
The tale of springs and streams: How different aquatic
ecosystems impacted the mtDNA population structure of two
riffle beetles in the Western Carpathians
Jana Bozáňová 1, 2 , Zuzana Čiamporová Zaťovičová Corresp., 2 , Fedor Čiampor Jr 2 , Tomasz Mamos 3, 4 , Michał Grabowski 3

1 Department of Ecology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
2 ZooLab, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovak Republic
3 Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology & Environmental Protection, University of Lodz, Lodz, Poland
4 Zoological Institute, University of Basel, Basel, Switzerland

Corresponding Author: Zuzana Čiamporová Zaťovičová
Email address: zuzana.zatovicova@savba.sk

The Western Carpathians are a particularly interesting part of the Carpathian Arc.
According to recent molecular data upon aquatic and terrestrial taxa, this mountain area is
an important biodiversity hotspot of Europe. Moreover, the W Carpathians include rich
systems of karst springs inhabited by specific fauna, where molecular diversity and
phylogeographic patterns are yet to be fully explored. Our study aims to compare
population genetic structure and molecular diversity of two related and commonly co-
occurring riffle beetles, Elmis aenea (PWJ Müller, 1806) and Limnius perrisi (Dufour, 1843)
in the springs and streams of the W Carpathians using the mitochondrial DNA barcoding
fragment of the cytochrome c oxidase subunit I gene (COI). The relatively stable thermal
and chemical conditions of springs throughout unfavourable climatic settings make these
highly specific lotic systems potentially ideal for a long-term survival of some aquatic
biota. Populations of both elmid species were relatively homogeneous genetically, with a
single dominant haplotype. However, we revealed that E. aenea significantly dominated in
the springs, while L. perrisi preferred streams. Relative isolation of the springs and their
stable conditions were reflected in significantly higher molecular diversity of the E. aenea
population in comparison to L. perrisi. The results of Bayesian Skyline Plot analysis also
indicated the exceptional position of springs regarding maintaining the population size of
E. aenea. On the other hand, it seems that streams in the W Carpathians provide more
effective dispersal channels for L. perrisi, whose population expanded much earlier
compared to E. aenea. Present study points out that different demographic histories of
these two closely related elmid species are manifested by their different habitat
preference and molecular diversity.
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21 Abstract

22 The Western Carpathians are a particularly interesting part of the Carpathian Arc. According to 
23 recent molecular data upon aquatic and terrestrial taxa, this mountain area is an important 
24 biodiversity hotspot of Europe. Moreover, the W Carpathians include rich systems of karst 
25 springs inhabited by specific fauna, where molecular diversity and phylogeographic patterns are 
26 yet to be fully explored. Our study aims to compare population genetic structure and molecular 
27 diversity of two related and commonly co-occurring riffle beetles, Elmis aenea (PWJ Müller, 
28 1806) and Limnius perrisi (Dufour, 1843) in the springs and streams of the W Carpathians using 
29 the mitochondrial DNA barcoding fragment of  the cytochrome c oxidase subunit I gene (COI). 
30 The relatively stable thermal and chemical conditions of springs throughout unfavourable 
31 climatic settings make these highly specific lotic systems potentially ideal for a long-term 
32 survival of some aquatic biota. Populations of both elmid species were relatively homogeneous 
33 genetically, with a single dominant haplotype. However, we revealed that E. aenea significantly 
34 dominated in the springs, while L. perrisi preferred streams. Relative isolation of the springs and 
35 their stable conditions were reflected in significantly higher molecular diversity of the E. aenea 
36 population in comparison to L. perrisi. The results of Bayesian Skyline Plot analysis also 
37 indicated the exceptional position of springs regarding maintaining the population size of E. 

38 aenea. On the other hand, it seems that streams in the W Carpathians provide more effective 
39 dispersal channels for L. perrisi, whose population expanded much earlier compared to E. aenea. 
40 Present study points out that different demographic histories of these two closely related elmid 
41 species are manifested by their different habitat preference and molecular diversity.
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42

43 Introduction

44 Prolonged isolation of populations influences their genetic diversity and can be considered as the 
45 main force shaping genetic structure of aquatic species in Europe (Bálint et al., 2011; Alp et al., 
46 2012; Theissinger et al., 2012). Many mountain areas have often formed isolated populations of 
47 aquatic invertebrates within and/or among geomorphological units/subunits (Engelhardt, Haase 
48 & Pauls, 2011; Davis et al., 2013; Mamos et al., 2016; Čiamporová-Zaťovičová & Čiampor Jr, 
49 2017; Šípošová, Čiamporová-Zaťovičová & Čiampor Jr, 2017; Copilaș-Ciocianu et al., 2018).
50 The W Carpathians are considered a biodiversity hotspot for a wide range of aquatic and 
51 terrestrial taxa (Neumann et al., 2005; Kotlík et al., 2006; Theissinger et al., 2012; Vörös et al., 
52 2016; Copilaș-Ciocianu et al., 2017; Juřičková et al., 2017). However, the biodiversity of the W 
53 Carpathians is still underexplored, especially in terms of genetic diversity and population 
54 structure of aquatic species. In this context, studies upon the phylogeography of aquatic biota 
55 should be more focused on springs, or more generally, headwaters that are now heavily 
56 understudied compared to other aquatic biotopes.
57 Springs support unique macroinvertebrate communities that are found nowhere else in a 
58 catchment (Lewin et al., 2015). They are characterized by chemical, physical, and trophic 
59 constancy over several geological periods (Minshall & Winger, 1968; Odum, 1971; Butler & 
60 Hobbs, 1982; Cushing & Wolf, 1984; Glazier & Gooch, 1987; Pringle et al., 1988; Gooch & 
61 Glazier, 1991; Orendt, 2000; Wood et al., 2005; Meyer et al., 2007), which in turn provided a 
62 stable environment for aquatic invertebrates during adverse climatic conditions (Malicky, 2006; 
63 Ujvárosi et al., 2010). Springs function as ecotones between the surface and underground waters, 
64 which makes them an ecologically significant habitat (Gibert, 1991). 
65 Accordingly, the main objective of our study is to compare genetic population structure and 
66 diversity patterns of two aquatic beetle species of Elmidae family, Elmis aenea (PWJ Müller, 
67 1806) and Limnius perrisi (Dufour, 1843) in springs and streams of the W Carpathians. Said 
68 species are relatively closely related and commonly co-occur, yet in terms of population genetics 
69 represent a generally understudied family of freshwater beetles. Limited dispersal abilities, high 
70 habitat specificity, and more or less fragmented distribution make Elmidae an ideal taxon for 
71 studying genetic diversification through many geographic regions. Both studied species are 
72 rheophilic, oligo-stenotherm, and typical inhabitants of epirhithral streams at higher altitudes 
73 (Moog & Jäch, 1995; García-Criado, Fernández-Aláez & Fernández-Aláez, 1999). They are 
74 relatively widespread, which guarantees the detection of possible gene flow among 
75 geomorphological units/subunits of W Carpathians.
76 Our study aims to answer the following questions: (a) are the spring subpopulations genetically 
77 more variable when compared to subpopulations in the streams?; (b) does genetic structuring of 
78 populations reflect population size change?; and (c) are there interspecific differences in the 
79 population genetic structure among these related beetle species?
80

81 Materials & Methods

82 Study area

83 The Carpathians form an arc of mountains stretching across Central and Eastern Europe, with its 
84 main geomorphological units being the Western and Southeastern Carpathians (Kondracki, 
85 1989). For this study, we focused on the W Carpathians representing the northernmost segment 
86 of the Alpine-Carpathian mountain chain (Fig. 1A). The W Carpathians reach medium altitudes 
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87 (ranging from 500 to 1300 m a.s.l.), only a few of their ranges exceed 1500 m a.s.l.; geologically 
88 the mountain system is characteristic by interactions of rock folding and horizontal shifts (Bielik, 
89 1999). Differences in altitude and in the geomorphological relief determine the precipitation in 
90 the area. In general, W Carpathian rivers have a rain-snow regime with floods in spring and 
91 summer. 
92 Investigated localities (36 springs and 37 streams) are situated mainly on the territory of the 
93 Slovak Republic, partially in the Czech Republic and Poland; in the geomorphological 
94 units/subunits of the Inner and Outer Western Carpathians. The exceptions are Vihorlat Mts 
95 (VM) being part of the Inner Eastern Carpathians and Poloniny Mts (PM) belonging to the Outer 
96 Eastern Carpathians (Fig. 1B, Table S1). 
97

98 Sampling and morphological identification

99 A qualitative sampling of benthic invertebrates took place in 2016 and 2017. The sampling was 
100 performed in the framework of a broader research, which was permitted by The District Office, 
101 Department of Environmental Care Trenčín (Slovakia) No: OU-TN-OSZP1-2015/001937-12/Du. 
102 A sampling of macrozoobenthos was carried out by a multi-habitat kick-sampling technique 
103 (Frost, 1971) using a hydrobiological hand-net with a mesh size of 0.5 mm. Organic material was 
104 fixed in 96 % ethanol directly in the field. In the laboratory, the invertebrates were picked off, 
105 sorted into higher taxonomic groups using stereomicroscope, prefixed with absolute ethanol and 
106 stored in a freezer at -25°C. Elmidae beetles selected for molecular analysis were 
107 morphologically identified using the available determination keys (Więźlak, 1986; Jäch, 1992).
108

109 DNA extraction and PCR amplification

110 Total DNA was extracted from the legs or abdominal tissue of 560 individuals (297 individuals 
111 of E. aenea; 263 individuals of L. perrisi) using the Chelex protocol (Casquet, Thebaud & 
112 Gillespie, 2012), followed by PCR amplification of ca. 650 bp-long barcoding fragment of the 
113 mitochondrial cytochrome c oxidase subunit I (COI) using the primer pair LCO1490 and 
114 HCO2198 (Folmer et al., 1994). The PCR was performed in a total volume of 25 μl containing 5 
115 μl of 5x DreamTaq™ Buffer, 1.5 μl of Mg+2 (25 mM), 0.5 μl of each primer (concentration 5 
116 mM), 0.5 μl of dNTP Mix (20 mM), 0.125 μl (0.625 U) DreamTaq™DNA Polymerase, 11.875 
117 μl ultra-pure H2O and 5 μl of DNA template. The PCR cycling consisted of a 2-min initial 
118 denaturation at 94 °C, followed by 40 cycles of 94 °C (40 s) denaturation, 46 °C (40 s) annealing 
119 and 72 °C (1 min) extension and termination at 72 °C (10 min) for a final extension. A 4 μl 
120 aliquot of the PCR products were visualized by GoldView (Solarbio) in electrophoresis on a 1 % 
121 agarose gel and GelLogic imaging equipment to check PCR product quality and length. The PCR 
122 products were purified with Exo-FastAP Thermo Scientific and were sent for sequencing to 
123 Macrogen Europe Inc., Amsterdam.
124

125 Data analyses

126 To determine whether the different habitat preference (springs, streams) between the studied 
127 species is statistically significant, we used Fisher's exact tests using the fisher.test function in R v 
128 4.0.2 (http://www.r-project.org). It was performed for testing the independence of rows (species: 
129 E. aenea, L. perrisi) and columns (springs, streams) in a 2x2 contingency table. Odds ratio and 
130 p-value were computed. P-values <0.05 were considered statistically significant. We used 
131 analysis of variance (ANOVA) to test significance of the influence of altitude on the presence of 
132 species in different habitats (springs, streams). ANOVA test was performed in R v 4.0.2 
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133 (http://www.r-project.org). All R analysis were carried out using RStudio (RStudio Team. 2020). 
134 The altitude range of E. aenea and L. perrisi is shown with boxplots.
135 The obtained sequences were edited using SEQUENCHER v5.1 software and aligned using the 
136 MUSCLE algorithm (Edgar, 2004) in MEGA v7 (Kumar, Stecher & Tamura, 2016). In total, our 
137 study included 315 sequences of E. aenea species, of which 276 were from the Western 
138 Carpathians and 269 sequences of L. perrisi, of which 245 were from the Western Carpathians. 
139 We used 39 sequences of E. aenea (12 - Romania, 9 - Bulgaria, 15 - Germany, 2 - Finland, 1 - 
140 France) and 24 of L. perrisi (16 - Romania, 2 - Bulgaria, 6 - Germany) outside of W Carpathians 
141 for haplotype networks. Sequences from Germany, Finland and France were downloaded from 
142 BOLD (www.boldsystems.org) and are included in datasets DS-SKLIMPER            (DOI: 
143 dx.doi.org/10.5883/DS-SKLIMPER), DS-SKELMAEN (DOI: dx.doi.org/10.5883/ DS-
144 SKELMAEN). For the purposes of the paper, individuals (sequences) from each locality of W 
145 Carpathians are defined as subpopulation regardless of whether the locality is a spring or stream 
146 (Table S1).
147 The haplotype data files and the diversity indices were generated in DnaSP v5.10 (Librado & 
148 Rozas, 2009). We also calculated haplotype diversity (H), nucleotide diversity (π), number of 
149 polymorphic sites (S) and average number of nucleotide differences (K) per subpopulation of 
150 both species using DnaSP v5.10. Subsequently, a statistical comparison of molecular genetic 
151 indices between species, based on p-values, was computed with the Wilcoxon signed rank test 
152 for paired data in R v 4.0.2 (http://www.r-project.org). The results are presented by boxplots with 
153 p-values.
154 Haplotype networks were reconstructed using the median-joining method (MJN) in PopART 
155 v1.7 (Leigh & Bryant, 2015). The networks include some sequences outside the W Carpathians 
156 to explain the phylogenetic relationships and haplotype distribution of E. aenea and L. perrisi in 
157 the broader context of the investigated localities. 
158 The population structure of both species was characterized by the analysis of molecular variance 
159 (AMOVA) and fixation indices (FST) using Arlequin 3.5 (Excoffier & Lischer, 2010). The 
160 AMOVA was used to estimate whether the observed genetic diversity may be attributed to the 
161 geographical partitioning of elmid beetle populations in three levels: among geomorphological 
162 subunits, among subpopulations within subunits and within subpopulations. For the consistency 
163 of the study, we also performed AMOVA for both species based on the partitioning of the data 
164 according to river basins. The results and map showing the river basins are included in the 
165 supplementary materials. 
166 FST index is a measure of the genetic differentiation among subpopulations of individual localities 
167 by haplotype frequencies. 265 E. aenea sequences (42 localities - 29 springs, 13 streams) and 
168 136 L. perrisi sequences (36 localities - 5 springs, 31 streams) were included to calculate the FST 
169 index. Localities with 1 sequence were excluded from the calculation. To test the significance of 
170 covariance components and fixation indices, 1000 permutations were performed. 
171 To test if spatial distance is structuring the molecular diversity we run two types of isolation by 
172 distance tests: Mantel test (Mantel, 1967) and general spatial autocorrelation test (see Miller, 
173 2005) using the program Alleles in Space (Miller, 2005). Both tests analyse correlation between 
174 spatial and molecular distance, to assess the significance tests were run with 1000 permutations. 
175 Further, the demographic and spatial dynamics of studied beetle populations were examined by 
176 the mismatch distribution analysis in Arlequin v3.5. The recent demographic expansion in both 
177 species was tested with Tajima’s D (Tajima, 1989), Fu’s Fs (Fu, 1997) and Fu and Li´s D (Fu & 
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178 Li, 1993) tests of selective neutrality and population stability, performed in DnaSP. The 
179 significance of these tests was assessed with 10000 permutations.
180 The fluctuations of demography of E. aenea and L. perrisi in the W Carpathians over time were 
181 identified with the extended Bayesian Skyline Plot (eBSP) in BEAST v2.6.2 software package 
182 (Bouckaert et al., 2019). The strict molecular clock was calibrated with the standard 
183 mitochondrial rate for arthropod COI equal to 0.0115 substitutions/site/Myr (Brower, 1994). The 
184 models of molecular evolution were set up through bModelTest (Bouckaert & Drummond, 
185 2017). For comparison, two runs of Monte Carlo Markov Chains (MCMC) were performed for 
186 each species, each 40 million iterations long and sampled every 10000 iterations for eBSP log. 
187 The runs were examined in Tracer v1.7 (Rambaut et al., 2018) and all the parameters reached the 
188 effective sampling size (ESS) above 200. After removal of 10% burn-in, the eBSP plots were 
189 produced using R v 4.0.2 software (http://www.r-project.org). Both plots for each species were 
190 identical therefore only one is presented.
191 All analysed sequences with GenBank accession numbers are available within two BOLD 
192 datasets: DS-SKLIMPER for L. perrisi (DOI: dx.doi.org/10.5883/DS-SKLIMPER) and DS-
193 SKELMAEN for E. aenea (DOI: dx.doi.org/10.5883/DS-SKELMAEN).
194

195 Results

196 The distribution of E. aenea and L. perrisi suggests statistically significant different habitat 
197 preferences between these species in the W Carpathians (p<0.0001; Fisher’s exact test). E. aenea 
198 has a rather wide distribution in karst springs (31 sites), while it is less widespread in streams (16 
199 sites). On the contrary, L. perrisi was found only in eight springs, but in 30 streams. L. perrisi 

200 was also found in four streams of VM (Inner Eastern Carpathians) and in one stream of PM 
201 (Outer Eastern Carpathians), while E. aenea was not recorded in these geomorphological 
202 subunits. Both species co-occurred only in three springs and 14 streams from the total of 73 sites 
203 sampled in the W Carpathians (Table S1). There was also a significant effect of altitude on the 
204 presence of both species registered, but the dependence between altitude and habitat type (spring 
205 and stream) has not been demonstrated. The altitude range of both elmid species is shown by 
206 boxplots in Fig. 1C. 
207 The haplotype distribution within investigated area shows that local subpopulations of the two 
208 elmid species are dominated, each by one widespread haplotype (Figs 2A, 3A). Haplotype 
209 networks (Figs 2B, 3B) also showed the similar haplotype pattern i.e., star-like topology with 
210 a central most-frequent haplotype. However, statistical comparisons of molecular genetic 
211 indices: haplotype diversity (H), nucleotide diversity (π), number of polymorphic sites (S), and 
212 average number of nucleotide differences (K) showed significant differences between the studied 
213 species. The population of E. aenea was significantly more diverse than L. perrisi (P<0.05, 
214 Wilcoxon signed-rank test, Fig. 4).
215 The W Carpathian population of E. aenea shares haplotypes with locations in Romania, 
216 Bulgaria, Finland, Germany and France. 13 COI haplotypes of E. aenea were identified within 
217 276 individuals collected from 47 localities in the W Carpathians (Fig. 2A). The haplotype 
218 diversity was 0.336. Considerable genetic homogeneity of the E. aenea population in the W 
219 Carpathians resulted from the wide distribution of the dominant haplotype Ea1. The haplotype 
220 map (Fig. 2B) revealed that the majority of haplotypes present in southern part of the 
221 Carpathians Arc (Romania) and the haplotypes of the Balkan region (Bulgaria) were not 
222 recorded from the W Carpathians. The exception was Ea14 shared between one stream in 
223 Bulgaria and one spring (V050) in Slovakia (SOM). Individuals from Germany shared the 
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224 haplotype Ea3 with a single locality in the geomorphological unit FTA (V070). In addition to 
225 dominant haplotype Ea1, another five haplotypes were found in FTA and seven in SOM. 
226 Haplotypes Ea5 and Ea11 were private for W Carpathians and each occurred in one spring of 
227 FTA (V009, V086). The private haplotypes of SOM included Ea7, Ea12 and Ea13, while all of 
228 them were located in the springs of SOM1 subunit (V038, V048). Besides that, one spring of 
229 SOM1 (V043) shared haplotype Ea8 with the spring of the geomorphological unit FTA (V020). 
230 In geomorphological unit WB, four haplotypes were found, while Ea9 was found only at two 
231 localities (CZ03, CZ05). On the contrary, the haplotype Ea4 was common in the SOM, FTA, CB 
232 and in Romania (Figs 2A, 2B).
233 The W Carpathians population of L. perrisi was genetically more homogeneous. Eight 
234 haplotypes with a haplotype diversity of 0.007 were found at 43 localities (245 sequences, Fig. 
235 3A). A group of five haplotypes (Lp5, Lp6, Lp7, Lp8, Lp9) recorded in Romania and Bulgaria 
236 was highly divergent from the group found in the W Carpathians (Fig. 3B). Haplotype Lp1 
237 dominated in all geomorphological units of the W Carpathians; all German sequences also 
238 belonged to this haplotype. The presence of private haplotypes was lower compared to E. aenea: 
239 Lp14 from the one spring of SOM (V088), Lp10 in a stream of WB (CZ06) and Lp11 from one 
240 spring of geomorphological unit FTA (V070). Besides that, two more haplotypes (Lp3, Lp13) 
241 were present in the FTA. Lp13 was shared with the locality of the different geomorphological 
242 unit SMC (SEL1). Lp3 was also present in unit WB, in addition to FTA (BEL3). The haplotype 
243 Lp2 was detected in a stream (CZ01) of WB and occurred also in one stream (KRV1) located in 
244 VM (Figs 3A, 3B).
245 The AMOVA showed that most of the observed molecular variance in the W Carpathian 
246 populations of both elmid species is generated predominantly within subpopulations (single 
247 localities). However, in E. aenea, the molecular variation among subpopulations within 
248 geomorphological subunits is more than twice (34.99 %) compared to L. perrisi (12.86 %) 
249 (Table 1). The same results were provided by the AMOVA according to the river basins, where 
250 there is also almost no variation associated with the above subpopulation (locality) level (Fig. S1, 
251 Table S2).
252 The FST values indicate different levels of genetic differentiation between the E. aenea localities 0 
253 - 0.8(Fig. 5A) compared to L. perrisi with 0 - 0.38 (Fig. 5B). The FST values of E. aenea suggest 
254 that springs V009 (FTA1 - Little Carpathians), V038, and V048 (SOM1 - Slovak Karst) have 
255 relatively high pairwise differences in allele frequency, but some level of genetic connectivity 
256 cannot be refused. Pairwise comparisons of differences in the frequency of alleles that include 
257 mentioned springs are largely significant (P<0.05). On the other hand, none of L. perrisi FST 
258 values are statistically significant.
259 Tests of isolation by distance between springs of both species revealed a positive correlation 
260 (Mantel test: E. aenea - r = 0.313, P = 0.000; L. perrisi - r = 0.4122, P = 0.039). Although, only 
261 marginally positive but statistically significant correlations suggest a slight structuring effect of 
262 the geographical distance among springs in both species. Additionally in case of E. aenea, the 
263 spatial autocorrelation was also significant (P = 0.0009, Fig. S2), for L. perrisi it was impossible 
264 to calculate it due to lack of data. The genetic distance of E. aenea and L. perrisi in streams was 
265 not significantly correlated with the geographic distance (Mantel test: r = -0.071, P = 0.153; r = 
266 0.0574, P = 0.115).
267 Both species were characterized by the statistically significant, negative Fu´s Fs, Tajima´s D and 
268 Fu and Li´s D neutrality test values (Table 2). This indicates a recent change in population size 
269 of both species. The mismatch distribution analysis suggested a population expansion event for 
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270 both species, which was indicated by the unimodal shape of the mismatch distribution plot, a 
271 small SSD value, and a non-significant p-value (Fig. 6). The eBSP showed a signal of population 
272 growth in both species, although the time and character was different. The W Carpathians 

273 population of E. aenea (Fig. 7A) started to expand demographically roughly ca. 3000 - 2500 
274 years ago, whereas the population of L. perrisi expanded relatively sharply around 8000 years 
275 ago (Fig. 7B).
276

277 Discussion
278 This study was focused on the two oligo-stenotherm riffle beetles, Elmis aenea and Limnius 

279 perrisi (Elmidae). The E. aenea occurred predominantly in karst springs and was rarely found in 
280 streams of the W Carpathians, while the distributional pattern of L. perrisi was opposite. This 
281 contradicts the previous claims about their common occurrence and similar biotope preference 
282 (Moog & Jäch, 1995; García-Criado, Fernández-Aláez & Fernández-Aláez, 1999). Differences in 
283 distribution probably can be also explained by altitude, flow type or different ecological demands 
284 (Illies & Botosaneanu, 1963). However, according to several studies, E. aenea is more sensitive 
285 to harsher conditions resulting from changes of the aquatic environment, manifested, for 
286 example, by the loss of macrophytes and moss (Maitland, 1967; Bradley & Ormerod, 2001; 
287 Hoffsten, 2003). These findings may explain much greater affinity of E. aenea to springs that 
288 generally, with respect to chemical, physical and trophic conditions, are more stable ecosystems 
289 compared to other lotic habitats (Minshall & Winger, 1968; Odum, 1971; Butler & Hobbs, 1982; 
290 Cushing & Wolf, 1984; Glazier & Gooch, 1987; Gooch & Glazier, 1991). This suggests that 
291 karst springs ensured a suitable environment for survival of some aquatic species even during the 
292 ice age (Thorup & Lindegaard, 1977). It supports the dinodal hypothesis (Malicky, 1983; 
293 Malicky, 2000) proposing that suitable aquatic habitats, persisted throughout the Pleistocene 
294 within the periglacial area (dinodal biome), providing suitable conditions for the survival of 
295 specialized oligo-stenotherm communities in Central Europe. However, based on our data from 
296 the W Carpathians only, the dinodal hypothesis cannot be unequivocally confirmed or refuted, 
297 but it clearly opens up new questions in the field of historical-molecular patterns of elmid species 
298 in the W Carpathians.
299 Different results of the Bayesian Skyline Plot analyses between E. aenea and L. perrisi 

300 confirmed an exceptional position of the springs. The springs could have a special status in terms 
301 of providing stable environmental conditions irrespective of the climatic changes even during the 
302 glacial and interglacial periods which did not provoke a dramatic decline or increase of the E. 

303 aenea population size in the W Carpathians. In contrast, the populations of L. perrisi, occurring 
304 predominantly in streams, began to expand rapidly after the LGP. At the beginning of the 
305 Holocene (about 11.5 – 7.5 ka), a thermal maximum was recorded, which probably enhanced the 
306 expansion of species (Dabkowski et al., 2019), which corresponds to sudden expansion of L. 

307 perrisi. At that time, local W Carpathian glaciers disappeared completely (Lindner et al., 2003), 
308 which led to opening of new migration routes and likely also accelerated species dispersal. 
309 Early-Holocene warming is thought to be a major driving force for population divergence in 
310 temperate species (Hewitt, 1999). On the other hand, differences in genetic diversity among 
311 species, as recorded between E. aenea and L. perrisi may be also influenced by variation in 
312 diversification rates (Ricklefs, 2007; Stadler, 2011).
313 The E. aenea population has occurred in springs at a significantly higher rate, corresponding to 
314 its higher molecular diversity compared to L. perrisi that prefers streams and its populations are 
315 much more uniform. In line with our results, populations of two cofamilial caddisfly species in 
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316 south-eastern UK showed contrasting genetic patterns. Polycentropus flavomaculatus showed 
317 much more pronounced genetic structure than Plectrocnemia conspersa in the same region 
318 (Wilcock et al., 2007). In another study on caddisflies of the Central European highlands, Drusus 

319 discolor contained three times more haplotypes than Hydropsyche tenuis. Such findings suggest 
320 that the isolation of D. discolor populations in Central Europe is stronger and persists for a 
321 longer time than in H. tenuis (Lehrian, Pauls & Hasse, 2009). Both cases, similarly with species 
322 studied herein, confirm that related and co-occurring species may currently have significantly 
323 different patterns of molecular diversity, reflecting the different phylogeographical histories of 
324 the species and their different autecological traits (Wilcock et al., 2007; Lehrian, Pauls & Haase, 
325 2009). 
326 Compared to aquatic species occurring in streams, the species preferring springs are generally 
327 unable to spread extensively and likely persisted at the foothills of mountains during unfavorable 
328 climatic conditions (Schmitt, 2007). As a consequence, many of the geomorphological units of 
329 the European mountain systems have their own genetic lineages or at least private haplotypes. In 
330 our study, we recorded significantly higher values of molecular diversity and higher number of 
331 private haplotypes in E. aenea. In addition, analysis of spatial autocorrelation for E. aenea in 
332 springs was significant and consistent with these results. This suggests subpopulations in springs 
333 persisted in the study area for a longer time, and are relatively isolated. Conversely, stream 
334 subpopulations are more homogeneous and smaller, suggesting that they are probably more 
335 recent and are being re-created when environmental conditions improve.  Valuable examples 
336 documenting the importance of the W Carpathians in terms of biodiversity richness were recent 
337 discoveries of local endemism of cold-adapted gammarids from Gammarus balcanicus (Mamos 
338 et al 2014; Mamos et al., 2016) and Gammarus fossarum species complexes (Copilaș-Ciocianu 
339 et al., 2017) or caddisfly species Drusus discolor. The latter persisted in the Tatra Mts in 
340 numerous refugia over multiple glacial cycles, allowing many local endemic clades to form 
341 (Pauls, Lumbsch & Haase, 2006). In the case of E. aenea, the two localities in the Slovak Ore 
342 Mts (SOM: V038, V048) and one locality in the Fatra-Tatra area (FTA: V009) had remarkably 
343 high FST values, suggesting that some W Carpathian springs could constitute Pleistocene refugia. 
344 According to several studies, the role of the W Carpathians as a glacial refugium (Jamřichová, 
345 Potůčková & Horsák, 2014; Mráz & Ronikier, 2016; Jamřichová, Petr & Jiménez-Alfaro, 2017) 
346 for various species or genetic lineages is undoubted (Pinceel et al., 2005; Magri et al., 2006; 
347 Wielstra, Babik & Arntzen, 2015; Mamos et al., 2016; Copilaș-Ciocianu et al., 2017). However, 
348 to test whether this hypothesis also applies to Elmidae riffle beetles requires further study in a 
349 broader geographical context.
350 Overall, the genetic differences between populations from different geomorphological subunits 
351 of the W Carpathians were very low in both elmid species. However, higher FST values in E. 

352 aenea correlated with the results of AMOVA. Genetic differentiation among E. aenea 

353 subpopulations within geomorphological subunits was relatively high (34.99 %). This indicates 
354 that there are some well pronounced differences in genetic composition among most of the 
355 spring subpopulations of E. aenea within each geographical unit. Similar results emerged from 
356 the study on the black fly Prosimulium neomacropyga in the US Southern Rockies ecoregion 
357 with alpine tundra streams, where the differences among streams within the region were 24.58 % 
358 (Finn et al., 2006). In both elmid species, only a single haplotype was abundant and widespread 
359 along the W Carpathians, surrounded by several rare peripheral haplotypes in a star-shaped 
360 topology. Similarly, lack of deeper genetic population structure was also found in the W 
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361 Carpathian populations of the blackfly Simulium degrangei (Jedlička et al., 2012). The 
362 maintenance of intraspecific genetic diversity is generally very important for the adaptation 
363 potential and long-term survival of species (Spielman, Brook & Frankham, 2004; Frankham, 
364 2005). However, prolonged persistence is possible even despite low levels of genetic diversity 
365 (Johnson et al., 2009). Relatively homogeneous population patterns of both studied riffle beetles 
366 may reflect their short history in the W Carpathians. The comparatively low genetic 
367 differentiation among populations of trickle midges (Diptera: Thaumaleidae) in Northern Europe 
368 was also explained by relatively recent, possibly post-glacial dispersal (Haubrock et al., 2017).
369

370 Conclusions

371 In conclusion, it seems that different habitat preferences of the two related aquatic beetle species 
372 E. aenea and L. perrisi preserved their similar population-geographical patterns, but shifted their 
373 molecular diversity, as well as the time and character of their distribution in the W Carpathians. 
374 E. aenea, with higher molecular diversity, occurred mainly in the springs compared to the 
375 genetically more homogenous population of L. perrisi that was found mostly in streams. These 
376 findings support the attribution of the W Carpathian springs to potential refugia with a suitable 
377 environment allowing for survival of aquatic biota even during the unfavorable climatic 
378 conditions through geological ages and maintaining or even developing its intraspecific genetic 
379 diversity. In addition, an isolation of the W Carpathians springs is also indicated by the 
380 significant results of Mantel and spatial autocorrelation analysis in E. aenea. This study added 
381 new information about understudied riffle beetle fauna of one of the world's biodiversity 
382 hotspots, the W Carpathians. However, further studies should include more samples from 
383 Southern and Eastern Europe in order to understand the holistic biogeographic pattern of the 
384 target species and spring fauna in general.
385
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Table 1(on next page)

Analysis of molecular variance (AMOVA) calculated from 273 COI mtDNA sequences of
Elmis aenea and 245 COI mtDNA sequences of Limnius perrisi from studied springs and
streams in the W Carpathians.

(Subunits = geomorphological subunits. The subpopulation is defined as individuals of one
sampling site, Tab. S1).
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E. aenea

Source of variation df1 SS2 Variance components% of variation F value p-value

Among subunits 10 5.704 0.00206 1.02 FCT = 0.010> 0.352

Among subpopulations within subunits 36 19.768 0.07080 34.99 FSC = 0.353> 0.000

Within subpopulations 23029.784 0.12950 64 FST = 0.360< 0.000

L. perrisi

Source of variation df1 SS2 Variance components% of variation F value p-value

Among subunits 12 0.657 -0.00148 -3.16 FCT = 0.010> 0.335

Among subpopulations within subunits 29 2.145 0.00602 12.86 FSC = 0.125> 0.097

Within subpopulations 192 8.117 0.04227 90.3 FST = 0.097 < 0.074

1 df1 Degree of freedom, SS2 Sum of squares

2

3

4

PeerJ reviewing PDF | (2020:05:49199:2:1:NEW 3 Sep 2020)

Manuscript to be reviewed



Table 2(on next page)

Values of neutrality tests (Fu´s Fs, Tajima´s D, Fu and Li´s D test with p-values for Elmis
aenea and Limnius perrisi mtDNA COI sequences.
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Species Fu´s Fs test (p-value) Tajima´s D test (p-value) Fu and Li´s D test (p-value)

Elmis aenea -17.331 (0.000) -2.047 (0.001) -3.323 (< 0.02)

Limnius perrisi -14.064 (0.000) -2.004 (0.002) -3.320 (< 0.02)

1
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Figure 1
Maps of the studied area and sampling sites.

(A) Map of the studied area within the Carpathian Arc and (B) the 73 sampling sites (36
springs and 37 streams) divided into eight geomorphological units represented by different
fill colors.(C) The altitude range of both elmid species. The boxplots show the distribution of
the altitude above sea level for Elmis aenea and Limnius perrisi. The boxes represent the
interquartile distances (IQD), while the centre lines through each box show the medians. The
dot indicates outliers and the whiskers extend to the extreme values of the data, calculated
as ±1.5 x IQD from the median. ANOVA analysis supported the dependence of species
presence on altitude (P< 0.05). Abbreviations: Slovakia (SK), Hungary (H), Ukraine (UA),
Poland (PL), Czech Republic (CZ) and Austria (AU).

PeerJ reviewing PDF | (2020:05:49199:2:1:NEW 3 Sep 2020)

Manuscript to be reviewed



Figure 2
Elmis aenea sampling sites with mtDNA (COI) haplotype distribution and haplotype
network.

(A) Investigated springs (31) and streams (16) with 13 mtDNA haplotypes distribution.
Haplotypes are colours follow the Haplotype legend. Geomorphological units are represented
by different fill colors according to the Legend. (B) Median-Joining network showing the
relationships among haplotypes Ea1 - Ea20 (including available haplotypes outside W
Carpathians). Sequences from Romania (12 sequences), Bulgaria (9 sequences), Finland (2
sequences), Germany (15 sequences) and France (1 sequence) are used for suggesting
possible phylogenetic relationships and haplotype distribution of the W Carpathian
haplotypes in the broader context . Circle fill patterns follow the Legend. Mutational steps are
indicated with bars, small black dots represent undetected haplotypes.
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Figure 3
Limnius perrisi sampling sites with mtDNA (COI) haplotype distribution and haplotype
network.

(A) Investigated springs (8) and streams (35) of L. perrisi with 7 mtDNA haplotypes
distribution. Haplotypes are colours follow the Haplotype legend. Geomorphological units are
represented by different fill colors according to the Legend. (B) Median-Joining network
showing the relationships among haplotypes Lp1 - Lp13. Sequences from Romania (16
sequences), Bulgaria (2 sequences) and Germany (6 sequences) are used for suggesting the
possible phylogenetic relationships and haplotype distribution of the W Carpathian
haplotypes in the broader context. Circle fill patterns follow the Legend. Mutational steps are
indicated with bars, small black dots represent undetected haplotypes.
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Figure 4
Comparison of molecular diversity indices between Elmis aenea and Limnius perrisi
populations in Western Carpathians.

Box plots show (A) the haplotype diversity, (B) nucleotide diversity, (C) number of
polymorphic sites and (D) average number of nucleotide differences. The statistical
significance was computed with the Wilcoxon signed rank test for paired data (p-value:
above each box plot).
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Figure 5
Heat map of pairwise FST values among the studied sites (subpopulations) of (A) Elmis
aenea and (B) Limnius perrisi in the W Carpathians.

Darker shades of blue rectangles indicate higher values of FST (as displayed on the bar right

of the heat map). White dots indicate FST p-values significantly different from zero (P<0.05).

The spring localities are distinguished by the blue color of the font.
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Figure 6
Mismatch distribution analysis of (A, B) Elmis aenea and (C, D) Limnius perrisi of the W
Carpathian populations based on mtDNA.

Each plot shows the number (Y axis) of pairwise nucleotide site differences (X axis) among
sequences for each species. The fit to the demographic expansion model is evaluated by the
SSD and the r. The solid black line corresponds to the observed frequency of pairwise
differences, the dotted red line represents the pattern expected under a model of sudden
demographic expansion. The blue lines are the upper and lower boundaries of the 95%
confidence interval.
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Figure 7
Extended Bayesian skyline plot based on mtDNA sequences of (A) Elmis aenea and (B)
Limnius perrisi from investigated springs and streams of the W Carpathians,
reconstructing the population size history using an evolutionary rate 0.0115 substit

The x-axis is depicted on a scale of thousands of years (Kya), while Y-axis corresponds to the
mean effective population size. The dotted line represents the mean, while grey-shaded
areas encompass 95% highest posterior density (HPD).
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