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The Western Carpathians are particularly interesting part of the Carpathian Arc, which
was, also according to recent molecular and fossil data, an important refugial area for the
cold-stenotherm species during the Pleistocene glaciations. However, the Western
Carpathians also include a rich system of karst springs inhabited by specific fauna, whose
molecular diversity and phylogeographic patterns have not yet been explored. The
relatively stable thermal and chemical conditions of these springs, which have persisted
even throughout the Pleistocene and Holocene climate changes, make these highly
specific lotic systems potentially ideal for the long-term survival of aquatic biota. This
study aimed to compare the population genetic structure and molecular diversity of two
related and commonly co-occurring riffle beetles - Elmis aenea (PWJ Müller, 1806) and
Limnius perrisi (Dufour, 1843) - in the springs and streams using the mtDNA barcoding
fragment I (COI). E. aenea significantly dominated in the springs, whereas L. perrisi
preferred flows. The population of each species was relatively homogeneous genetically,
with a single dominant haplotype. Nevertheless, the relative isolation of the springs and
their stable conditions were reflected in the higher genetic variability of the E. aenea
population in comparison to L. perrisi. The results of Bayesian Skyline Plot analyses also
indicated the exceptional position of the springs regarding maintaining population size of
the E. aenea throughout the Pleistocene climate fluctuations. On the other hand, streams
provide more effective dispersal channels for the L. perrisi, whose population expanded
during the period of postglacial global warming. Our findings suggest that the springs of
the Western Carpathians may indeed have served as refugia for freshwater fauna, but not
in the same way for different species, even belonging to one family.
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23 Abstract

24 The Western Carpathians are particularly interesting part of the Carpathian Arc, which was, also 
25 according to recent molecular and fossil data, an important refugial area for the cold-stenotherm 
26 species during the Pleistocene glaciations. However, the Western Carpathians also include a rich 
27 system of karst springs inhabited by specific fauna, whose molecular diversity and 
28 phylogeographic patterns have not yet been explored. The relatively stable thermal and chemical 
29 conditions of these springs, which have persisted even throughout the Pleistocene and Holocene 
30 climate changes, make these highly specific lotic systems potentially ideal for the long-term 
31 survival of aquatic biota.
32 This study aimed to compare the population genetic structure and molecular diversity of two 
33 related and commonly co-occurring riffle beetles - Elmis aenea (PWJ Müller, 1806) and Limnius 

34 perrisi (Dufour, 1843) - in the springs and streams using the mtDNA barcoding fragment I 
35 (COI). E. aenea significantly dominated in the springs, whereas L. perrisi preferred flows. The 
36 population of each species was relatively homogeneous genetically, with a single dominant 
37 haplotype. Nevertheless, the relative isolation of the springs and their stable conditions were 
38 reflected in the higher genetic variability of the E. aenea population in comparison to L. perrisi. 
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39 The results of Bayesian Skyline Plot analyses also indicated the exceptional position of the 
40 springs regarding maintaining population size of the E. aenea throughout the Pleistocene climate 
41 fluctuations. On the other hand, streams provide more effective dispersal channels for the L. 

42 perrisi, whose population expanded during the period of postglacial global warming. Our 
43 findings suggest that the springs of the Western Carpathians may indeed have served as refugia 
44 for freshwater fauna, but not in the same way for different species, even belonging to one family.

45

46 Introduction

47 Several studies pointed out that freshwater organisms reacted differently to Pleistocene climatic 
48 oscillations compared to terrestrial species (Taberlet et al., 1998; Previšić et al., 2009; 
49 Theissinger et al., 2012). In this period, the distribution of some aquatic species was reduced to 
50 various local refugia (including springs), but others completely disappeared from the glaciated 
51 regions and survived only in the southern outskirts of Europe (Pauls, Lumbsch & Haase, 2006; 
52 Macher et al., 2015; Sworobowicz et al., 2020). Springs function as ecotones between the surface 
53 and underground waters, which makes them an ecologically significant habitat (Gibert, 1991). 
54 They are characterized by chemical, physical, and trophic constancy over several geological 
55 periods (Minshall & Winger, 1968; Odum, 1971; Butler & Hobbs, 1982; Cushing & Wolf, 1984; 
56 Glazier & Gooch, 1987; Pringle et al., 1988; Gooch & Glazier, 1991; Orendt, 2000; Wood et al., 
57 2005; Meyer et al., 2007), which in turn provided a stable environment for aquatic invertebrates 
58 throughout glaciation in Europe (Malicky, 2006; Ujvárosi et al., 2010). Moreover, springs 
59 support unique macroinvertebrate communities that are found nowhere else in a catchment and 
60 may also represent refugia for aquatic biota during adverse conditions (Lewin et al., 2015).  In 
61 this context, it is unambiguous that studies upon the diversity and evolutionary history of aquatic 
62 biota studies should be more focused include not only streams but with no doubt also on springs, 
63 that are now heavily understudied. 
64 Many mountain areas can be also considered as suitable refugia, where aquatic invertebrate 
65 species have often formed isolated populations within and/or between geomorphological 
66 units/subunits (Engelhardt, Haase & Pauls, 2011; Davis et al., 2013; Čiamporová-Zaťovičová & 
67 Čiampor Jr, 2017; Šípošová, Čiamporová-Zaťovičová & Čiampor Jr, 2017). Importantly, the 
68 historic isolation of individual species populations influences their genetic diversity and can be 
69 considered as the main force shaping the genetic structure of aquatic species in Central and 
70 Northern Europe (Bálint et al., 2011; Alp et al., 2012; Theissinger et al., 2012). 
71 The Carpathians served as an important refugium for many plants (Magri et al., 2006) and 
72 animals (Schmitt, 2009; Schmitt & Varga, 2012) during Pleistocene glaciations, and could play 
73 the same role concerning biota inhabiting springs and small streams. The role of the Western 
74 Carpathians (W Carpathians) as a refugium is supported by the evidence that during the last 
75 glacial period (109 – 11.7 ka) the southern margin of the continental ice sheet was located some 
76 150-200 km north from its area. During the Late Pleniglacial (29 - 14 ka) the ice sheet shifted 
77 south towards the W Carpathians, however, in the very next period (the Late Glacial, 14 – 11.7 
78 ka) the continental glacier moved again north without a direct impact on the W Carpathians area 
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79 (Zasadni & Kłapyta, 2014; Marks et al., 2019). The local Carpathian glaciers disappeared 
80 completely from the higher altitudes of the Slovakian and Polish Tatra Mts at ca. 8500 years ago 
81 (Lindner et al., 2003). After the glacier retreat in the Holocene, many species recolonized 
82 formerly inhabited areas (Vila, Vidal-Romaní & Björklund, 2005; Kotlík et al., 2008; Rudolph et 
83 al., 2018). 
84 The W Carpathians are considered an important refugium for a wide range of aquatic and 
85 terrestrial taxa (Neumann et al., 2005; Kotlík et al., 2006; Theissinger et al., 2012; Vörös et al., 
86 2016; Copilaș-Ciocianu et al., 2017; Juřičková et al., 2017). However, the biodiversity of the W 
87 Carpathian springs and streams is still underexplored, especially in terms of the genetic diversity 
88 and population structure of aquatic species. Accordingly, the main objective of our study is to 
89 compare the genetic population structure and diversity patterns of two riffle beetles Elmis aenea 
90 (PWJ Müller, 1806) and Limnius perrisi (Dufour, 1843) in the W Carpathian area. The species 
91 are relatively closely related and commonly co-occur, yet represent a generally understudied 
92 family of freshwater beetles. Limited dispersal abilities, high habitat specificity, and more or less 
93 fragmented distribution make Elmidae an ideal taxon for studying genetic diversification through 
94 many geographic regions. Both the aforementioned elmid species are rheophilic, oligo-
95 stenotherm and typical inhabitants of epirhithral streams at higher altitudes (Moog & Jäch, 1995; 
96 García-Criado, Fernández-Aláez & Fernández-Aláez, 1999) but potentially with different 
97 microhabitat preferences. They are relatively widespread, which guarantees detection of gene 
98 flow among geomorphological units/subunits (e.g. Mamos et al., 2016). In addition, riffle beetles 
99 are considered as a good indicator of water quality and perhaps also of climate change (Elliott, 

100 2008), so our study can also provide valuable data for biodiversity conservation.
101 Our study aims at answering the following questions: (a) are the spring subpopulations 
102 genetically more variable if compared to subpopulations in the streams?; (b) do subpopulations 
103 of different geomorphological subunits of the W Carpathians maintain connectivity with each 
104 other?; (c) does genetic structuring of populations reflect population size change in the context of 
105 the Pleistocene climatic oscillations? And (d) are there interspecific differences in the population 
106 genetic structure among related, co-occurring beetle species?

107

108 Materials & Methods

109 Study area

110 The Carpathian Arch stretches across Central and Eastern Europe and its main geomorphological 
111 units are the Western and Southeastern Carpathians (Kondracki, 1989). In general, the W 
112 Carpathians reach medium altitudes (ranging from 500 to 1300 m a.s.l.), only a few of their 
113 ranges exceed 1500 m a.s.l.; geologically the mountain system is characteristic by interactions of 
114 rock folding and horizontal shifts (Bielik, 1999). 
115 The studied springs and streams are located mainly on the territory of the Slovak Republic, 
116 partially in Czech Republic and in Poland; in the geomorphological units/subunits of the Inner 
117 and Outer Western Carpathians. The exceptions are Vihorlat Mts (VM) being part of the Inner 
118 Eastern Carpathians and Poloniny Mts (PM) belonging to the Outer Eastern Carpathians (Fig. 1, 
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119 Table 1). Samples from these areas were included to explain the phylogenetic relationships in the 
120 broader context of the W Carpathians. Besides, some individuals from the Fagaraş Mts (the 
121 Southern Carpathians), the Apuşeni Mts (the Western Romanian Carpathians) and from the other 
122 major mountain chains in the Balkan region (Rila and Strandzha Mts) were also included in the 
123 haplotype maps.
124 More detailed characteristics of all sampling sites are available in Table 1 and BOLD datasets 
125 DS-SKLIMPER (DOI XXXX) and DS-SKELMAEN (DOI YYYY).
126

127 Sampling and morphological identification

128 Qualitative sampling of benthic invertebrates from the W Carpathian springs and streams took 
129 place in 2016 and 2017. The sampling was performed in the framework of a broader research, 
130 which was permitted on the basis of the permit issued by The District Office, Department of 
131 Environmental Care, No: OU-TN-OSZP1-2015/001937-12/Du (Supplemental file S1). Sampling 
132 of macrozoobenthos was carried out by the multi-habitat kick-sampling technique (Frost, 1971) 
133 using a hydrobiological hand-net with a mesh size of 0.5 mm.  Organic material was fixed in 96 
134 % ethanol directly in the field. In the laboratory, the invertebrates were picked off, sorted into 
135 higher taxonomic groups using stereomicroscope, prefixed with absolute ethanol and stored in a 
136 freezer at -25°C. Elmid beetles selected for molecular analysis were morphologically identified 
137 using the available determination keys (Więźlak, 1986; Jäch, 1992).
138

139 DNA extraction and PCR amplification

140 Total DNA was extracted from the legs or abdominal tissue of 560 individuals (297 sequences - 
141 E. aenea, 263 sequences - L. perrisi) using the Chelex protocol (Casquet, Thebaud & Gillespie, 
142 2012), followed by PCR amplification of ca. 650 bp-long barcoding fragment of the 
143 mitochondrial cytochrome c oxidase subunit I (COI) using the primer pair LCO1490 and 
144 HCO2198 (Folmer et al., 1994). The PCR was performed in a total volume of 25 μl containing 5 
145 μl of 5x DreamTaq™ Buffer, 1.5 μl of Mg+2(25 mM), 0.5 μl of each primer (concentration 5 
146 lM), 0.5 μlof dNTP Mix (20 mM), 0.125 μl (0.625 U) DreamTaq™DNA Polymerase, 11.875 μl 
147 ultra-pure H2O and 5 μl of DNA template. The PCR cycling consisted of a 2-min initial 
148 denaturation at 94 °C, followed by 40 cycles of 94 °C (40 s) denaturation, 46 °C (40 s) annealing 
149 and 72 °C (1 min) extension and termination at 72 °C (10 min) for final extension. A 4 μl aliquot 
150 of the PCR products were visualized in GoldView (Solarbio) by electrophoresis on a 1 % 
151 agarose gel and GelLogic imaging equipment to check PCR product quality and length. The PCR 
152 products were purified with Exo-FastAP Thermo Scientific and were sent for sequencing to 
153 Macrogen Europe Inc., Amsterdam.
154

155 Data analyses

156 The obtained sequences were edited using SEQUENCHER v5.1 software and aligned using the 
157 MUSCLE algorithm (Edgar, 2004) in MEGA v7 (Kumar, Stecher & Tamura, 2016). The dataset 
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158 was complemented by BOLD sequences available for both species (18 of E. aenea from streams 
159 in Finland, Germany and France and 6 of L. perrisi from streams in Germany). 
160 The haplotype data files were generated in DnaSP v5.10 (Librado & Rozas, 2009), the diversity 
161 indices were calculated in the same program. Haplotype networks were reconstructed using the 
162 median-joining method (MJN) in PopART v1.7 (Leigh & Bryant, 2015). 
163 The population structure of both species was characterized by the analysis of molecular variance 
164 (AMOVA) and fixation indices (FST) using Arlequin 3.5 (Excoffier & Lischer, 2010). The 
165 AMOVA was used to estimate whether the observed genetic diversity may be attributed to the 
166 geographical partitioning of beetle populations in three levels: among geomorphological 
167 subunits, among subpopulations within subunits and within subpopulations. The subpopulation is 
168 defined as specimens from one locality within the geomorphological subunit (Table 1). FST is a 
169 measure of the genetic differentiation among subpopulations of individual localities by haplotype 
170 frequencies. To test the significance of covariance components and fixation indices, 1000 
171 permutations were performed.
172 Further, the demographic and spatial dynamics of beetle populations was examined by the 
173 mismatch distribution analysis in Arlequin v3.5 (Excoffier & Lischer, 2010). The recent 
174 demographic expansion in both species was tested with Tajima’s D (Tajima, 1989), Fu’s Fs (Fu, 
175 1997) and Fu and Li´s D (Fu & Li, 1993) tests of selective neutrality and population stability, 
176 performed in DnaSP. The significance of these tests was assessed with 10000 permutations.
177 The fluctuations of demography over time were identified with the extended Bayesian Skyline 
178 Plot (eBSP) in BEAST v2.6.2 software package (Bouckaert et al., 2019). The strict molecular 
179 clock was calibrated with the standard mitochondrial rate for arthropod COI equal to 0.0115 
180 substitutions/site/Myr (Brower, 1994). The models of molecular evolution were set up through 
181 bModelTest (Bouckaert & Drummond, 2017). For comparison, two runs for each species of 
182 Monte Carlo Markov Chains (MCMC) were performed, each 40 million iterations long and 
183 sampled every 10000 iterations for eBSP log. The runs were examined in Tracer v1.7 (Rambaut 
184 et al., 2018) and all the parameters reached the effective sampling size (ESS) above 200. After 
185 removal of 10% burn-in, the eBSP plots were produced using R software (http://www.r-
186 project.org). Both plots for each species were identical therefore only one is presented.
187 The phylogeny was reconstructed based on COI haplotypes using Bayesian approach in BEAST 
188 v2.6.2 (Bouckaert et al., 2019). The datasets were supplemented by outgroup consisting the 
189 European congeneric species: Elmis perezi, E. rioloides, E. rietscheli, E. latreillei, E. obscura, E. 

190 maugetii, Limnius opacus, L. muelleri and L. volckmari. The model of substitution and molecular 
191 clock were set up identical as in the case of eBSP. The tree prior was set to Birth-Death 
192 following the Path Sampling selection. Two runs of Markov chain Monte Carlo (MCMC), each 
193 20 million iterations long and sampled every 1000 iterations, were performed for both species. 
194 Runs were examined using Tracer v1.7 (Rambaut et al., 2018), and all the sampled parameters 
195 achieved a sufficient sample size (ESS > 200). Tree files were combined using Log-Combiner 
196 v1.8.1 (Drummond et al., 2012), with the removal of the non-stationary 25 % burn-in phase. The 
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197 maximum clade credibility chronogram was generated using TreeAnnotator v2.5.2 (Bouckaert et 
198 al., 2014).
199 All analysed sequences with GenBank accession numbers are available within two BOLD 
200 datasets: DS-SKLIMPER for Limnius samples (DOI XXXX) and DS-SKELMAEN for Elmis 

201 samples (DOI YYYY).

202

203 Results

204 The distribution of Elmis aenea and Limnius perrisi samples suggests different habitat 
205 preferences between the target species in the W Carpathians. E. aenea has a rather wide 
206 distribution in karst springs (31 sites), while it is less widespread in streams (15 sites). On the 
207 contrary, L. perrisi was located only in eight springs, but in 30 streams. L. perrisi was also found 
208 in four streams of VM (Inner Eastern Carpathians) and in one stream of PM (Outer Eastern 
209 Carpathians), while E. aenea was not recorded in these geomorphological subunits. Ultimately, 
210 both species co-occurred only in three springs and in 13 streams from the total of 73 sites 
211 sampled in W Carpathians (Table 1).
212 The W Carpathian population of E. aenea shares haplotypes with locations in the Fagaraş Mts, 
213 Apuseni Mts, as well as with localities outside the Carpathians (Rila and Strandzha Mts in the 
214 Balkan region, as well as Finland, Germany, France). 13 COI haplotypes of E. aenea were 
215 identified within 276 individuals collected from 46 localities in the W Carpathians (Fig. 2). The 
216 haplotype diversity was 0.34. Adding 39 sequences from the non-W Carpathian sites increased 
217 the number of haplotypes to 20 and the haplotype diversity to 0.36. Considerable genetic 
218 homogeneity of the E. aenea population in the W Carpathians resulted from the wide distribution 
219 of the dominant haplotype Ea1. The haplotype map (Fig. 2B) revealed that most haplotypes 
220 present in the southern part of the Carpathians Arc (Apuseni Mts) and the haplotypes of the 
221 Balkan region (Rila Mts, Strandzha Mts) were not reported from the W Carpathians. The 
222 exception was Ea14 shared between one stream in the Strandzha Mts and one spring (V050) in 
223 Slovakia (SOM). Individuals from Germany shared the haplotype Ea3 with a single locality in 
224 the geomorphological unit FTA (V070). In addition to dominant haplotype Ea1, another five 
225 haplotypes were found in FTA and seven in SOM. Haplotypes Ea5 and Ea11 were private and 
226 each occurred in one spring of FTA (V009, V086). The private haplotypes of SOM included 
227 Ea7, Ea12 and Ea13, while all of them were located in the springs of SOM1 subunit (V038, 
228 V048). Besides that, the one spring of SOM1 (V043) shared haplotype Ea8 with the spring of the 
229 mentioned geomorphological unit FTA (V020). In geomorphological unit WB, four haplotypes 
230 were found, while Ea9 was located exclusively at two localities (CZ03, CZ05). On the contrary, 
231 the haplotype Ea4 was also common in the SOM, FTA, CB and in the Apuseni Mts (Figs. 2A, 
232 2B).
233 Compared to E. aenea, the population of L. perrisi in the W Carpathians was genetically more 
234 homogeneous. Just eight haplotypes with a haplotype diversity of 0.007 were found at 43 
235 localities (245 sequences, Fig. 3). A group of five haplotypes (Lp5, Lp6, Lp7, Lp8, Lp9) 
236 recorded in the Apușeni, Fagaraș, Rila and the Strandzha Mts (Balkan region) was highly 
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237 divergent from the group found in the W Carpathians. Together with the non-W Carpathian 
238 haplotypes, the total haplotype diversity of L. perrisi was 0.2 (269 sequences). Haplotype Lp1 
239 dominated in all geomorphological units of the W Carpathians; all German sequences also 
240 belonged to this haplotype. The presence of private haplotypes was lower compared to E. aenea: 
241 Lp14 from the one spring of SOM (V088), Lp10 in stream of WB (CZ06) and Lp11 from one 
242 spring of geomorphological unit FTA (V070). Besides that, two more haplotypes (Lp3, Lp13) 
243 were present in the FTA. Lp13 was shared with the locality of the different geomorphological 
244 unit SMC (SEL1). Lp3 was also present in unit WB, in addition to FTA (BEL3). The haplotype 
245 Lp2 was detected in a stream (CZ01) of WB and occurred also in one stream (KRV1) located in 
246 VM (Figs. 3A, 3B).
247 Overall, the comparison of haplotype maps of both elmid species (Figs. 2B, 3B) showed the 
248 same haplotype pattern - star-like topology with one dominant haplotype and low haplotype 
249 diversity values. The Bayesian time calibrated reconstruction of phylogeny suggested that the 
250 divergence of E. aenea 1 and 0.5 Mya while L. perrisi started between 1.6 and 0.6 Mya (Figs. 
251 2C, 3C, S2, S3). Additionally, the sample GBCL24512-15IE_perezi from the GenBank is 
252 grouped with samples of E. aenea. Most likely this is due to misidentification/mislabelling of the 
253 deposited data, but we cannot resolve this without examination of the individual that the 
254 deposited sequence was produced from. The resulting phylogenetic trees are enclosed in the 
255 electronic supplementary material (Figs. S2, S3.). 
256 The population-genetic analyses focused on the W Carpathian populations of both species (Table 
257 2). The AMOVA showed that most of the observed molecular variance is generated within 
258 subpopulations (single localities). However, in E. aenea, the molecular variation among 
259 subpopulations within geomorphological subunits is more than twice (34.99 %) compared to L. 

260 perrisi (12.86 %).
261 Genetic differentiation between E. aenea and L. perrisi also consisted of different fixation index 
262 values (FST). The maximum value of fixation index for E. aenea was 0.8, for L. perrisi 0.4 (Fig. 
263 4). The highest FST values of both species were found for pairs of subpopulations in the 
264 geomorphological subunits Slovak Karst (within the SOM1 (V038, V048) - E. aenea; (V088) - 
265 L. perrisi) and the Little Carpathians (within the FTA1 (V009) - E. aenea; (V070) - L. perrisi).
266 Both species were characterized by the statistically significant, negative Fu´s Fs, Tajima´s D and 
267 Fu and Li´s D neutrality tests values (Table 3). This indicates a recent change in population size 
268 of both species. The Mismatch distribution analysis also confirmed recent demographic and 
269 spatial expansion for both species (Fig. 5). The eBSP of the mtDNA showed a signal of 
270 population growth in both species, although the pattern differed. The E. aenea population size 
271 was stable through the Ice Age and beginning of the Holocene, it is growth started roughly ca. 
272 3000 years ago, whereas the population expansion of L. perrisi increased sharply around 8000 
273 years ago (Fig. 6).

274

275 Discussion

276 Our study is focused on the two oligo-stenotherm riffle beetles, Elmis aenea and Limnius perrisi 
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277 (Elmidae), with a similar biotope preference and common occurrence (Moog & Jäch, 1995; 
278 García-Criado, Fernández-Aláez & Fernández-Aláez, 1999). However, we observed that their 
279 distribution patterns were quite different. While E. aenea occurred in karst springs and was less 
280 widespread in streams of the W Carpathians, the distributional pattern of L. perrisi was opposite. 
281 Such differences in distribution can be explained by different ecological demands, microhabitat 
282 preferences or altitude and flow type (Illies & Botosaneanu, 1963). Moreover, according to 
283 several studies, E. aenea is more sensitive to harsher conditions resulting from changes of the 
284 aquatic environment, manifested, for example, by the loss of macrophytes and moss (Maitland, 
285 1967; Bradley & Ormerod, 2001; Hoffsten, 2003). These findings may explain much greater 
286 affinity of E. aenea to springs that generally, with respect to chemical, physical and trophic 
287 conditions, are more stable ecosystems compared to other lotic habitats (Minshall & Winger, 
288 1968; Odum, 1971; Butler & Hobbs, 1982; Cushing & Wolf, 1984; Glazier & Gooch, 1987; 
289 Gooch & Glazier, 1991). This suggests that karst springs ensured a suitable environment for 
290 survival of some aquatic species even during the ice age (Thorup & Lindegaard, 1977). It 
291 supports the dinodal hypothesis (Malicky, 1983; Malicky, 2000) predicting that suitable habitats, 
292 such as headwaters, persisted throughout the Pleistocene within the periglacial area (dinodal 
293 biome), giving suitable conditions for the survival of specialized oligo-stenotherm communities 
294 in Central Europe. 
295 In our study, the different results of the Bayesian Skyline Plot analyses between E. aenea and L. 

296 perrisi also confirmed the exceptional position of the springs. These findings indicate that 
297 springs could have a special status in terms of providing stable environmental conditions 
298 irrespective of the climatic changes during the glacial and interglacial periods which did not 
299 provoke a dramatic decline or increase of the E. aenea population size in the Western 
300 Carpathians during the Last Glacial Period (LGP) and beginning of Holocene. In contrast, the 
301 populations of L. perrisi, occurring in streams, began to expand rapidly after the LGP. Our 
302 findings are consistent with the results obtained by Haubrock et al. (2017), that suggested 
303 different evolutionary histories for several species of European trickle midges (Diptera: 
304 Thaumaleidae) of similar ecology. For example, Thaumalea testacea has survived in multiple 
305 Alpine refugia throughout the glacial maxima while T. bezzi has dispersed into Central Europe 
306 from the East Mediterranean area after the LGP. Moreover, the postglacial expansion may have a 
307 major impact on the genetic diversity of the affected species (Vila, Vidal-Romaní & Björklund, 
308 2005; Schmitt, 2007; Kotlík et al., 2008). At the beginning of the Holocene (about 11.5 – 7.5 ka), 
309 a thermal maximum was recorded, which probably enhanced the expansion of species from its 
310 glacial refugia (Dabkowski et al., 2019). This corresponds to the sudden expansion of L. perrisi. 
311 Moreover, at that time the local Carpathian glaciers disappeared completely from the higher 
312 altitudes of the Tatra Mt (Lindner et al., 2003) which led to opening of, until then, inaccessible 
313 migration routes. Early-Holocene general warming is thought to be a major driving force for 
314 population divergence in temperate species (Hewitt, 1999). On one hand, with long glacials and 
315 shorter interglacials, temperate species spent much longer time in refugia than cold-adapted 
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316 species (Stewart et al., 2010). On the other hand, differences in species richness across biota may 
317 also be due to variation in diversification rates (Ricklefs, 2007; Stadler, 2011). 
318 We assume that the different historical dynamics of the two closely related elmid species was 
319 reflected in their haplotype diversity. It is likely that E. aenea has utilized springs as glacial 
320 refugia at a significantly higher rate, corresponding to its higher haplotype diversity when 
321 compared with L. perrisi that prefers streams and their populations are much more uniform. In 
322 line with our results, populations of two cofamilial caddisfly species in south-eastern UK showed 
323 contrasting genetic patterns. Polycentropus flavomaculatus showed much more pronounced 
324 genetic structure in the south-east of England than Plectrocnemia conspersa in the same region 
325 (Wilcock et al., 2007). In another study on caddisflies of the Central European highlands, Drusus 

326 discolor contained three times more haplotypes, which means much higher genetic diversity, 
327 than Hydropsyche tenuis. Such findings suggest that the isolation among D. discolor populations 
328 in Central Europe is stronger and persists for a longer time than in H. tenuis (Lehrian, Pauls & 
329 Hasse, 2009). In both cases, the different phylogeographic histories of the species together with 
330 their distinct ecological traits could be related to the present distinct patterns of haplotype 
331 diversity (Wilcock et al., 2007; Lehrian, Pauls & Haase, 2009). 
332 It is important to note that the temperate-adapted taxa were confined to refugia during glaciations 
333 while the cold-adapted taxa retreated to refugia during interglacials (Stewart et al., 2010). During 
334 the last glaciation and possibly for even longer time, the spring populations were unable to 
335 spread extensively and, likely, persisted at the foothills of mountains (Schmitt, 2007). As a 
336 consequence, many of the geomorphological units of the European high mountain systems have 
337 their own genetic lineages or, at least, private haplotypes. What is confirmed by exceptionally 
338 high diversity and local endemism of cold-adapted gammarids present in W Carpathians from 
339 Gammarus balcanicus (Mamos et al 2014; Mamos et al., 2016) and Gammarus fossarum species 
340 complexes (Copilaș-Ciocianu et al., 2017). 
341 Another convincing example is caddisfly species Drusus discolor in the Tatra Mts persisted in 
342 numerous refugia over multiple glacial cycles, allowing many local endemic clades to form 
343 (Pauls, Lumbsch & Haase, 2006). In case of E. aenea and L. perrisi, the three localities in the 
344 Slovak Ore Mts (SOM: V038, V048, V088) and two localities in the Fatra-Tatra area (FTA: 
345 V009, V070) are remarkable with their strong fixation index (FST) in relation to other localities 
346 (Fig. 4). Potentially, these areas could represent glacial or interglacial refugia, although 
347 additional samples are needed to verify this hypothesis. However, the role of the W Carpathians 
348 as a glacial refugium (Jamřichová, Potůčková & Horsák, 2014; Mráz & Ronikier, 2016; 
349 Jamřichová, Petr & Jiménez-Alfaro, 2017) for various species or genetic lineages is, according to 
350 several studies, undoubted (Pinceel et al., 2005; Magri et al., 2006; Wielstra, Babik & Arntzen, 
351 2015; Mamos et al., 2016; Copilaș-Ciocianu et al., 2017). 
352 E. aenea had a twice higher value of the fixation index compared to L. perrisi. It correlated with 
353 the results of AMOVA when the genetic differentiation among E. aenea populations within 
354 geomorphological subunits was relatively high (34.99 %). This indicates that there are some well 
355 pronounced differences in the genetic composition among most of the spring subpopulations of 
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356 E. aenea within each geographical unit. Similar results emerged from the study on the black fly 
357 Prosimulium neomacropyga in the US Southern Rockies ecoregion with alpine tundra streams, 
358 where the differences among streams within the region were 24.58 % (Finn et al., 2006). 
359 However, the genetic differences between populations from different geomorphological subunits 
360 of the W Carpathians were very low in both elmid species, reflecting their overall low genetic 
361 variation within this region. In both species, only a single haplotype was abundant and 
362 widespread along the whole W Carpathians, surrounded by several rare peripheral haplotypes in 
363 a star-shaped topology (Figs. 2, 3). Similarly, lack of genetic population structure was also found 
364 in the W Carpathian populations of the blackfly Simulium degrangei (Jedlička et al., 2012). 
365 The maintenance of intraspecific genetic diversity is generally very important for the adaptation 
366 potential and long-term survival of species (Spielman, Brook & Frankham, 2004; Frankham, 
367 2005). However, prolonged persistence is possible even despite low levels of genetic diversity 
368 (Johnson et al., 2009). The relatively homogeneous population patterns of both studied riffle 
369 beetles may reflect their short history in the W Carpathians, which was most probably 
370 recolonized no earlier than in the late Pleistocene. The comparatively low genetic differentiation 
371 among populations of trickle midges (Diptera: Thaumaleidae) in Northern Europe was also 
372 explained by relatively recent, possibly post-glacial dispersal (Haubrock et al., 2017).
373

374 Conclusions

375 In conclusion, despite the similarly low haplotype diversity, and absence of the more pronounced 
376 geographical pattern within populations, the studied species show different population dynamics 
377 through time (eBSP). We assume that distinct patterns may be related to the fact that E. aenea 
378 occurred mainly in the springs, while L. perrisi was found mostly in streams. These findings 
379 support the attribution of the W Carpathian springs to natural laboratories with a suitable 
380 environment for biota even during the ice age (Thorup & Lindegaard, 1977; Round, 1981). 
381 However, further studies should include more samples from Southern and Eastern Europe in 
382 order to understand the holistic biogeographic pattern of the target species and the spring fauna 
383 in general. The study of the local biota together with the history of climate change would be 
384 essential to unravel both regional and local diversity patterns (Calatayud et al., 2019).
385 Last but not least, the DNA barcoding proved to be a very useful tool in monitoring genetic 
386 diversity of species as well as improving and accelerating the process of taxonomic 
387 identification. From the past, we know examples where the solely morphology-based 
388 determination led to a significant error (Deichmann et al., 2017); this study revealed a 
389 questionably identified sample in the GenBank database. Such pitfalls, in turn, can bias markedly 
390 the results of the research. Therefore the importance of complementing traditional methods of 
391 characterizing biodiversity by approaches based on DNA sequencing should be emphasized. In 
392 addition, DNA barcoding is a key tool for assessing the health of animal populations in 
393 association with the ongoing biodiversity loss as well as with ecosystem degradation. However, 
394 the successful application of the DNA determination methods requires high quality reference 
395 data (Weigand et al., 2019). Therefore, it is necessary to publish sequences in the global 
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396 databases with the responsibility of assigning the correct taxonomic affiliation (Leray et al., 
397 2019). This study added new and useful information about under-studied riffle beetle fauna of 
398 one of the world's biodiversity hotspots. The biota of the Carpathians is, with no doubt, 
399 invaluable and a high share of it belongs to freshwater fauna, but we can only preserve and 
400 protect it if we know it well.
401
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Table 1(on next page)

The list of all sampling sites and their geomorphological affiliation.
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Mountain System1 Geomorphological Unit Geomorphological Subunit Code Locality Habitat2 GPS Coordinates Altitude Species3

V006 Stužková SP 48.595833, 17.453567 250 m EA

V009 Chrenkech jarok SP 48.654283, 17.619650 328 m EA

V070 Orešanská SP 48.451800, 17.346483 324 m EA, LP

KCH3 Kuchyňa ST 48.403491, 17.154763 241 m EA

LIB1 Libuša 1 ST 48.500500, 17.324700 374 m LP

LIM1 Limbašský 1 ST 48.294700, 17.175000 342 m LP

LOZ4 Lozorno 4 ST 48.324600, 17.090000 265 m LP

FTA1

Little Carpathians (Malé Karpaty)

SPV1 Stupavský 1 ST 48.252500, 17.112217 292 m EA, LP

FTA2

High Tatras (Vysoké Tatry)

BEL3 Belá ST 49.113900, 19.834700 809 m LP

V020 Bukovinka I SP 49.003350, 19.282567 653 m EA

V022 Bukovinka III SP 49.003300, 19.285083 631 m EA

BOC2 Boca 2 ST 48.996700, 19.763200 697 m LP

BYS4 Nižné Bystré ST 48.944000, 19.632800 1638 m LP

HOD1 Hodruša 1 ST 48.960300, 19.826000 877 m LP

FTA3

Low Tatras (Nízke Tatry)

SVA1 Svarinka 1 ST 48.959900, 19.891900 983 m LP

V027 Prosiek 2 SP 49.157917, 19.497483 642 m EA

V028 Prosiek 3 SP 49.157383, 19.498019 639 m EA

FTA4

Western Tatras (Západné Tatry)

V086 Liptovská Anna SP 49.159783, 19.462033 845 m EA, LP

FTA5

Great Fatra (Veľká Fatra)

V033 Jazierce SP 49.018200, 19.281900 589 m EA

FTA6

Belianske Tatras (Belianske Tatry)

V036 Dolina 7 prameňov SP 49.222800, 20.277600 1208 m LP

NIT1 Nitra 1 ST 48.657484, 18.637691 671 m EA, LP

SVI1 Svinianka 1 ST 49.149437, 18.650388 456 m EA

FTA

Fatra-Tatra Area

(Fatránsko-tatranská oblasť)

FTA7

Strážov Mts (Strážovské vrchy)

TUR1 Turiec 1 ST 48.964780, 18.727228 575 m EA, LP

SCM1

Podpoľanie
V087 Oravická SP 48.700667, 19.272938 394 m EASCM

Slovak Central Mts 

(Slovenské stredohorie) SCM2

Poľana Mts (Poľana)
KAM1 Kamenistý ST 48.662400, 19.628500 884 m LP

V037 Prameň sv. Jána SP 48.653850, 20.974667 264 m EA

V038 Drieňovská SP 48.607583, 20.964650 187 m EA

V042 Fej SP 48.609367, 20.749017 222 m EA

V043 Tapolča I SP 48.583600, 20.686883 198 m EA

V044 Tapolča II SP 48.584050, 20.688838 204 m EA

V045 Eveteš SP 48.598633, 20.643438 255 m EA

V046 Čierna SP 48.562683, 20.465317 248 m EA

V047 Biela SP 48.567583, 20.468050 237 m EA

V048 Kečovská SP 48.500100, 20.485817 331 m EA

V049 Krásnohorská SP 48.617600, 20.587233 336 m EA

V050 Brzotínska SP 48.608783, 20.470933 247 m EA

V051 Vidová SP 48.564317, 20.440167 238 m EA

V052 pod Vápenkou SP 48.554933, 20.419170 212 m EA

V073 Studený SP 48.571583, 20.400850 224 m EA

V075 Hučiaca B SP 48.625167, 20.389900 269 m EA

SOM1

Slovak Karst (Slovenský kras)

V088 Drieňov kúpele SP 48.624500, 20.952000 257 m EA, LP

V057 Brusík SP 48.831400, 20.010100 574 m LP

V058 pod Javorníčkovou SP 48.724100, 20.013800 413 m LP

V060 Havraník lúka SP 48.813400, 20.071400 768 m LP

V061 Havraník les SP 48.813300, 20.071700 766 m LP

V062 Jelšavská teplica SP 48.605017, 20.295092 255 m EA

V065 Tisovec SP 48.692317, 19.967417 576 m EA

V066 Rejkovský SP 48.668283, 19.925367 400 m EA

V067 Teplice - Furmanec SP 48.688833, 19.898817 476 m EA

V074 Kunova teplica SP 48.607333, 20.390933 248 m EA

HAV1 Havraník 1 ST 48.824000, 20.071600 761 m LP

SOM2

Muráň Plateau (Muránska planina)

HDZ1 Hrdzavý 1 ST 48.768200, 19.986800 868 m LP

  IWC

SOM

Slovak Ore Mts (Slovenské rudohorie)

SOM3

Volovec Mts (Volovské vrchy)

SMO1 Smolník 1 ST 48.709000, 20.700700 635 m LP

VAH1 Váh 1 ST 49.325346, 18.511067 582 m EA, LPSMC1

Maple Mts (Javorníky) VYD1 Vydrňanka ST 49.217800, 18.252780 523 m EA, LP

SMC

Slovak-Moravian Carpathians 

(Slovensko-moravské Karpaty) SMC2

White Carpathians (Biele Karpaty)

SEL1 Selecký 1 ST 48.777800, 17.998700 374 m LP

CZ05 Kněhyně ST 49.462546, 18.278190 570 m EA, LP

KYS1 Kysuca 1 ST 49.431857, 18.626540 570 m EA, LP

CZ01 Lomná ST 49.547710, 18.650423 538 m EA, LP

CZ02 Příslopský ST 49.624213, 18.575444 497 m LP

CZ03 Satina ST 49.565317, 18.422775 772 m EA, LP

CZ04 Černa Ostravice ST 49.456600, 18.470900 816 m LP

CZ06 Malá Bystřička ST 49.394775, 18.053709 456 m EA, LP

WB1

Moravian-Silesian Beskids

(Moravsko-sliezske Beskydy)

CZ07 Bystřička ST 49.371673, 17.750556 563 m EA, LP

WB2

Orava Magura (Oravská Magura)

BRE1 Brezovica 1 ST 49.343800, 19.662100 687 m LP

PL04 Żyłica ST 49.693800, 18.984000 609 m LP

WB

Western Beskids (Západné Beskydy)

WB3

Silesian Beskids (Sliezske Beskydy) PL05 Labajów ST 49.622821, 18.869191 523 m EA, LP

  OWC

CB 

Central Beskids (Stredné Beskydy)

CB1

Kysucké Beskydy

OSC1 Oščadnica ST 49.421200, 18.910810 822 m EA, LP

BAR1 Barnov 1 ST 48.938400, 22.160300 434 m LP

HRA1 Hrabový 1 ST 48.878000, 22.297500 412 m LP
  IEC VM 

Vihorlat Mts (Vihorlatské vrchy)

VM1

Vihorlat Mts (Vihorlatské vrchy)

KRV1 Krivec 1 ST 48.907300, 22.203700 569 m LP
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ROV1 Rovný 1 ST 48.887200, 22.324200 311 m LP

  OEC PM 

Poloniny Mts (Poloniny)

PM1

Poloniny Mts (Poloniny)

ZBJ2 Zbojský ST 49.050500, 22.513700 773 m LP

1 Mountain System1: IWC Inner Western Carpathians, OWC Outer Western Carpathians, IEC Inner Eastern Carpathians, OEC Outer Eastern Carpathians; Habitat2: SP spring, 

2 ST stream; Species3: EA Elmis aenea, LP Limnius perrisi
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Table 2(on next page)

Analysis of molecular variation (AMOVA) calculated from COI mtDNA sequences for
Elmis aenea and Limnius perrisi Western Carpathian populations.

Groups - populations of E. aenea and L. perrisi of different geomorphological subunits. The
subpopulation is defined as specimens from one locality within the geomorphological subunit
in Table 1.
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E. aenea

Source of variation df1 SS2 Variance 

components

% of 

variation
F value P - value

Among subunits 10 5.704 0.00206 1.02 FCT = 0.010 > 0.352

Among subpopulations within subunits 36 19.768 0.07080 34.99 FSC = 0.353 > 0.000

Within subpopulations 230 29.784 0.12950 64 FST = 0.360 < 0.000

L. perrisi

Source of variation df1 SS2 Variance 

components

% of 

variation
F value P - value

Among subunits 12 0.657 -0.00148 -3.16 FCT = 0.010 > 0.335

Among subpopulations within subunits 29 2.145 0.00602 12.86 FSC = 0.125 > 0.097

Within subpopulations 192 8.117 0.04227 90.3 FST = 0.097 < 0.074

1 df1 Degree of freedom, SS2 Sum of squares

2

3

4
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Table 3(on next page)

Values of neutrality tests (Fu´s Fs, Tajima´s D, Fu and Li´s D test) for Elmis aenea and
Limnius perrisi mtDNA COI sequences.
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Species Fu´s Fs test (p-value) Tajima´s D test (p-value) Fu and Li´s D test (p-value)

Elmis aenea -17.331 (0.000) -2.047 (0.001) -3.323 (< 0.02)

Limnius perrisi -14.064 (0.000) -2.004 (0.002) -3.320 (< 0.02)

1
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Figure 1
Map of the studied area and 73 sampling sites (36 springs and 37 streams) divided into
eight geomorphological units represented by different colours (white line represents
state borders).
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Figure 2
Elmis aenea

(A) map with mtDNA haplotypes distribution in the Western Carpathians; (B) median-joining
network (circle size is proportional to sample size for each haplotype, colors indicate
geomorphological units, mutational steps are indicated with bars, black dots represent
undetected haplotypes); (C) time-calibrated phylogenetic tree of E. aenea haplotypes and
outgroup species E. perezi, E. rioloides. Bayesian maximum clade credibility tree obtained
from the BEAST analysis based on the COI marker. 95% HPD of estimated divergence ages
are illustrated as violet interval bars at selected calibrated nodes, posterior probabilities (PP)
>0.5 are given above each branch.
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Figure 3
Limnius perrisi

(A) map with mtDNA haplotype distribution in the Western Carpathians, (B) median-joining
network (circle size reflects haplotype abundance - number of individuals that had the
haplotype, colors indicate geomorphological units, mutational steps are indicated with bars)
and (C) time-calibrated phylogenetic tree of L. perrisi haplotypes. Bayesian maximum clade
credibility tree obtained from the BEAST analysis based on the COI marker. 95% HPD of
estimated divergence ages are illustrated as violet bars at selected calibrated nodes.
Posterior probabilities (PP) >0.5 are given above each branch.
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Figure 4
Heat map of pairwise FST values among the localities of Elmis aenea and Limnius perrisi.

Darker shades of blue indicate higher values of FST. The maximum FST values were 0.8 for E.

aenea and 0.4 for L. perrisi.
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Figure 5
Mismatch distribution analysis (MDA) for Elmis aenea and Limnius perrisi from the
Western Carpathian springs and streams.
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Figure 6
Bayesian skyline plot for Elmis aenea and Limnius perrisi from the Western Carpathian
springs and streams, reconstructing the population size history using an evolutionary
rate 0.0115 substitution/site/Myr (Brower 1994).
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