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ABSTRACT
Background and Objectives. Glycemic control is of paramount importance in the
intensive care unit. Presently, several BG control algorithms have been developed for
clinical trials, but they are mostly based on experts’ opinion and consensus. There
are no validated models predicting how glucose levels will change after initiating of
insulin infusion in critically ill patients. The study aimed to develop an equation for
initial insulin dose setting.
Methods. A large critical care database was employed for the study. Linear regression
model fitting was employed. Retested blood glucose was used as the independent
variable. Insulin rate was forced into the model. Multivariable fractional polyno-
mials and interaction terms were used to explore the complex relationships among
covariates. The overall fit of the model was examined by using residuals and ad-
justed R-squared values. Regression diagnostics were used to explore the influence of
outliers on the model.
Main Results. A total of 6,487 ICU admissions requiring insulin pump therapy
were identified. The dataset was randomly split into two subsets at 7 to 3 ratio. The
initial model comprised fractional polynomials and interactions terms. However,
this model was not stable by excluding several outliers. I fitted a simple linear model
without interaction. The selected prediction model (Predicting Glucose Levels in
ICU, PIGnOLI) included variables of initial blood glucose, insulin rate, PO volume,
total parental nutrition, body mass index (BMI), lactate, congestive heart failure,
renal failure, liver disease, time interval of BS recheck, dextrose rate. Insulin rate
was significantly associated with blood glucose reduction (coefficient: −0.52, 95%
CI [−1.03, −0.01]). The parsimonious model was well validated with the validation
subset, with an adjusted R-squared value of 0.8259.
Conclusion. The study developed the PIGnOLI model for the initial insulin dose set-
ting. Furthermore, experimental study is mandatory to examine whether adjustment
of the insulin infusion rate based on PIGnOLI will benefit patients’ outcomes.

Subjects Emergency and Critical Care, Public Health, Statistics
Keywords Big data, Intensive care unit, Insulin, Dosage, Glycemic control, Mathematical model

INTRODUCTION
Blood glucose (BG) control is of paramount importance in critically ill patients.

A large body of evidence on BG control in intensive care unit (ICU) has emerged
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(Arabi et al., 2008; Griesdale et al., 2009; Van den Berghe et al., 2001) and has lead to

elaboration of international guidelines (Ichai et al., 2009; Qaseem et al., 2011), which state

that both hypoglycemia and hyperglycemia are associated adverse outcomes. However,

these guidelines simply give a target of BG to achieve without elaborating on specific

algorithms to achieve such a target range.

There are many algorithms on the dosing of insulin to control BG. In the well-known

study by NICE-SUGAR Study Investigators et al. (2009), the specific protocol on the dosing

of insulin was given, aiming to reach a steady BS within target ranges in both aims. This

protocol categorized dosing strategies on whether insulin was first initiated or continued.

In another study conducted in Australia, a locally developed protocol was found to be

effective in maintaining BG in the target range (Breeding et al., 2014). However, several

common features of these protocols include: (1) they were developed largely by expert

opinion and experiences. These experts can be nurses, pharmacists, intensivists and

investigators; (2) they only take into account a limited number of clinical variables such as

the measured BG and the trend of BG changing after initiation of insulin pump. However,

there are numerous factors that can influence insulin sensitivity. These factors include but

are not limited to the history of diabetes, severity of illness, liver function and route of

glucose intake.

It is important in critically ill patients to have the ability to predict response to medica-

tions. Regression modeling has been used to model predicted drug response. Medication

dosing by using this approach is useful for drugs that have a narrow therapeutic window

and require frequent dosing adjustment to reach a predefined target range. In a critical care

setting, heparin dosing is a good example and has been investigated by using this regression

modeling approach The objective of this study was to derive Predicting Glucose Levels in

ICU (PIGnOLI), a mathematical model predicting the change in glucose level resulting

from the initiation of insulin infusion in critically ill patients.

METHODS
Design
The retrospective study encompassed analysis of a Multiparameter Intelligent Monitoring

in Intensive Care II (MIMIC-II), a large clinical database of critically ill patients. Because

the study utilized an open access clinical database, formal IRB approval was not required.

Data source
MIMC-II is a large registry of intensive care unit patients treated at Beth Israel Deaconess

Medical Center, Boston, Massachusetts. Patient information on demographics, laboratory

findings, imaging study, vital signs and progress notes was available (Saeed et al., 2011).

MIMIC contains data on over 30,000 patients admitted during the period of 2001–2008.

The database comprised varieties of ICUs, including the medical, surgical, coronary,

and cardiac surgery recovery care units. ICU stays separated by less than 24 h were

considered as one episode of ICU stay. Data were collected from electronic health data

and all information produced during hospital stay were stored in the database.
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All data were extracted by using structural query language (SQL) programming

language from the database (Zhang, 2015). The Institutional Review Boards of the Mas-

sachusetts Institute of Technology (Cambridge, MA) and Beth Israel Deaconess Medical

Center (Boston, MA) approved the establishment of the database. De-identification was

performed to ensure patients’ confidentiality. Access to the database was approved after

completion of the NIH web-based training course named “Protecting Human Research

Participants” by the author Z.Z. (certification number: 1132877).

Selection of subjects
All adult patients were considered potentially eligible for this study. Patients actually

received continuous insulin infusion were included. Children and neonates were excluded.

Outcomes
The primary outcome was retested BG level (mg/dl). The value, date and time of each

BG were recorded in medical record. BG values can be those from blood chemistry and

fingerstick, and the differentiation between venous glucose measurements and fingerstick

levels was not performed in current analysis.

Clinical variables
Specific SQL programming languages for data extraction are shown in Supplemental

Information 1. Comorbidities including diabetes, liver failure, congestive heart failure and

renal failure were extracted because I felt that they may influence the sensitivity to insulin

therapy. Laboratory parameters including bilirubin, C-reactive protein, serum creatinine

and lactate were extracted. A total number of 1,117,076 BG measured with finger stick

and in chemistry were extracted. A total number of 480,560 episodes of insulin rate were

extracted.

Simultaneous use of intravenous (IV) total parental nutrition (TPN) and dextrose were

extracted from the database. Different concentrations of dextrose were transformed to 5%

dextrose (e.g., a volume of 10 ml 10% dextrose equals to 20 ml 5% dextrose). A total of

558,634 episodes of oral feeding (PO) containing glucose were extracted for its volume and

time. All events were based upon charted time.

Data analysis
The objective of the analysis was to establish a linear regression equation between retested

BG and insulin rate, controlling for other potential confounders. A data-driven approach

means that the form of the equation was determined by data, depending on statistical

significance. All variables thought to be associated with insulin sensitivity were extracted

from the database and were considered for their inclusion in the model at outset.

I employed a multivariable fractional polynomial (MFP) method to construct the main

effect model. The method combines backward elimination of statistically non-significant

covariates with an iterative examination of the scale of continuous variables. MFP specifies

two levels of significance levels: α1 = 0.15 for the test for exclusion and addition of

variables to the equation and α2 = 0.05 to assess significance of fractional polynomial
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transforms of continuous variables. One degree of freedom was assigned to dichotomous

variables and two-term fractional polynomials with 4 degrees of freedom were assigned

to continuous variables. Continuous variables were modeled using closed test procedure,

determining whether the covariate should be dropped from model at α1. Then, α2 = 0.05

was employed to test the need for transformation of the variable. The best two-term

transformation was compared to the linear term by employing a closed test procedure.

If the two term model is significantly better than the linear one at α2 = 0.05, the two term

model is then compared to the one-term model. Otherwise, the linear term was retained in

the model. Interactions were explored and terms with p < 0.05 were retained in the model.

The overall fit of the model was assessed by using R-squared, which is a reflection of

the variance that can be explained by the model. Influential observations were evaluated

by examining the leverage, Cook’s D and DFITS. Influential observations were excluded

and the model was refitted by using MFPIGEN module. If the new model was significantly

different from the original one, the original model would be reconsidered for the more

parsimonious one. For example, some fractional transformation would be dropped and

interaction terms could be dropped if the likelihood ratio test showed p > 0.05. R-squared

values of the new parsimonious model would be compared to the original one to see

whether the fitness was good enough. The whole dataset was split into two subsets: the

training subset and the validation subset. Observed values of covariates were substituted

into the fitted model to derive linear prediction. I then performed a regression model with

linear prediction of the training subset as dependent variable and linear prediction of the

validation subset as independent variable. The regression coefficient should be close to 1

and statistically significant at p < 0.05 if the model fits well to the validation subset.

All statistical analyses were performed by using Stata 13.1 (StataCorp, College Station,

Texas, USA) and R software (R 3.1.1). Statistical significance was considered at p < 0.05.

RESULTS
A total of 6,487 ICU admissions requiring insulin pump therapy were identified from the

dataset. The dataset was randomly split into two subsets at 7 to 3 ratio. The training subset

comprised 4,593 observations and the validation subset comprised 1,894 observations.

Model exploration and development
The results of initial model fitting are shown in Table 1. The continuous variables including

glucose, interval, dextrose rate and insulin rate were FP transformed and there were

significant interactions between insulin rate and two terms of glucose. Glucose was

transformed by two-term FP with the power of −0.5 and 1. Interval was transformed

by two-term FP with the power of −2 and 1. Dextrose rate was transformed by one term FP

with the power of 0.5. There were two interaction terms between insulin rate and glucose

because glucose was modeled with two terms. The overall fit of the model was thought to

be good with an adjusted R-squared value of 0.8449.

Influential observations were examined by using regression diagnostics (Supplemental

Information 2). By excluding these influential observations, I refitted the model and

found that FP terms and coefficients were remarkably changed (Table 2). Glucose was
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Table 1 Multivariable linear regression model to predict retested blood glucose (mg/dl) after initiation of insulin infusion.

Covariatesa Coefficient Standard error Lower limit of 95% CI Upper limit of 95% CI p

Glucose−0.5 34.33 8.81 17.07 51.59 <0.001

Glucose-1.96 94.00 1.60 90.85 97.14 <0.001

(Insulin rate-2.85) −1.06 0.33 −1.70 −0.42 <0.001

(Time interval)2-8.13 −0.002 0.0006 −0.004 −0.001 <0.001

Time interval-0.35 −18.90 2.30 −23.41 −14.39 <0.001

(Dextrose rate)0.5 22.02 8.58 5.20 38.84 0.01

PO volume −0.02 0.01 −0.03 0.00 0.06

TPN volume 0.07 0.03 0.02 0.12 0.01

Lactate (mmol/l) 0.87 0.23 0.41 1.32 0.00

History of congestive heart failure 2.64 1.18 0.33 4.95 0.03

History of renal failure −3.13 1.87 −6.78 0.53 0.09

History of liver disease 4.50 2.03 0.52 8.47 0.03

(Glucose−0.5)× (Insulin rate-2.85) 10.92 4.34 2.41 19.43 0.01

(Glucose-1.96) × (Insulin rate-2.85) 1.60 0.67 0.28 2.91 0.02

Constant 186.52 0.98 184.61 188.44 <0.001

Notes.
Number of obs = 4,593, F(14,4578) = 1787.14, Prob > F = 0.0000, R-squared = 0.8453, Adj R-squared = 0.8449, Root MSE = 30.569.
PO, by mouth, orally (from the Latin “per os,” by mouth); TPN, total parental nutrition.

a Some covariates were centered and transformed with fractional polynomials.

transformed by two-term FP with the power of −2 and 1. Interval was transformed by

two-term power of 3 and 3. The results showed that the model was not stable, most likely

due to complexity of the FP assignment and multiple testing during model fitting. The FP

terms were influenced by several influential observations.

The parsimonious model was fitted to address the problem of instability. Graphical

presentation showed that although the interaction term was statistically significant, the

magnitude was of marginal clinical significance (Fig. 3 in Supplemental Information

2). Therefore, I opted not to incorporate interaction terms in the parsimonious model.

Figure 1 shows the scatter points predicted by FP model and simple linear model, and

the two lines were close to each other. Visual inspection of the graph indicates the use of

parsimonious model would not compromise the prediction accuracy of the model.

Final model and model validation
The final Predicting Glucose Levels in ICU (PIGnOLI) model is shown in Table 3. Insulin

rate was significantly associated with blood glucose reduction (coefficient: −0.52, 95% CI

[−1.03, −0.01]). Initial blood glucose was the most important determinant of retested

blood glucose (coefficient: 0.89, 95% CI [0.88, 0.90]). Oral intake, TPN and dextrose

infusion were all associated with blood glucose control. Furthermore, serum lactate

and BMI were positively associated with retested blood glucose. The time interval was

negatively associated with retested blood glucose level (coefficient: −0.18; 95% CI [−0.22,

−0.14]). The PIGnOLI model showed an adjusted R-squared value of 0.84, which was

not significantly different from the FP model with interaction terms (R-squared = 0.84).

The PIGnOLI model was tested in the validation subset and the result showed that the
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Table 2 Refitting the regression model after excluding influential observations.

Covariatesa Coefficient Standard error Lower limit of 95% CI Upper limit of 95% CI p

(Glucose/100)−2 10.865 2.589 5.789 15.941 <0.001

(Glucose/100)-1.96 92.193 0.985 90.261 94.125 <0.001

Insulin rate-2.85 −0.861 0.316 −1.481 −0.241 0.007

(Interval/100)3
−5.530 7.977 −21.168 10.109 0.488

(Interval/100)3
× ln(interval/100) 77.272 19.426 39.189 115.356 <0.001

[(Dextrose rate + 0.01)/100]
0.5

− 9.3 × 10−6 5.584 1.703 2.247 8.922 0.001

[(Dextrose rate + 0.01)/100]
3

×ln[(Dextrose rate + 0.01)/100] + 3.6 × 10−5
−4.011 1.106 −6.180 −1.843 <0.001

PO volume −0.013 0.008 −0.029 0.002 0.094

TPN volume 0.091 0.030 0.031 0.150 0.003

Lactate (mmol/l) 0.865 0.227 0.421 1.310 <0.001

Congestive heart failure 2.376 1.151 0.120 4.632 0.039

Renal failure −2.983 1.817 −6.546 0.580 0.101

Liver disease 4.254 1.977 0.379 8.129 0.031

(Glucose/100)−2
× (insulin rate-2.85) 0.489 1.163 −1.792 2.769 0.674

[(Glucose/100)-1.96] × (insulin rate-2.85) 0.189 0.358 −0.513 0.891 0.598

Constant 185.875 0.910 184.091 187.659 <0.001

Notes.
Number of obs = 4585, F(15,4569) = 1760.88, Prob > F = 0.0000, R-squared = 0.88525, Adj R-squared = 0.8520, Root MSE = 29.784.
PO, by mouth, orally (from the Latin “per os,” by mouth); TPN, total parental nutrition.

a Some covariates were centered and transformed with fractional polynomials.

coefficient between estimated retest glucose and observed retest glucose was 0.99 (95%

CI [0.97–1.01]; p < 0.001). The adjusted R-squared value was 0.8259, suggesting that the

model was well calibrated with the validation subset.

DISCUSSION
This study developed the PIGnOLI model for BG control in critically ill patients. A

data-driven approach could be applied in this study because there is a large volume

of retrospective data available for analysis. The widespread uses of electronic medical

record systems have made this strategy possible. The present study provides a framework

for predicting and modeling BG response. This approach may be useful for predicting

medication response in this and other disease states.

Although there is a large body of evidence suggesting the importance of BG control

in the intensive care unit (ICU), there is no empirical data on how to control BG (Fahy,

Sheehy & Coursin, 2009). Several BG control algorithms have been developed for clinical

trials, but they are mostly based on experts’ opinion and consensus. As a result, many

patients assigned to a specific BG range cannot reach that range, or many times insulin

rate adjustment are required before an optimal target is reached. Furthermore, substantial

number of patients experience under- or over-control of BG because of insulin misuse

and/or other disease-related factors. It is optimal in clinical practice that BG be accurately

controlled within a short period of time. In the present study, I developed an equation for

insulin adjustment, by considering comorbidities, laboratory findings and demographics.
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Figure 1 Graphical presentation of the BG predicted by the model including FP terms (red line) and
the model with linear terms (blue line). Both models appeared similar in predicting BG. The initial BG
was controlled at its mean value of 195.9 mg/dl.

Glucose intakes such as TPN, dextrose infusion and PO intake during the analysis time

were all considered. In critical care practice, these information need to be collected and

put into calculators to estimate the initial rate of insulin infusion. Since these variables are

routinely recorded in most ICUs, this could be done with just any electronic health record

(HER) system.

Glycemic control in the present clinical practice is not based on data-driven approach.

For example, in the well-known study by NICE-SUGAR Study Investigators et al. (2009),

insulin dosing algorithm was based on whether insulin was first initiated or continued. The

insulin rate was determined on the value of BG, taking previous BG into consideration.

This protocol did not take into account of other variables such as concomitant dextrose

infusion, baseline renal and liver functions. In another study conducted in Australia, a

locally developed protocol was found to be effective in maintaining BG in target range

(Breeding et al., 2014). The insulin rate was set according to the amount of BG fall, without

considering other potential influential factors.
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Table 3 Parsimonious model with linear terms and no interaction.

Covariates Coefficient Standard
error

Lower limit
of 95% CI

Upper limit
of 95% CI

p

Insulin rate −0.52 0.26 −1.03 −0.01 0.05

Glucose 0.89 0.01 0.88 0.90 <0.001

PO volume −0.02 0.01 −0.03 −0.00 0.05

TPN volume 0.07 0.03 0.01 0.12 0.01

BMI 0.10 0.06 −0.02 0.22 0.09

Lactate (mmol/l) 0.95 0.23 0.50 1.41 <0.001

Congestive heart failure 2.58 1.19 0.26 4.91 0.03

Renal failure −3.09 1.87 −6.76 0.58 0.10

Liver disease 4.13 2.03 0.14 8.12 0.04

Interval −0.18 0.02 −0.22 −0.14 <0.001

Dextrose rate (5%) 0.01 0.01 −0.01 0.03 0.20

Constant 17.18 2.23 12.82 21.55 <0.001

Notes.
Number of obs = 4,593, F(11,4581) = 2251.71, Prob > F = 0.0000, R-squared = 0.8439, Adj R-squared = 0.8435, Root
MSE = 30.698
PO, by mouth, orally (from the Latin “per os,” by mouth); TPN, total parental nutrition; BMI: body mass index.

The predictors in the PIGnOLI model have biologic and clinical plausibility. For

example, congestive heart failure was positively associated with blood glucose. In a cohort

of 3,748 nondiabetic participants aged ≥65 years, Guglin and coworkers (2014) found that

baseline heart failure was associated with subsequent development of diabetes mellitus

within 3–4 years. Liver disease may contribute to hyperglycemia via insulin resistance

and increase hepatic BG output (DeFronzo, 1988; Mitrakou et al., 1990). With respect to

the association of renal failure with glycemic control, although the present study failed to

found a significant association at p = 0.05, I still incorporated this factor into my model

because renal function has been identified to be tightly related to BG levels (DeFronzo,

Davidson & Del Prato, 2012). Serum lactate is a biomarker of tissue perfusion, and it

increases markedly with hypoperfusion and hypoxia. My previous work has demonstrated

that lactate is a strong predictor of clinical outcome in critically ill patients (Zhang et

al., 2014; Zhang & Xu, 2014; Zhang, Xu & Chen, 2014). I propose that, since lactate is

biomarker of circulatory shock, it is also a biomarker of stress response during severe

illness. Stress response is a well-established contributor to insulin resistance and observed

hyperglycemia (Santos, 2013).

Many drugs require careful dosing because their therapeutic and toxic doses are close

to each other. Insulin is one such drug with a therapeutic dose that varies substantially

across individual patients. More importantly, inappropriate dosing may cause catastrophic

consequences such as infection, permanent neurologic defect and coma. Therefore, close

monitoring of BG and frequent adjustment of insulin dose are mandatory. Due to the

complexity of the PIGnOLI model, I programmed the PIGnOLI model in Excel format

(Supplemental Information 3) to ease its use in clinical practice (Fig. 2). The users
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Figure 2 A snapshot of the calculator for setting initial dose of insulin.

can input required variables and predict retested BG after a predefined time interval

(<120 min).

Several limitations need to be acknowledged in this study. The study was restricted to

dosing at the initiation of the insulin pump and subsequent adjustment was not addressed;

the difficulty lay in the complexity of data preprocessing. In a future study I will try to

resolve these technical difficulties and provide further algorithms on how to adjust the

insulin dose by incorporating initial response to insulin therapy in addition to covariates

as reported in the present study. This analysis included only patients receiving insulin via

pump and would not necessarily be generalizable to patients receiving insulin by some

other route. However, the insulin pump is the most attractive mean to give insulin for

critically ill patients, mostly due to its accuracy in dosing and the short-acting property.

This study may suffer from the problem of multiple testing and model overfitting. This

happened in my first model, in which several FP terms and complex interactions were

incorporated. However, this model was found to be unstable by excluding several outliers.

Therefore, I opted to employ simple linear terms and clinical irrelevant interactions were

excluded. The PIGnOLI model was validated in split subset and was well fitted to the

independent subset. One important limitation of the study is that the database is limited

to one center, and thus the extrapolation of the PIGnOLI model to other systems and

countries requires further validation.

In conclusion, the study developed the PIGnOLI model for the initial insulin dose

setting. It may be favorable if this algorithm can be used in clinical setting for accurate BG

control for critically ill patients. Furthermore, an experimental study is mandatory in order

to examine whether insulin adjustment based on the PIGnOLI model will benefit patients’

outcomes. Before the PIGnOLI model can be used in clinical practice, it is also mandatory

to compare the episodes of hypoglycemia and duration of hyperglycemia between groups

using and without using the PIGnOLI model.
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