

Intraductal papillary neoplasm of the bile ducts: Report of 58 cases

Hong Hui Zhang Equal first author, 1, 2, 3, Zhen Dong Zhong Equal first author, 1, 3, 4, Gao Yin Kong 5, Junaid Khan 1, 2, 3, Lian Hong Zou 6, Yu Jiang 6, Xie Hong Liu 6, Yi Xun Tang 5, Bo Jiang 1, 2, 3, Chuang Peng 1, 2, 3, Ying Hui Song Corresp., 1, 2, 3, su lai liu Corresp. 1, 2, 3

Corresponding Authors: Ying Hui Song, su lai liu Email address: sissysyh@163.com, liusulai@hunnu.edu.cn

Abstract

Background. Intraductal papillary mucinous neoplasm of the bile duct (IPMN-B) is considered an uncommon tumor, and there is limited understanding of IPMN-B. This study aimed to investigate the prognosis and influential factors of the IPMN-B from 58 cases.

Methods. The clinical data of 58 patients with pathologically confirmed IPMN-B admitted to our hospital from January 1, 2012 to August 2017 were collected and analyzed. The patients were followed up by outpatient or telephone until January 1, 2019. SPSS19.0 software was applied for data analysis. Survival analysis was performed using Kaplan-Meier method and parallel Log-rank test. Prognostic factors were analyzed by univariate analysis and multiple Cox regression model.

Results. Among of all the patients, 26 cases were benign tumors and 32 cases were malignant tumors. The preoperative tumor markers CA242 and CEA of malignant IPNM-B patients were significantly higher than those in benign tumors (P < 0.05). Survival analysis showed that patients with malignant tumors had a worse prognosis with The median survival time (MST) of malignant IPMN-B patients was 40.57 ± 3.015 months, yet MST of benign IPMN-B patients was not reached (P = 0.041). Univariate analysis showed that combined lymph node metastasis, surgical method, and differentiation degree could affect patients' prognosis (P < 0.05). Multivariate analysis showed differentiation degree was an independent risk factor affecting prognosis (P = 0.06, P < 0.05).

Conclusion. The levels of CEA and CA242 were helpful to identify benign and malignant of IPNM-B. Moreover, radical surgical resection could prolong patients' survival. Finally, differentiation degree was an independent risk factor affecting malignant IPNM-B prognosis.

¹ Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan province, China

² Clinical Medical Technology Research Center, Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan province, China

Biliary Disease Research Laboratory, Hunan Provincial People's Hospital, Changsha, Hunan province, China

⁴ Department of Hepatobiliary Surgery, Changsha County People's Hospital, Changsha, Hunan province, China

Department of Anesthesiology, Hunan Provincial People's Hospital, Changsha, Hunan province, China

⁶ Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Provincial Institute of Emergency Medicine, Changsha, Hunan province, China

Intraductal Papillary Neoplasm of the Bile Ducts: report of

2	58 Cases
3	Honghui Zhang ^{1,2,3#} , Zhendong Zhong ^{1,2,4#} , Gaoyin Kong ⁵ , Junaid Khan ^{1,2,3} , lianhong Zou ⁶ , Yu
4	jiang ⁶ , Xiehong Liu ⁶ , Yixun Tang ⁵ , Bo Jiang ^{1,2,3} , Chuang Peng ^{1,2,3} , Yinghui Song ^{1,2,3*} , Sulai
5	$Liu^{1,2,3*}$
6	¹ Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan
7	Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University,
8	Changsha, 410005 Hunan Province, China
9	² Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of
10	Hunan Normal University, Changsha, 410005 Hunan Province, China
11	³ Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease
12	Prevention and Treatment, Changsha, 410005 Hunan Province, China
13	⁴ Department of Hepatobiliary Surgery, Changsha County People's Hospital/Hunan Provincial
14	People's Hospital Xingsha Campus, Changsha, China.
15	⁵ Department of Anesthesiology, Hunan Provincial People's Hospital/Clinical Research Center
16	for Anesthesiology of ERAS in Hunan Province, Changsha 410005, China
17	⁶ Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province,
18	School of Medicine, Hunan Normal University/Hunan Provincial Institute of Emergency
19	Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,
20	Changsha, Hunan, China
21	#This author contributes equally to this work.

PeerJ

- 22 *Corresponding author: Yinghui Song PhD, M.D., or Sulai Liu, PhD, M.D., Department of
- 23 Hepatobiliary Surgery, Hunan Provincial People's Hospital/The First Affiliated Hospital of
- 24 Hunan Normal University, Changsha, Hunan Province, People's Republic of China. Tel/fax:
- 25 08673183929520. E-mail: **sissysyh@163.com and liusulai@hunnu.edu.cn

26 Abstract

- 27 **Background.** Intraductal papillary mucinous neoplasm of the bile duct (IPMN-B) is considered
- an uncommon tumor, and there is limited understanding of IPMN-B. This study aimed to
- 29 investigate the prognosis and influential factors of the IPMN-B from 58 cases.
- 30 **Methods.** The clinical data of 58 patients with pathologically confirmed IPMN-B admitted to
- 31 our hospital from January 1, 2012 to August 2017 were collected and analyzed. The patients
- 32 were followed up by outpatient or telephone until January 1, 2019. SPSS19.0 software was
- 33 applied for data analysis. Survival analysis was performed using Kaplan-Meier method and
- 34 parallel Log-rank test. Prognostic factors were analyzed by univariate analysis and multiple Cox
- 35 regression model.
- 36 **Results.** Among of all the patients, 26 cases were benign tumors and 32 cases were malignant
- 37 tumors. The preoperative tumor markers CA242 and CEA of malignant IPNM-B patients were
- 38 significantly higher than those in benign tumors (P < 0.05). Survival analysis showed that patients
- 39 with malignant tumors had a worse prognosis with The median survival time (MST) of
- 40 malignant IPMN-B patients was 40.57±3.015 months, yet MST of benign IPMN-B patients was
- 41 not reached (P=0.041). Univariate analysis showed that combined lymph node metastasis,
- 42 surgical method, and differentiation degree could affect patients' prognosis (P <0.05).
- 43 Multivariate analysis showed differentiation degree was an independent risk factor affecting
- 44 prognosis (OR = 0.06, 95% confidence interval: $0.007 \sim 0.486$, P < 0.05).

- 45 **Conclusion.** The levels of CEA and CA242 were helpful to identify benign and malignant of
- 46 IPNM-B. Moreover, radical surgical resection could prolong patients' survival. Finally,
- 47 differentiation degree was an independent risk factor affecting malignant IPNM-B prognosis.
- 48 **Keywords:** Papillary mucinous tumor in the bile duct; radical resection; prognosis; risk factor

49 Introduction

- 50 Intraductal papillary mucinous neoplasm of the bile duct (IPMN-B) is considered an uncommon
- 51 tumor, which secretes a large amount of mucus to cause significant expansion and obstruction in
- 52 clinical practice. Kim HJ, et al. described nine cases of bile duct tumors secreting a large amount
- of mucus and concluded that their clinical, imaging and pathological features were similar to
- 54 those of papillary mucinous tumors in the pancreatic duct in 2000(Kim HJ et al., 2000). In 2008,
- 55 the concept of IPMN-B was first proposed to summarize such diseases (*Paik KY et al., 2008*).
- 56 There is limited understanding of IPMN-B, which are mostly case reports, and lack of large-scale
- 57 clinical research (Nakanuma Y et al., 2016; Hokuto D et al., 2017). This study retrospectively
- analyzed 58 patients with IPMN-B admitted in our hospital from January 2012 to August 2017.
- 59 Clinical and pathological data were collected and explored to identify the prognosis and
- 60 influencing factors of IPMN-B in order to provide basis for the clinical diagnosis and treatment
- 61 of IPMN-B.

62

Materials & Methods

63 Clinical manifestations

- 64 The clinical data of 58 patients with postoperative pathological diagnosis of IPMN-B were
- 65 collected, including 24 males and 34 females; the median age was 61 years (41-85 years). The
- 66 clinical manifestations were mainly pain in the right upper abdomen with yellow staining of the
- 67 skin and sclera. Abdominal ultrasound, CT, or MRI examinations were performed before surgery.

Typical imaging findings were local or intrahepatic and extrahepatic bile duct dilatation, cystic or soft rattan, thickening of the bile duct wall with nodular tissue protrusions, and some patients underwent electronic imaging. Jelly-like bile was seen on duo-scope maintain. Thirty-eight patients (65.5%) developed jaundice at the time of consultation, and 6 of them underwent percutaneous liver puncture of the biliary tract to remove jelly-like bile, which had a poor drainage effect. A total of 46 patients underwent radical resection and 12 patients underwent palliative surgery.

Surgical methods

Preoperative auxiliary examinations were performed to evaluate important organ functions, liver reserve functions, and resectability of liver. Pathological histological examinations were performed during and after surgery. According to the results of pathological histological examinations and the degree of tumor invasion, they were divided into three subgroups: atypical hyperplasia, adenoma and adenocarcinoma (including cancerous changes). The first two groups were belonged to benign tumors. The surgical method was hepatic resection or combined tail resection according to the tumor location, and the intraoperative pathological results. The malignant tumors were routinely dissected with lymph nodes in groups 8, 12, 13a. Patients with multiple intrahepatic bile duct tumors by intraoperative choledochoscopy underwent hepatobiliary reconstruction, bile-gut drainage, and T-tube drainage. The specimens submitted including resected liver specimen, resection margins and lymph nodes.

Follow up

The patients' gender, age, jaundice, biliary stones, previous biliary surgery, tumor markers (CA19-9, CA242, CEA), histological characteristics, lymph node metastasis, resection margins, etc. were followed up in outpatient and telephone ways after the operation. Recurrence was defined as the recurrence of jaundice, and imaging examinations such as CT and/or MRI

- 92 confirmed recurrence. The end point of follow-up was the death of patients or the follow-up time
- 93 until January 1, 2019, and those who died for other reasons but not IPMN-B were excluded.

94 Statistical methods

- 95 SPSS19.0 software was applied for data analysis. Tumor markers were analyzed by variance
- 96 among subgroups. Survival analysis was performed using Kaplan-Meier method and parallel
- 97 Log-rank test. Prognostic factors were analyzed by univariate analysis and multiple Cox
- 98 regression model. P < 0.05 was considered statistically significant.

Results

99

100

110

Clinicopathological parameters of IPNM-B patients

- 101 45 patients (77.6%) had bile duct stones, 35 patients (60.3%) had previous biliary surgery, and
- 102 38 patients (65.5%) had jaundice. The pathological results showed 14 cases (24.1%) were
- 103 atypical hyperplasia, 12 cases (20.7%) were adenoma, and 32 cases (55.2%) were
- adenocarcinoma (including canceration). Lymph node metastasis did not occur in benigm umors,
- and lymph node metastasis occurred in 6 cases (18.8%) of malignant tumors. Radical resection
- was performed in 46 cases (79.3%), and palliative resection was performed in 12 cases (20.7%).
- Malignant tumor differentiation grade: 17 cases with high differentiation (53.1%), 9 cases with
- high-medium differentiation or middle differentiation (28.1%), 6 cases with medium-low
- differentiation or poor differentiation (18.8%). See Table 1 for details.

Imaging of IPNM-B

- In this study, patients showed typical massive jelly-like mucus biliary drainage before surgery
- or intraoperative biliary tract. Typical CT manifestations showed obvious cystic dilatation of the
- intrahepatic bile duct, a small spot-shaped high-density lesion in the bile duct of the right hepatic
- lobe (Figure 1A). T2 magnetic resonance imaging showed a clear soft vine-like expansion of the
- 115 intrahepatic bile duct, and a small nodular T2 signal foci in the bile duct(Figure 1B). The

electronic duodenum showed a common bile duct duodenal fistula by below the duodenum above the duodenal papilla, about 1.0 cm in diameter, full filled with full of jelly-like Slime (Figure 1C).

Survival analysis

51 cases (87.9%) were followed up to the endpoint, no perioperative deaths. 4 patients with benign tumors died, of which two elderly patients survived 3.7 months and 8.7 months, respectively, and were excluded when the survival curve was drawn; two patients survived 7.5 months and 35.2 months due to multiple intrahepatic and extrahepatic bile ducts lesions, respectively. The overall average survival time of this group was 62.1 ± 5.1 months. 10 patients with malignant tumors were died, the median overall survival time was 41.4 ± 6.1 months, the one-year survival rate was 87.5%, and the three-year survival rate was 64.7%. Kaplan-Meier survival curves of two groups were shown in Figure 1. Log-rank test= 4.086, P = 0.041. Analysis of prognostic factors in patients with malignant tumors revealed that prognostic factors including lymph node metastasis, surgical method, and degree of differentiation (P < 0.05). See Table 2 for details. Including lymph node metastasis, surgical method, and degree of differentiation into the COX model and performing multivariate analysis showed that differentiation degree (P = 0.06), 95% confidence interval: P < 0.050 was an independent factor affecting prognosis.

Discussion

IPMN-B is one of intraductal papillary neoplasm of the bile duct (IPNB and intrapancreatic a subtype). It secretes a large amount of mucus to block the bile duct and causes obstructive jaundice. Histopathology of IPMN-B is similar to intraductal papillary mucinous neoplasm of the pancreas (IPMN-P) (*Nakanuma Y et al., 2017*; *Fukumura Y et al., 2017*). In this study, patients showed typical massive jelly-like mucus by biliary drainage before surgery or intraoperative

139	biliary tract. Most patients experienced preoperative B-ultrasound showed significant bile duct
140	dilatation, hypoechoic flocculent light masses in the bile duct, and obvious space occupying.
141	Typical CT or MRI imaging features were soft vine-like dilatation of the bile ducts inside and
142	outside the liver, and multiple nodules in the bile duct wall.
143	Previous studies have suggested that CT play an important role in identifying benign and
144	malignant diseases of IPMN-B (Oki H et al., 2011; Paik KY et al., 2008). It is reported that
145	"floating sign" in the bile duct of MRI imaging is a typical manifestation of IPMN-B (Ying SH et
146	al., 2015). In general, the imaging characteristics of IPMN-B patients in this study were basically
147	consistent with the reported imaging characteristics.
148	Most patients were complained jaundice and abdominal pain. 45 patients (77.6%) suffered head
149	biliary calculi. And 35 patients (60.3%) had a previous history of biliary tract surgery. The tumor
150	markers CA242 and CEA of most patients were significantly increased before surgery, and they
151	were helpful to distinguish benign from malignant diseases. It was reported that CA19-9, CA242
152	and CEA were three recognized plasma tumor markers of cholangiocarcinoma (Wongkham S et
153	al., 2012). Moreover, CA242 and CEA were more valuable in the diagnosis of
154	cholangiocarcinoma (Ni XG et al., 2005). In this study, it seemed that CA242 was more sensitive
155	and specific than CEA in diagnosing malignant IPMN-B from the ROC curve (date not shown).
156	IPMN-B often presents multiple lesions. Intrahepatic bile duct is the most common site and
157	accounts for about 84% of all the IPMN-B. When bile duct tumors inside and outside the liver
158	accumulate bile ducts in the hilar region often indicate an enhancement of tumor infiltration.
159	Although the progress of bile duct and pancreatic papillary adenomas is relatively slow, the
160	prognosis is often poor when multiple infiltrates appear (Luvira V et al2016).

101	Radical surgical resection is considered the only way to cure one duct mangnancies. An patients
162	in this study underwent radical or palliative surgical treatment. Among them, 13 patients who
163	underwent T-tube drainage and palliative intestinal drainage due to acute obstructive suppurative
164	cholangitis (AOSC) or multiple tumors had a shorter survival time than those who underwent
165	liver resection (p <0.05). The median survival time of patients who achieved R0 resection was
166	significantly longer than those of R1, R2 resection, meanwhile the recurrence rate of patients
167	with R1, R2 resection was significantly higher than that of R0 resection.
168	The original cells of IPNB are considered to be bile duct gland cells, which are distributed along
169	the intrahepatic bile duct and extrahepatic bile ducts, showing a slowly transition from adenoma
170	to adenocarcinoma with fewer lymph nodes or distant metastases. The prognosis of IPMN-B is
171	significantly better than any other types of cholangiocarcinoma (Schlitter AM et al., 2014;
172	Gordon Weeks AN et al., 2016). In this study, IPMN-B often accompanied by biliary stones and
173	it progressed slowly, but once jaundice appeared, it was easy to induce AOSC. So it is necessary
174	for patients with stones or previous history of biliary surgery to perform routine physical
175	examination. Radical surgery could effectively improve the survival rate of patients with IPMN-
176	B. The role of adjuvant treatment for IPMN-B is yet to be established (Yeh TS et al., 2006).
177	Therefore, it is particularly essential to take the optimal surgical method. For multiple tumors
178	involving the hilar area, in order to avoid the occurrence of biliary obstruction, bile-intestinal
179	drainage may be necessary to increase the diameter of bile outflow channels.
180	In this study, there was significantly different of the cumulative survival rate between benign
181	IPMN-B patients and malignant IPMN-B patients. The median survival time (MST) of malignant
182	IPMN-B patients was 40.57±3.015 months, yet MST of benign IPMN-B patients was not

183 reached (P=0.041), which was consistent with the previous studies of IPMN-B survival time 184 (Wang X et al., 2015; Luvira V et al., 2017). **Conclusions** 185 186 In short, preoperative CT and MRI is helpful to improve the detection rate of IPMN-B. 187 Meanwhile, the levels of CEA and CA242 are helpful to identify benign and malignant of IPNM-188 B. Moreover, radical surgical resection could prolong patients' survival, when radical surgery is 189 not available, unobstructed drainage is necessary. Finally, more data should be collected from 190 more patients of IPMN-B and long-term survival follow-up to improve the diagnosis and 191 treatment of IPMN-B. 192 **Acknowledgements** 193 This work was financially supported by following funds: Central Guidance of Local Science and 194 Technology Development Fund (Grant No. 2018CT5008)/ Project of Scientific Research of 195 Traditional Chinese Medicine in Hunan (Grant No. 201809)/ Hunan Provincial Natural Science 196 Foundation of China (Grant No. 2019JJ50320 /2018JJ3296)/ Clinical Research Center for 197 Anesthesiology of ERAS in Hunan Province (No. 2018SK7001). **Conflict of interest** 198 199 The authors declare that they have no financial or commercial conflict of interest. Ethical approval 200 201 The study was approved by the Ethics Committee of the hospital, and all clinical samples were 202 used in accordance with institutional guidelines and the Declaration of Helsinki after obtaining 203 signed informed consent from all participants. References 204

205	Kim HJ, Kim MH, Lee SK, Yoo KS, Park ET, Lim BC, Park HJ, Myung SJ, Seo DW, Min
206	YI. 2000. Mucin-hypersecreting bile duct tumor characterized by a striking homology with
207	an intraductal papillary mucinous tumor (IPMT) of the pancreas. Endoscopy 32:389-93.
208	DOI: 10.1055/s-2000-8996.
209	Paik KY, Heo JS, Choi SH, Choi DW. 2008. Intraductal papillary neoplasm of the bile ducts:
210	the clinical features and surgical outcome of 25 cases. J Surg Oncol 97:508-512.
211	DOI: 10.1002/jso.20994.
212	
213	Nakanuma Y, Kakuda Y, Uesaka K, Miyata T, Yamamoto Y, Fukumura Y, Sato Y, Sasaki
214	M, Harada K, Takase M.2016. Characterization of intraductal papillary neoplasm of bile
215	duct with respect to histopathologic similarities to pancreatic intraductal papillary mucinous
216	neoplasm. Hum Pathol 51: 103-113. DOI: 10.1016/j.humpath.2015.12.022.
217	Hokuto D, Nomi T, Yasuda S, Yoshikawa T, Ishioka K, Yamada T, Akahori T, Nakagawa
218	K, Nagai M, Nakamura K, Obara S, Kanehiro H, Sho M. 2017. Long-term observation
219	and treatment of a widespread intraductal papillary neoplasm of the bile duct extending
220	from the intrapancreatic bile duct to the bilateral intrahepatic bile duct: A case report. Int J
221	Surg Case Rep 38: 166-171. DOI: 10.1016/j.ijscr.2017.07.031.
222	Nakanuma Y, Uesaka K, Miyayama S, Yamaguchi H, Ohtsuka M. 2017. Intraductal
223	neoplasms of the bile duct. A new challenge to biliary tract tumor pathology. Histol
224	Histopathol 32: 1001-1015. DOI: 10.14670/HH-11-892.
225	Fukumura Y, Nakanuma Y, Kakuda Y, Takase M, Yao T. 2017. Clinicopathological features
226	of intraductal papillary neoplasms of the bile duct: a comparison with intraductal papillary

- mucinous neoplasm of the pancreas with reference to subtypes. *Virchows Arch* **471:** 65-76.
- 228 DOI: 10.1007/s00428-017-2144-9.
- Oki H, Hayashida Y, Namimoto T, Aoki T, Korogi Y, Yamashita Y. 2011. Usefulness of
- 230 gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic
- resonance cholangiography for detecting mucin retention in bile ducts: a rare intraductal
- papillary mucinous neoplasm of the bile duct. Jpn J Radiol 29:590-594.
- 233 DOI: 10.1007/s11604-011-0593-7.
- 234 Ying SH, Teng XD, Wang ZM, Wang QD, Zhao YL, Chen F, Xiao WB. 2015. Gd-EOB-
- DTPA-enhanced magnetic resonance imaging for bile duct intraductal papillary mucinous
- 236 neoplasms. World J Gastroenterol 21:7824-7833. DOI: 10.3748/wjg.v21.i25.7824.
- Wongkham S, Silsirivanit A. 2012. State of serum markers for detection of cholangiocarcinoma.
- 238 *Asian Pac J Cancer Prev* **13:**17-27.
- 239 Ni XG, Bai XF, Mao YL, Shao YF, Wu JX, Shan Y, Wang CF, Wang J, Tian YT, Liu Q,
- 240 **Xu DK, Zhao P. 2005.** The clinical value of serum CEA, CA19-9, and CA242 in the
- diagnosis and prognosis of pancreatic cancer. Eur J Surg Oncol 31:164-169.
- 242 DOI: 10.1016/j.ejso.2004.09.007.
- 243 Wang X, Cai YQ, Chen YH, Liu XB. 2015. Biliary tract intraductal papillary mucinous
- neoplasm: report of 19 cases. World J Gastroenterol 21:4261-4267.
- 245 DOI: 10.3748/wjg.v21.i14.4261.
- 246 Luvira V, Pugkhem A, Tipwaratorn T, Chamgramol Y, Pairojkul C, Bhudhisawasdi V.
- 247 **2016.** Simultaneous Extensive Intraductal Papillary Neoplasm of the Bile Duct and
- Pancreas: A Very Rare Entity. Case Rep Surg **2016**: 1518707. DOI: 10.1155/2016/1518707.

249	Schlitter AM, Born D, Bettstetter M, Specht K, Kim-Fuchs C, Riener MO, Jeliazkova P,
250	Sipos B, Siveke JT, Terris B, Zen Y, Schuster T, Höfler H, Perren A, Klöppel G,
251	Esposito I. 2014. Intraductal papillary neoplasms of the bile duct: stepwise progression to
252	carcinoma involves common molecular pathways. Mod Pathol 27: 73-86.
253	DOI: 10.1038/modpathol.2013.112.
254	Gordon-Weeks AN, Jones K, Harriss E, Smith A, Silva M. 2016. Systematic Review and
255	Meta-analysis of Current Experience in Treating IPNB: Clinical and Pathological Correlates
256	Ann Surg 263 : 656-63. DOI: 10.1097/SLA.000000000001426.
257	Yeh TS, Tseng JH, Chiu CT, Liu NJ, Chen TC, Jan YY, Chen MF. 2006. Cholangiographic
258	spectrum of intraductal papillary mucinous neoplasm of the bile ducts. Ann Surg 244:248-
259	53. DOI: 10.1097/01.sla.0000217636.40050.54.
260	Luvira V, Pugkhem A, Bhudhisawasdi V, Pairojkul C, Sathitkarnmanee E, Luvira V,
261	Kamsa-Ard S. 2017. Long-term outcome of surgical resection for intraductal papillary
262	neoplasm of the bile duct. <i>J Gastroenterol Hepatol</i> 32: 527-533. DOI: 10.1111/jgh.13481.
263	

272

Figure legend

265	Figure 1 Imaging of IPNM-B: (A)Typical CT manifestations showed obvious cystic dilatation of
266	the intrahepatic bile duct, a small spot-shaped high-density lesion in the bile duct of the right
267	hepatic lobe. (B) T2 magnetic resonance imaging showed a clear soft vine-like expansion of the
268	intrahepatic bile duct, and a small nodular T2 signal foci in the bile duct. (C)The electronic
269	duodenum showed a common bile duct duodenal fistula by below the duodenum above the
270	duodenal papilla, about 1.0 cm in diameter, full filled with full of jelly-like Slime.
271	Figure 2 The cumulative survival of patients with benign IPNM-B patients and malignant IPNM-

B patients was determined by the Kaplan-Meier method.

Table 1(on next page)

Table 1 Clinicopathological parameters of 58 IPNM-B patients

Table 1 Clinicopathological parameters of 58 IPNM-B patients

Table 1 Clinicopathological parameters of 58 IPNM-B patients

Clinical Factures	Benign		Malignant		2	D 1
Clinical Features	N	%	N	%	— χ2	P value
Age (years)					0.017	0.897
≤60	15	44.12	19	55.88		
>60	11	45.83	13	54.17		
Gender					0.500	0.479
Female	17	48.57	18	51.43		
Male	9	39.13	14	60.87		
Stones					0.012	0.913
Negative	6	46.15	7	53.85		
Positive	20	44.44	25	55.56		
Previous biliary surgery					0.139	0.710
Negative	11	47.83	12	52.17		
Positive	15	42.86	20	57.14		
Jaundice					0.330	0.566
Negative	10	50.00	10	50.00		
Positive	16	42.11	22	57.89		
CA19-9					0.051	0.821
Normal	13	44.83	16	55.17		
High	13	41.94	18	58.06		
CA242					7.083	0.008
Normal	21	56.76	16	43.24		
High	5	21.74	18	78.26		
CEA					8.148	0.004
Normal	25	54.35	21	46.65		
High	1	8.33	11	91.67		
G . 1 . 4 . 1					0.000	0.260
Surgical method radical resection	22	47.83	24	52.17	0.808	0.369
radicai rescettuti	44	7.03	∠+	34.17		

palliative resection 4 33.33 8 66.67

- 2 χ^2 test was used to compare the distribution of clinical features between benign IPNM-B patients
- and malignant IPNM-B patients.
- 4 CA19-9 normal reference range: 0-35 U/ mL.
- 5 CA242 normal reference range: 0-20 U/mL.
- 6 CEA normal reference range: 0-5 ng/ mL.
- 7 A P value < 0.05 was considered significant.

Table 2(on next page)

Table 2 Multivariate analysis of factors contributing to overall survival in 29 malignant IPNM-B patients

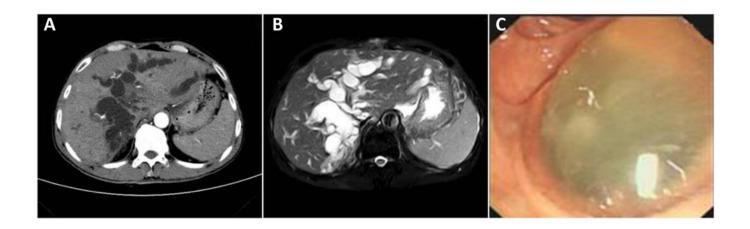
Table 2 Multivariate analysis of factors contributing to overall survival in 29 malignant IPNM-B patients

Table 2 Multivariate analysis of factors contributing to overall survival

2 in 29 malignant IPNM-B patients

Variables	Univariate analysis		Multivariate analysis		
	HR (95% CI)	P value	HR (95% CI)	P value	
Age (<60 vs. ≥60)	0.114(0.002-6.305)	0.413	_		
Gender (female vs. male)	0.166(0.012-2.216)	0.838	_		
Stones (negative vs. positive)	2.007(0.166-12.283)	0.540	_	_	
Jaundice (negative vs. positive)	3.890(0.138-25.550)	0.074	_	_	
CA19-9 (≤35U /L vs.>35U/L)	0.835(0.061-11.335)	0.099	_	_	
CA242 (≤20U /L vs.>20U/L)	0.326(0.063-1.678)	0.116	_	_	
CEA (≤5ng/mL vs.>5 ng/mL)	1.143 (0.086-	0.097	_	_	
	9.181)				
Lymph node metastasis (negative vs. positive)	0.368(0.054-2.519)	0.015	0.442(0.111-1.755)	0.246	
Surgical method (radical resection vs. palliative resection)	5.444(0.337-27.848)	0.018	0.081(0.010-0.673)	0.665	
Differentiation degree (high vs. medium-low)	0.056(0.007-0.451)	0.000	0.06(0.007-0.486)	0.008	

- 3 Univariate and multivariate analysis of prognostic factors in 29 malignant IPNM-B patients
- 4 included in the survival analysis.
- 5 Statistical analyses were performed by Cox proportional hazards regression. A P value < 0.05



- 6 was considered significant. Italic indicates significant P values.
- 7 CI, confidence interval.

Figure 1

Figure 1

Figure 1 Imaging of IPNM-B: (A)Typical CT manifestations showed obvious cystic dilatation of the intrahepatic bile duct, a small spot-shaped high-density lesion in the bile duct of the right hepatic lobe. (B) T2 magnetic resonance imaging showed a clear soft vine-like expansion of the intrahepatic bile duct, and a small nodular T2 signal foci in the bile duct. (C)The electronic duodenum showed a common bile duct duodenal fistula by below the duodenum above the duodenal papilla, about 1.0 cm in diameter, full filled with full of jelly-like Slime.

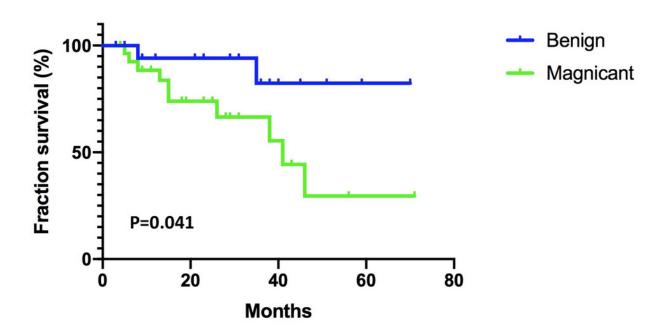


Figure 2

Figure 2

Figure 2 The cumulative survival of patients with benign IPNM-B patients and malignant IPNM-B patients was determined by the Kaplan-Meier method.

