 8 
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Table 3 Parsimonious model with linear terms and no interaction 1 

Covariates  Coefficient  Standard 

error 

Lower limit 

of 95% CI 

Upper limit 

of 95% CI 

p 

Insulin rate -0.52 0.26 -1.03 -0.01 0.05 

Glucose  0.89 0.01 0.88 0.90 <0.001 

PO volume -0.02 0.01 -0.03 -0.00 0.05 

TPN volume 0.07 0.03 0.01 0.12 0.01 

BMI 0.10 0.06 -0.02 0.22 0.09 

Lactate 0.95 0.23 0.50 1.41 <0.001 

Congestive 

heart failure 

2.58 1.19 0.26 4.91 0.03 

Renal 

failure 

-3.09 1.87 -6.76 0.58 0.10 

Liver 

disease 

4.13 2.03 0.14 8.12 0.04 

Interval -0.18 0.02 -0.22 -0.14 <0.001 

Dextrose 

rate (5%) 

0.01 0.01 -0.01 0.03 0.20 

Constant  17.18 2.23 12.82 21.55 <0.001 

Number of obs =4593, F(11, 4581) =2251.71, Prob > F =0.0000, R-squared = 0.8439, 2 

Adj R-squared =0.8435, Root MSE=30.698 3 
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[Figure 2/4- some spelling errors (“insuline”). Also, capitalize first letters of words. 10 

Can you clean up the spreadsheet and make it as clean as possible?] 11 
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