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ABSTRACT
Background. Coastal saltpans are a common supratidal human-modified wetland
habitat found within many coastal landscape mosaics. Commercial salt production
and aquaculture practices often result in the creation of exposed coastal substrates that
could provide suitable breeding habitat for waterbird populations; however, few studies
have quantified waterbird breeding success in these artificial wetlands.
Methods. Here we examine the nesting behavior of the Gull-billed tern (Gelochelidon
nilotica) breeding in the Nanpu coastal saltpans of Bohai Bay, Yellow Sea, China over
three consecutive nesting seasons (2017–2019) by using nest survival model in Program
MARK.
Results. The results revealed that nest survival of Gull-billed terns in coastal saltpans
(0.697) was higher than previously published estimates from other regions, with an
estimated daily survival rate (DSR) of 0.982 ± 0.001 (±95% CI). High nest survival
was mainly attributed to low levels of human disturbances and low predation rates,
while exposure to strong winds, flooding and silting were the main factors causing nest
failure. Model-averaged estimates revealed that eggs laid in nests located on ‘habitat
islands’ with feather or clam shell substrates were most likely to hatch. Initiation date,
nest age, clutch size and quadratic effects of nearest-neighbor distance, nearest distance
to road and nearest distance to water were all significant predictors of nest success, but
the nest survival declined overall from 2017 to 2019 due to the degradation and loss of
breeding habitat anthropogenically caused by rising water levels.
Discussion. Coastal saltpans represent an alternative breeding habitat for the Gull-
billed tern populations in Bohai Bay, but conservation management should prioritize
flood prevention to improve the extent and quality of breeding habitat, concurrent with
efforts to create further ‘habitat islands’ with suitable nesting substrate.
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INTRODUCTION
Human disturbance and land-use changes driven by tidal reclamation have resulted
in the loss and degradation of coastal wetland ecosystems globally (Delany et al., 2009;
Hoegh-Guldberg & Bruno, 2010). These losses pose serious threats to waterbird populations
dependent on these wetlands for staging, non-breeding, or breeding habitat (Warnock et
al., 2002; Kirwan & Megonigal, 2013; Ma et al., 2014). Concurrently, artificial wetlands are
rapidly expanding, caused by commercial enterprises such as salt production, and are
creating a combined landscape mosaic of both anthropogenic and natural origins that
can provide alternative or supplemental breeding and foraging habitats for waterbird
species (Houston et al., 2012; Bluso-Demers et al., 2016; Rocha et al., 2017; Lei et al., 2018;
Barnagaud et al., 2019).

Coastal saltpans represent one of the most widespread supratidal human-modified
wetland habitats (Sripanomyom et al., 2011) used for commercial production of sea-salt
(Harvey et al., 1988), but these areas also host a number of alternative economic activities
linked to extensive aquaculture, such as artisanal fisheries and commercial production of
artemia shrimp (De Medeiros Rocha et al., 2012). The process of salt production involves
the construction of equal sized bodies of water by artificially pumping seawater into
large coastal saltpans. Studies have shown that these artificial water bodies can support
proportions of migratory waterbird populations in many coastal regions due to their
proximity to migratory fly-ways (e.g., Takekawa, Lu & Pratt, 2001; Li et al., 2013; Lei et
al., 2018; Barnagaud et al., 2019) by providing important foraging areas and protected
roosting sites (e.g., Sripanomyom et al., 2011; Rocha et al., 2017). Salt production also
creates ‘habitat islands’ that can serve as breeding habitats for a small number of waterbird
species (Britton & Johnson, 1987; Yasué, Patterson & Dearden, 2007; Chokri & Selmi, 2011).
This has led some authors to suggest that adequate conservation management of saltpans
could provide complementary habitat to help alleviate some of the impact on waterbirds
caused by the loss of natural wetlands (e.g., Masero, 2003; Béchet et al., 2009; Rocha et al.,
2017).

Distinct from natural wetlands, waterbirds breeding in saltpans are confronted with
different challenges (i.e., instantaneous water level adjustment, disturbance due to
commercial activities of salt collection, little vegetation and soil substrates easily flooded by
heavy rainfall). Salt concentrations found in saltpans, often exceed 300 mg/L, and can only
be tolerated by a handful of salt-adapted species, such as Pied avocet (Recurvirostra avosetta),
Black-winged stilt (Himantopus himantopus), Black-tailed godwit (Limosa limosa) and
Marsh sandpiper (Tringa stagnatilis) (Walmsley, 1999; Lei et al., 2018). Few studies have
examined the breeding success of waterbirds in these artificial wetlands (Martin, 1987;
Tavares et al., 2008; Que et al., 2015; Rocha et al., 2016).

Saltpans have become a common component of coastal wetland landscape in Bohai Bay,
in the Yellow Sea of China (Wang, Xu & Zhu, 2015; Lei et al., 2018). These highly dynamic
coastal wetland landscapes provide essential stop-over/staging and wintering habitats
for numerous migratory bird species along the East-Asian Migratory Fly-Way (Yang et
al., 2011; MacKinnon, Verkuil & Murray, 2012; Melville et al., 2016). These wetlands also
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play a critical role in geochemical cycles (Twilley, Chen & Hargis, 1992), regulate regional
climate (Day et al., 2008), and act as a carbon sink (Smith, DeLaune & Patrick Jr, 1983a;
Hopkinson, Cai & Hu, 2012). Intertidal habitats along the Yellow Sea are disappearing at
an alarming rate and have decreased by almost 65% over the past 50 years due to land
reclamation and development (Que et al., 2015; Ma et al., 2014; Murray et al., 2014), with
extreme consequences for waterbird populations (Amano et al., 2010; MacKinnon, Verkuil
& Murray, 2012). Urban areas such as the city of Tianjin have a long-established salt
production industry, with the area of commercial saltpans in the region increasing from
60.0 km2 in 1979 to approximately 457.8 km2 in 1988 at the expense of natural wetland
habitat (Wang, Xu & Zhu, 2015). While saltpans and other artificial wetlands are known to
provide foraging habitat for a number of migratory waterbird species (e.g., Li et al., 2013;
Lei et al., 2018), little is known about whether these artificial habitats are able to provide
alternative breeding habitat for birds within this landscape mosaic (Yasué, Patterson &
Dearden, 2007; Chokri & Selmi, 2011; Que et al., 2015).

The Gull-billed tern Gelochelidon nilotica is a middle-sized waterbird species with a
widespread global distribution, with localized breeding populations found on six continents
(Møller, 1982;Molina & Erwin, 2006). The species occupies a variety of habitats that include
inland freshwater or saltwater lakes, rivers, andmarshes (Snow & Perrins, 1998;Zhao, 2001),
although it remains poorly studied across much of its range and may have experienced
population declines (Erwin et al., 1999;Molina & Erwin, 2006). Consequently it is currently
listed as conservation concern in Europe, Africa and North America (Kushlan et al., 2002;
Sánchez et al., 2004; Molina & Erwin, 2006; Staneva & Burfield, 2017). Gull-billed tern
is an opportunistic dietary generalist that uses both terrestrial and aquatic resources in
wetland mosaics that mainly includes lizards, flying insects, estuarine fish, and both marine
and estuarine crab species (Bogliani et al., 1990; Stienen, Brenninkmeijer & Klaassen, 2008;
Albano et al., 2011; Goodenough, 2013). Typically the species breeds in loose aggregations
generally near water with suitable foraging habitats that include estuaries, deltas, lagoons,
inland lakes, rivers, marshes, but also artificial wetlands such as aquaculture ponds and
dikes of salt production ponds (Molina & Erwin, 2006; Barati, Etezadifar & Esfandabad,
2012; Goodenough & Patton, 2020).

Two subspecies are known to breed within China—G. n. nilotica has been recorded
breeding in Xinjiang and G. n. addenda has been recorded breeding south of Liaoning
Province and our study area (Zhao, 2001; Zheng, 2017). In this study, we report on the
nesting success of the Gull-billed tern breeding in the Nanpu coastal saltpan habitats of
Bohai Bay. We identify the predictors of nest success from three consecutive breeding
seasons and determine the alternative of these artificial wetlands as breeding sites for the
species within the wetland mosaics of northern Bohai Bay based on previous work on the
breeding success of this species (Erwin et al., 1999; Barati, Etezadifar & Esfandabad, 2012;
Villegas et al., 2013; Windhoffer et al., 2017).
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Figure 1 Study site at the Nanpu wetland, Bohai Bay, China.One breeding site of Gull-billed tern
(Gelochelidon nilotica) was found at an evaporation pond and the other was located at the temporary
abandoned storage pond area.

Full-size DOI: 10.7717/peerj.10054/fig-1

MATERIALS & METHODS
Study sites
Study sites were located in northern Bohai Bay, Yellow Sea, China (Fig. 1). The Nanpu
saltpans are one of the largest (290 km2) saltpan complexes in the world (Lei et al., 2018),
consisting of storage, evaporation and crystallization ponds, which are separated by dikes.
Both the dikes and some small newly created ‘habitat islands’ in the salt ponds provide
breeding sites for waterbird species such as Pied avocet, Black-winged stilt, Kentish plover
(Charadrius alexandrinus), Common tern (Sterna hirundo), Little tern (Sternula albifrons)
and Gull-billed tern.

The breeding sites of Gull-billed tern are located on one sand-shell ‘island’ situated in the
middle of an evaporation pond, extending on dikes and bottom of a temporary abandoned
storage pond area (Fig. 1). These sites are devoid of vegetation cover and isolated from land
by water. The sand-shell ‘island’ was used by breeding Gull-billed tern only in 2017 when
the ‘island’ was approximately 0.002 km2. Rising water levels in 2018 (by 20 cm) and 2019

Wu et al. (2020), PeerJ, DOI 10.7717/peerj.10054 4/20

https://peerj.com
https://doi.org/10.7717/peerj.10054/fig-1
http://dx.doi.org/10.7717/peerj.10054


(by 35 cm) greatly reduced areas available within the location for breeding to the extent
that no pairs bred on the ‘island’ during those years. The temporary abandoned storage
pond area consisted of muddy ground, with some clam shells and gravel evident in parts
of the pond dikes, and included three dried storage ponds at approximately 0.1 km2 each
with several 10-35 m wide pond dikes that connected several salt ponds (Fig. 1). The three
dried storage ponds were re-used as storage ponds in 2019 and flooded due to the water
level rising by 50 cm compared with that in 2018. Consequently, all the Gull-billed terns
bred on the pond dikes or ‘islands’.

Data collection
This study was conducted between 2017 and 2019 at the Nanpu saltpans fromMay to July.
Gull-billed tern nests were systematically searched by experienced researchers in the salt
ponds and pond dikes from early May through early July during each breeding season. For
some of the bigger salt ponds, we used an unmanned aerial vehicle (UAV) to locate and
record the tern breeding sites, from a height of approximately 80 m.

Once the potential breeding colony was discovered (i.e., presence of adult pairs), we
conducted systematic ground-based searches for nests. Once a nest was found, its location
was recorded using a handheld GPS (Garmin, MAP63csx) and photographed after it was
individually marked with a small wooden peg positioned at a distance of approximately 50
cm from the nest. Each egg was marked with a nontoxic marker to indicate egg and nest
number. We measured the width and length of the eggs with a Vernier caliper and eggs
were weighed by using an electronic balance only when they were confirmed to have been
laid less than three days prior. Clutch initiation date was extrapolated either by the egg
flotation method (Mayfield, 1961; Hensler & Nichols, 1981; Que et al., 2015) or backdating
from estimated egg-laying or hatching dates assuming a two-day egg laying interval for
each egg (Sears, 1978). We classified the microhabitat of nest site as mud, clamshell, feather
or gravel.

Nest fate was monitored at 3–4 day intervals (Lombard, Collazo & McNair, 2010; Nefas
et al., 2018) until it was recorded as failed or 2–3 days before the hatching date, after which
we visited the nests at 2-day intervals to check for signs of hatching until the end of the
nesting attempt (i.e., hatching or failure). Gull-billed tern chicks leave the nest within
the first few days following hatching and the eggshells are removed after hatching by the
parents or wind (Sears, 1978). Consequently, we considered nest fate as ‘successful’ if ≥1
egg showed evidence of hatching (one recently hatched chick in the nest or nearby) or
evidence of imminent hatching (cracked or drilled eggshell). We considered a nest to have
‘failed’ when; (1) eggs disappeared before the expected hatching date; (2) the egg was
damaged, blown/removed of the nest scrape, adhered to the mud or remained unhatched
longer than one week of the presumed date of hatching, with no evidence of predation or
flooding; (3) the nest was flooded, i.e., the bottom of the nest was wet, or the eggs were
totally or partially submerged in water; or (4) eggs were found collected by local people by
analyzing the photos and videos from the infrared camera (Loreda, L710); (5) the clutch
was intact, but the eggs were cold unattended for ≥2 visits. These nests were classified nest
failure reason as unknown. We dated nest failure to the first date we found the eggs cold
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and unattended. When the nest did not meet the above criteria for success or failure, we
classified fate as ‘unknown’ and did not include these nests in the subsequent nest survival
analyses.

Data analyses
We used the nest survival model in Program MARK 9.0 (Dinsmore, White & Knopf,
2002; Cooch & White, 2014) to estimate daily nest survival (DSR) and to evaluate factors
that influenced DSR (Que et al., 2015). Program MARK ranks candidate models based
on Akaike’s information criterion corrected for small sample sizes (AICc; Burnham &
Anderson, 2002). Nesting season dates were standardized among years by using the date
that the first nest was found in any year as the first day of the nesting season and, similarly,
the latest hatching or failure date in any year as the last day of the nesting season (Moynahan
et al., 2007). We included the following variables in the nest survival models: (1) the day
a nest was found, (2) the last day the nest was checked when alive, (3) the last day the
nest was checked, and (4) nest fate (i.e., survived or failed). We examined the influence
of ten environmental and temporal covariates on DSR and their interactions: (1) nest age
since estimated initiation; (2) nest habitat type, i.e., abandoned salt ponds, salt pond dikes,
‘island’ in the evaporation pond or ‘islands’ in abandoned salt ponds; (3) substrate of the
nest, i.e., mud, clamshell, feather or gravel; (4) clutch size; (5) nearest-neighbor distance
to a conspecific nest; (6) the nearest distance between the nest and water edge; (7) the
relative height (elevation) of the nest site above the water, i.e., low, middle or high; (8)
density of Gull-billed Tern nests within a 100 m radius; (9) the nearest distance to the
road, and (10) the year of breeding. We ranked all the competing models and used all
the selected candidate models (1AICc < 2) to computed average weights (wi) for each
covariate (Johnson & Omland, 2004).

The apparent nest survival and average nest survival were calculated as follows: apparent
nest survival = numbers of nests hatching success/ (numbers of nests hatching success +
numbers of nests hatching failure); average nest survival= (daily nest survival)incubation period

(Que et al., 2015). Spatial covariates (i.e., nearest-neighbor distance to a conspecific nest,
the nearest distance between the nest to the road, the nearest distance between the nest and
water edge, the density of nests within a 100 m radius) were estimated by using ArcGIS
10.3 (ESRI, Redlands, CA) and the quadratic effects of the continuous covariates were also
tested.

Field permit statement
Permission to access field sites were provided by Forestry Department of Hebei Province
in 2017 and Luannan County Natural Resources and Planning Bureau for work conducted
in 2018 and 2019.

RESULTS
We identified a 60-day nesting season for Gull-billed tern at our Bohai Bay study site,
which began on 9 May and ended on 7 July, resulting in 59 daily intervals for estimating
the daily nest survival. More than 436 nests were found at a temporary abandoned storage
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pond area in 2017, which were not monitored regularly and were not then used in the
subsequent analyses. In total, we monitored 1,234 nests and determined the fate of 1,143
nests. Of these, 797 nests were successful, and 346 failed, resulting in an apparent nest
survival of 69.7%.

In our constant model, we estimated daily nest survival as 0.982 ± 0.001 [±95%
confidence interval (CI)]. Using the data of 107 monitored nests whose laying and hatching
dates were precisely known, we found that the mean (± SE) incubation period lasted 23.9
± 0.1 days. Thus, we assumed that the average incubation period of Gull-billed tern at
Bohai Bay was 24 days, which resulted in average nest survival of 64.7%.

The main causes of nest failure were related to weather conditions and anthropogenic
disturbances, i.e., nests destroyed by strongwind (33%, n= 114), or anthropogenic flooding
due to water pumping activity for salt production (30.9%, n= 107). Other causes of nest
failure were eggs disappeared before the expected incubation period (5.5%, n= 19), eggs
collection by local people (3.5%, n= 12), eggs still being incubated by parent birds after
more than one week of the presumed date of hatching (2.9%, n= 10), predation (1.2%,
n= 4) and unknown for 76 (23.1%) of the observed nests.

Nine candidatemodels of environmental and temporal covariates describing variation in
DSR had 1AICc <2 (Table 1). Consequently, averaged covariates were modeled according
to their respective AICc weight (wi) to obtain robust estimates of the model parameters.
After model averaging, the most important variables explaining the variation in DSR (i.e.,
wi = 1) were nest initiation date, nest age, clutch size, habitat type, nest substrate type,
breeding year, and the quadratic effects of nest initiation date, clutch size, nearest-neighbor
distance, and nearest distance to road (Table 2). The quadratic effects of the nearest distance
to water (wi= 0.899) and the linear effects of nearest distance to road (wi= 0.767) were
also significant predictors but had lower AICc weights than the aforementioned variables
(Table 2).

Based on model-averaged estimates, the selection of appropriate nesting substrate and
position was the main factor influencing DSR, with eggs laid in nests on ‘islands’ with
feather or clamshell substrate most likely to hatch (Table 2, Fig. 2). More than half of
the nests with known fates identified at our study site were located at pond dikes in the
abandoned storage pond area (73.8%, n= 844), while the remaining nests were located in
bottom of abandoned salt ponds (12.5%, n= 143), ‘islands’ in abandoned storage ponds
(7.3%, n= 83), and ‘island’ in the evaporation pond (6.4%, n= 73). Nests built on the
abandoned salt ponds had the lowest success among the four habitats (apparent 0.559, DSR
0.970± 0.004; Fig. 2), and within nest survival was highest on ‘islands’ in abandoned ponds
(apparent 0.918, DSR 0.995 ± 0.002; Fig. 2), followed by the ‘island’ in the evaporation
pond (apparent 0.886, DSR 0.992 ± 0.002; Fig. 2) and pond dikes (apparent 0.687, DSR
0.982± 0.001; Fig. 2). We found 641 nests built on a mud substrate, 323 nests on a feather
substrate, 129 nests on a clamshell substrate and 50 nests on a small gravel substrate. The
nests on the mud substrate had the lowest survival (apparent 0.575, DSR 0.972 ± 0.002;
Fig. 2) compared to those on gravel (apparent 0.608, DSR 0.980± 0.004; Fig. 2), clamshell
(apparent 0.878, DSR 0.994 ± 0.002; Fig. 2) or feather substrates (apparent 0.879, DSR
0.994 ± 0.001; Fig. 2).
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Table 1 Top nine models (1AICc< 2) showing the different environmental and habitat predictors of
daily nest survival of the Gull-billed tern (Gelochelidon nilotica) breeding in coastal saltpans, Nanpu,
Bohai Bay, China.

Modela 1AICcb wi K

T+T2+NAge+Eggs+Eggs2+Substrate+Habitat+
Disnest2+Disroad+Disroad2+Diswater2+Year

0.000 0.057 18

T+T2+NAge+Eggs+Eggs2+Substrate+Habitat+
Disnest2+Disroad2+Diswater2+Year

0.733 0.039 17

T+T2+NAge+Eggs+Eggs2+Substrate+Habitat+
Disnest2+Disroad+Disroad2+Diswater+Diswater2+Year

1.323 0.029 19

T+T2+NAge+Eggs+Eggs2+Substrate+Habitat+
Disnest2+Disroad+Disroad2+Diswater+Year

1.492 0.027 18

T+T2+NAge+Eggs+Eggs2+Substrate+Habitat+Nest100+
Disnest2+Disroad+Disroad2+Diswater2+Year

1.658 0.025 19

T+T2+NAge+Nage2+Eggs+Eggs2+Substrate+Habitat+
Disnest2+Disroad+Disroad2+Diswater2+Year

1.753 0.024 19

T+T2+NAge+Eggs+Eggs2+Substrate+Habitat+Disnest2+
Disroad2+Diswater+Diswater2+Year

1.835 0.023 18

T+T2+NAge+Eggs+Eggs2+Substrate+Habitat+Nest1002+
Disnest2+Disroad+Disroad2+Diswater2+Year

1.910 0.022 19

T+T2+NAge+Eggs+Eggs2+Substrate+Habitat+Disnest+
Disnest2+Disroad+Disroad2+Diswater2+Year

1.998 0.021 19

Notes.
AICc, Akaike’s information criterion for small sample sizes; wi, AICc weight.

aT, nest initiation date; NAge, nest age; Eggs, clutch size; Disnest, nearest-neighbor distance to conspecific nest; Disroad, near-
est distance to the road; Diswater, nearest distance to water; Nest100, density nests within a 100 m radius

bAICc of the top model was 2367.3

Both 2-egg and 3-egg clutches showed a similar relationship with DSR, and both were
higher than single-egg clutches. There were only two nests with 4-egg clutches in our
study, and both failed (eggs were still being incubated by parent birds after more than one
week of the presumed date of hatching). Nest survival increased slightly throughout the
nesting season (Fig. 3A) but decreased from 2017 (apparent 0.886, DSR 0.994 ± 0.002)
to 2019 (apparent 0.547, DSR 0.973 ± 0.002). There was noticeable variation in daily
temperature, wind speed and precipitation throughout each breeding season, with mean
daily temperature generally increasing across the incubation period for all nesting seasons
(Fig. 3B), but mean daily wind speed showed the opposite trend (Fig. 3C); in addition, the
highest level of precipitation was recorded in 2017 (Fig. 3D). The relationship between nest
age and DSR showed slightly increasing trend (Fig. 4A), and nest survival was relatively
higher when the nest was located closer to the nearest road (Fig. 4B), with the same trend
evident between distance to nearest water body and DSR (Fig. 4C). Nest survival was
relatively higher when nearest-neighbor distance was low (Fig. 4D) and was also higher
with increasing nest density (Fig. 4E).

DISCUSSION
Our results show that the Nanpu saltpans provide suitable nesting habitats for the
population of Gull-billed tern in Bohai Bay. The number of nesting pairs we counted
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Table 2 Model-averaged parameter estimates and descriptive statistics for predicting the influence
of different environmental and habitat characteristics on the daily nest survival of the Gull-billed tern
(Gelochelidon nilotica) breeding in coastal saltpans.

Parameter β SE Lower CI 95% Upper CI 95% wi

Intercept −0.594 0.969 −2.494 1.305 1.000
T 0.148 0.024 0.101 0.195 1.000
T2

−0.003 0.000 −0.004 −0.002 1.000
Nage −0.040 0.014 −0.068 −0.012 1.000
Eggs 3.228 0.414 2.417 4.039 1.000
Eggs2 −0.608 0.100 −0.805 −0.412 1.000
Mud −0.880 0.255 −1.379 −0.380 1.000
Shell 0.733 0.344 0.059 1.407 1.000
Feather 0.768 0.286 0.208 1.328 1.000
Pond −1.672 0.441 −2.536 −0.808 1.000
Way −0.956 0.432 −1.803 −0.109 1.000
Island −1.071 0.782 −2.604 0.462 1.000
Disnest2 0.000 0.000 0.000 0.000 1.000
Disroad2 0.000 0.000 0.000 0.000 1.000
2017 2.602 0.774 1.085 4.119 1.000
2018 1.192 0.158 0.881 1.502 1.000
Diswater2 0.000 0.000 0.000 0.000 0.899
Disroad 0.002 0.001 −0.001 0.005 0.767
Diswater 0.002 0.009 −0.016 0.020 0.296
Nest100 0.000 0.002 −0.004 0.003 0.093
Nage2 0.000 0.000 −0.001 0.000 0.089
Nest1002 0.000 0.000 0.000 0.000 0.082
Disnest 0.000 0.003 −0.006 0.006 0.079

Notes.
T, nest initiation date; Nage, nest age; Eggs, clutch size; Disnest, nearest-neighbor distance to conspecific nest; Disroad, the
nearest distance to the road; Diswater, nearest distance to water; Nest100, density nests within a 100 m radius and CI, Confi-
dence interval

at the breeding sites was larger than those reported in other Gull-billed tern studies from
North America and Iran (Palacios & Mellink, 2007; Erwin et al., 1999; Barati, Etezadifar &
Esfandabad, 2012; Windhoffer et al., 2017). In addition, our estimates of nest survival are
among the highest reported for this species worldwide, including those reported from
natural wetland habitats in Iran (apparent nest survival 0.46 (n= 67); Barati, Etezadifar
& Esfandabad, 2012), wetlands in Virginia, USA (apparent nest survival 0.501, n= 433;
Erwin et al., 1999) and Isles Dernieres Barrier Islands Refuge, Louisiana, USA (apparent
nest survival 0.56, n= 191;Windhoffer et al., 2017), which suggests that there is conspecific
variation in nest survival and susceptibility to different forms of disturbance associated
with human activities and predation (Que et al., 2015;Windhoffer et al., 2017).

Terns are considered particularly vulnerable to disturbance (Scarton, Valle & Borella,
1994; Catry et al., 2004), so the nest survival of Gull-billed tern in our study is encouraging
as terns appear to select nesting locations in the center of evaporation ponds or abandoned
storage ponds with minimal production/cultivation or other human activities. However,
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Figure 2 Daily nest survival [±95% confidence interval (CI)] of the Gull-billed tern (Gelochelidon
nilotica) among the different nesting habitats and nest substrates in the Nanpu wetland, Bohai Bay,
China.

Full-size DOI: 10.7717/peerj.10054/fig-2

egg poaching by local people, which caused 12 nest failures of the Gull-billed tern at one
dike in 2019, is a widespread and common phenomenon along the coastal regions of Bohai
Bay, as reported for Kentish plover (Que et al., 2015) and Pied avocet (Lei, 2017). Increased
patrolling of nesting areas by wildlife conservation staff throughout artificial and natural
wetlands in the region during the breeding season should be a conservation management
priority.

Nest predation was rarely recorded during our study where the breeding sites of
Gull-billed tern were isolated, which may have served as protection against terrestrial
mammalian predators, such as dogs, foxes, and rats, as observed in other studies (e.g.,
Nelson, 1979;Hamer, Schreiber & Burger, 2002). Although the eggs and chicks of Gull-billed
tern have been reported to be prey for other bird species such as Great horned owl (Bubo
virginianus), Barn owl (Tyto alba), Short-eared owl (Asio flammeus), Yellow-legged gull
(Larus cachinans) andBlack-headed gull (L. ridibundus) (Sánchez & Blasco, 1986; Sánchez et
al., 2004), we suspect that the effect of avian predators in our study was somewhat minimal
because only a Peregrine falcon (Falco peregrinus) was observed on a single occasion during
our surveys.

Previous studies have found no relationship between nest site selection and hatching
success for Gull-billed tern with elevation or habitat type (e.g., Erwin et al., 1998; Rounds,
Erwin & Porter, 2004; Barati, Etezadifar & Esfandabad, 2012). However, our models
revealed that the position of the nest was a significant predictor of DSR, and we found
the lowest nest survival at abandoned salt ponds where the elevation of the nest site above
the water was relatively low, and flooding with pronounced fluctuations in water-levels
accounted formost nest losses, as reported in other study areas (e.g.,Biber, 1993;Windhoffer
et al., 2017). Pond banks and ‘islands’ in the ponds were at a relatively high level above the
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water, which prevented immersion even in stormy weather or during the water pumping
period for salt production.

Micro-habitat features could also play an important role in nest survival (Colwell et al.,
2011; Hardy & Colwell, 2012; Que et al., 2015). All nests of the Gull-billed tern at Nanpu
were constructed in areas that were devoid of vegetation which we found to be a significant
predictor of nesting success. The survival of nests constructed on shell, rock or feather
materials was higher than that of nests built on other substrates. At Nanpu, micro-habitat
features may minimize reproductive failure caused by flooding and silting or by damaged
from strong winds, but further evidence is required. Daily precipitation is known to be one
of the most important factors influencing nest performance (Halse & Jaensch, 1989; Que
et al., 2015). In our study area, precipitation had minimal influence on tern nest survival
because the noticeable peak in daily precipitation occurred toward the latter half of the
breeding season when there were only a few active tern nests.

Temporal variation in nest survival across the incubation period and among breeding
seasons is a common phenomenon in many avian populations (Wilson, Martin & Hannon,
2007; Kolada, Casazza & Sedinger, 2009; Smith & Wilson, 2010). Gull-billed tern nest
survival at our study site also varied intra- and inter-annually, showing a slight increase
in survival throughout the nesting season but inter-annually nest survival decreased from
2017 to 2019. We suspect that this may have been influenced in part by variation in local
climate conditions at the study site and perhaps differences in the level of conservation
management across the different years.

In 2018, the abandoned salt ponds were used as storage ponds and nearly half of all nests
located within the abandoned salt ponds were flooded when water was pumped into the
ponds. Water levels within the ponds rose by 50 cm in 2019 such that all the salt ponds and
a portion of the pond dikes were completely submerged. Additionally, three days of high
winds occurred during the highest egg laying period in 2019. Combined, the flooding and
winds resulted in almost a quarter of all tern nests being destroyed.

CONCLUSIONS
Artificial wetland habitats such as saltpans may become increasingly important as
an alternative nesting habitat for populations of coastal waterbird species, with the
continuing loss and degradation of natural coastal wetlands caused by increasing human
disturbance (Rocha et al., 2016). Our work suggests that coastal saltpans could constitute
an attractive alternative nesting habitat for the Gull-billed tern and highlights their poorly
recognized conservation value in the Bohai Bay region of coastal China. Our results
have implications for the conservation management of waterbirds primarily because
conservation management should focus on improving and restoring nesting habitat
quality, and regular (annual) surveys of nesting bird abundance. Future conservation
plans need to prioritize measures that reduce efforts to manipulate saltpan habitat to
prevent flooding and nest abandonment. Since saltpans are not usually influenced by tidal
regimes and water levels are influenced either by anthropogenic means (pumping for salt
production) or by a direct result of weather events, further efforts to control water-level
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fluctuations during the breeding season will be essential to preventing nesting habitat loss
and displacement of nesting pairs. Draining abandoned evaporation ponds before the
onset of the nesting season, complemented by efforts to create further artificial ‘islands’,
in addition to the provision of suitable nesting substrates (e.g., shell/gravel mixtures), and
increasing the width of dikes where minimal human disturbance occurs would represent
a package of achievable conservation measures to enhance the reproductive success of
waterbirds in the Nanpu wetlands. Meanwhile, future surveys are needed to determine
what food resources may be located near the alternative nesting locations.
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