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ABSTRACT
The Western Carpathians are a particularly interesting part of the Carpathian Arc.
According to recent molecular data upon aquatic and terrestrial taxa, this mountain
area is an important biodiversity hotspot of Europe. Moreover, the W Carpathians
include rich systems of karst springs inhabited by specific fauna, where molecular
diversity and phylogeographic patterns are yet to be fully explored. Our study aims
to compare population genetic structure and molecular diversity of two related and
commonly co-occurring riffle beetles, Elmis aenea (PWJ Müller, 1806) and Limnius
perrisi (Dufour, 1843) in the springs and streams of the W Carpathians using the
mitochondrial DNA barcoding fragment of the cytochrome c oxidase subunit I gene
(COI). The relatively stable thermal and chemical conditions of springs throughout
unfavourable climatic settings make these highly specific lotic systems potentially ideal
for a long-term survival of some aquatic biota. Populations of both elmid species were
relatively homogeneous genetically, with a single dominant haplotype. However, we
revealed that E. aenea significantly dominated in the springs, while L. perrisi preferred
streams. Relative isolation of the springs and their stable conditions were reflected in
significantly higher molecular diversity of the E. aenea population in comparison to
L. perrisi. The results of Bayesian Skyline Plot analysis also indicated the exceptional
position of springs regarding maintaining the population size of E. aenea. On the other
hand, it seems that streams in the W Carpathians provide more effective dispersal
channels for L. perrisi, whose population expanded much earlier compared to E. aenea.
Present study points out that different demographic histories of these two closely
related elmid species are manifested by their different habitat preference and molecular
diversity.
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INTRODUCTION
Prolonged isolation of populations influences their genetic diversity and can be considered
as the main force shaping genetic structure of aquatic species in Europe (Bálint et al., 2011;
Alp et al., 2012; Theissinger et al., 2012). Isolated populations of aquatic invertebrates may
be found within geomorphological units/subunits of many mountain areas (Engelhardt,
Haase & Pauls, 2011; Davis et al., 2013; Mamos et al., 2016; Čiamporová-Zat’ovičová &
Čiampor Jr, 2017; Šípošová, Čiamporová Zat’ovičová & Čiampor Jr, 2017; Copilaş-Ciocianu
et al., 2018).

The W Carpathians are considered a biodiversity hotspot for a wide range of aquatic
and terrestrial taxa (Neumann et al., 2005; Kotlík et al., 2006; Theissinger et al., 2012; Vörös
et al., 2016; Copilaş-Ciocianu et al., 2017; Juřičková et al., 2017). However, the biodiversity
of the W Carpathians is still underexplored, especially in terms of genetic diversity and
population structure of aquatic species. In this context, studies upon the phylogeography
of aquatic biota should be more focused on springs, or more generally, headwaters that are
now heavily understudied compared to other aquatic biotopes.

Springs support unique macroinvertebrate communities that are found nowhere else
in a catchment (Lewin et al., 2015). They are characterized by chemical, physical, and
trophic constancy over several geological periods (Minshall & Winger, 1968; Odum, 1971;
Butler & Hobbs, 1982; Cushing & Wolf, 1984; Glazier & Gooch, 1987; Pringle et al., 1988;
Gooch & Glazier, 1991; Orendt, 2000; Wood et al., 2005; Meyer et al., 2007), which in turn
provided a stable environment for aquatic invertebrates during adverse climatic conditions
(Malicky, 2006; Ujvárosi et al., 2010). Springs function as ecotones between the surface and
underground waters, which makes them an ecologically significant habitat (Gibert, 1991).

Accordingly, the main objective of our study is to compare genetic population structure
and diversity patterns of two aquatic beetle species of Elmidae family, Elmis aenea
(PWJ Müller, 1806) and Limnius perrisi (Dufour, 1843) in springs and streams of the
W Carpathians. Said species are relatively closely related and commonly co-occur, yet in
terms of population genetics represent a generally understudied family of freshwater beetles.
Limited dispersal abilities, high habitat specificity, andmore or less fragmented distribution
make Elmidae an ideal taxon for studying genetic diversification through many geographic
regions. Both studied species are rheophilic, oligo-stenotherm, and typical inhabitants of
epirhithral streams at higher altitudes (Moog & Jäch, 1995; García-Criado, Fernández-Aláez
& Fernández-Aláez, 1999). They are relatively widespread, which guarantees the detection
of possible gene flow among geomorphological units/subunits of W Carpathians.

Our study aims to answer the following questions: (a) Are the spring subpopulations
genetically more variable when compared to subpopulations in the streams? (b) Does
genetic structuring of populations reflect population size change? (c) Are there interspecific
differences in the population genetic structure among these related beetle species?
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Figure 1 Maps of the studied area and sampling sites. (A) Map of the studied area within the
Carpathian Arc and (B) the 73 sampling sites (36 springs and 37 streams) divided into eight
geomorphological units represented by different fill colors. (C) The altitude range of both elmid species.
The boxplots show the distribution of the altitude above sea level for Elmis aenea and Limnius perrisi.
The boxes represent the interquartile distances (IQD), while the centre lines through each box show the
medians. The dot indicates outliers and the whiskers extend to the extreme values of the data, calculated as
±1.5× IQD from the median. ANOVA analysis supported the dependence of species presence on altitude
(P < 0.05). Abbreviations: Slovakia (SK), Hungary (H), Ukraine (UA), Poland (PL), Czech Republic (CZ)
and Austria (AU).

Full-size DOI: 10.7717/peerj.10039/fig-1

MATERIALS & METHODS
Study area
The Carpathians form an arc of mountains stretching across Central and Eastern Europe,
with its main geomorphological units being the Western and Southeastern Carpathians
(Kondracki, 1989). For this study, we focused on the W Carpathians representing the
northernmost segment of the Alpine-Carpathian mountain chain (Fig. 1A). The W
Carpathians reach medium altitudes (ranging from 500 to 1,300 m a.s.l.), only a few of
their ranges exceed 1,500 m a.s.l.; geologically the mountain system is characteristic by
interactions of rock folding and horizontal shifts (Bielik, 1999). Differences in altitude
and in the geomorphological relief determine the precipitation in the area. In general, W
Carpathian rivers have a rain-snow regime with floods in spring and summer.

Investigated localities (36 springs and 37 streams) are situated mainly on the territory of
the Slovak Republic, partially in the Czech Republic and Poland; in the geomorphological
units/subunits of the Inner and Outer Western Carpathians. The exceptions are Vihorlat
Mts (VM) being part of the Inner Eastern Carpathians and Poloniny Mts (PM) belonging
to the Outer Eastern Carpathians (Fig. 1B, Table S1).

Sampling and morphological identification
A qualitative sampling of benthic invertebrates took place in 2016 and 2017. The sampling
was performed in the framework of a broader research, which was permitted by The
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District Office, Department of Environmental Care Trenčín (Slovakia) No: OU-TN-
OSZP1-2015/001937-12/Du. A sampling of macrozoobenthos was carried out by a multi-
habitat kick-sampling technique (Frost, 1971) using a hydrobiological hand-net with a
mesh size of 0.5 mm. Organic material was fixed in 96% ethanol directly in the field. In
the laboratory, the invertebrates were picked off, sorted into higher taxonomic groups
using stereomicroscope, prefixed with absolute ethanol and stored in a freezer at −25 ◦C.
Elmidae beetles selected for molecular analysis were morphologically identified using the
available determination keys (Więźlak, 1986; Jäch, 1992).

DNA extraction and PCR amplification
Total DNA was extracted from the legs or abdominal tissue of 560 individuals (297
individuals of E. aenea; 263 individuals of L. perrisi) using the Chelex protocol (Casquet,
Thebaud & Gillespie, 2012), followed by PCR amplification of ca. 650 bp-long barcoding
fragment of the mitochondrial cytochrome c oxidase subunit I (COI) using the primer pair
LCO1490 and HCO2198 (Folmer et al., 1994). The PCR was performed in a total volume
of 25 µl containing 5 µl of 5× DreamTaq

TM
Buffer, 1.5 µl of Mg+2 (25 mM), 0.5 µl of

each primer (concentration 5 mM), 0.5 µl of dNTP Mix (20 mM), 0.125 µl (0.625 U)
DreamTaq TMDNA Polymerase, 11.875 µl ultra-pure H2O and 5 µl of DNA template.
The PCR cycling consisted of a 2-min initial denaturation at 94 ◦C, followed by 40 cycles
of 94 ◦C (40 s) denaturation, 46 ◦C (40 s) annealing and 72 ◦C (1 min) extension and
termination at 72 ◦C (10 min) for a final extension. A 4 µl aliquot of the PCR products were
visualized by GoldView (Solarbio) in electrophoresis on a 1% agarose gel and GelLogic
imaging equipment to check PCR product quality and length. The PCR products were
purified with Exo-FastAP Thermo Scientific and were sent for sequencing to Macrogen
Europe Inc., Amsterdam.

Data analyses
To determine whether the different habitat preference (springs, streams) between
the studied species is statistically significant, we used Fisher’s exact tests using the
fisher.test function in R v4.0.2 (http://www.r-project.org). It was performed for testing
the independence of rows (species: E. aenea, L. perrisi) and columns (springs, streams)
in a 2 × 2 contingency table. Odds ratio and p-value were computed. P-values <0.05
were considered statistically significant. We used analysis of variance (ANOVA) to test
significance of the influence of altitude on the presence of species in different habitats
(springs, streams). ANOVA test was performed in R v4.0.2 (http://www.r-project.org).
All R analysis were carried out using RStudio (RStudio Team, 2020). The altitude range of
E. aenea and L. perrisi is shown with boxplots.

The obtained sequences were edited using SEQUENCHER v5.1 software and aligned
using the MUSCLE algorithm (Edgar, 2004) in MEGA v7 (Kumar, Stecher & Tamura,
2016). In total, our study included 315 sequences of E. aenea species, of which 276 were
from the Western Carpathians and 269 sequences of L. perrisi, of which 245 were from the
Western Carpathians. We used 39 sequences of E. aenea (12 - Romania, 9 - Bulgaria, 15
- Germany, 2 - Finland, 1 - France) and 24 of L. perrisi (16 - Romania, 2 - Bulgaria, 6 -
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Germany) outside of W Carpathians for haplotype networks. Sequences from Germany,
Finland and France were downloaded from BOLD (http://www.boldsystems.org) and are
included in datasets DS-SKLIMPER (DOI: dx.doi.org/10.5883/DS-SKLIMPER) and DS-
SKELMAEN (DOI: dx.doi.org/10.5883/ DS-SKELMAEN). For the purposes of the paper,
individuals (sequences) from each locality of W Carpathians are defined as subpopulation
regardless of whether the locality is a spring or stream (Table S1).

The haplotype data files and the diversity indices were generated in DnaSP v5.10
(Librado & Rozas, 2009). We also calculated haplotype diversity (H), nucleotide diversity
(π), number of polymorphic sites (S) and average number of nucleotide differences (K) per
subpopulation of both species using DnaSP v5.10. Subsequently, a statistical comparison
of molecular genetic indices between species, based on p-values, was computed with the
Wilcoxon signed rank test for paired data in R v4.0.2 (http://www.r-project.org). The
results are presented by boxplots with p-values.

Haplotype networks were reconstructed using the median-joining method (MJN) in
PopART v1.7 (Leigh & Bryant, 2015). The networks include some sequences outside the
W Carpathians to explain the phylogenetic relationships and haplotype distribution of
E. aenea and L. perrisi in the broader context of the investigated localities.

The population structure of both species was characterized by the analysis of molecular
variance (AMOVA) and fixation indices (FST ) using Arlequin v3.5 (Excoffier & Lischer,
2010). The AMOVA was used to estimate whether the observed genetic diversity may
be attributed to the geographical partitioning of elmid beetle populations in three levels:
among geomorphological subunits, among subpopulations within subunits and within
subpopulations. For the consistency of the study, we also performed AMOVA for both
species based on the partitioning of the data according to river basins. The results and map
showing the river basins are included in the supplementary materials.

FST index is a measure of the genetic differentiation among subpopulations of individual
localities by haplotype frequencies. 265 E. aenea sequences (42 localities–29 springs, 13
streams) and 136 L. perrisi sequences (36 localities–5 springs, 31 streams) were included to
calculate the FST index. Localities with 1 sequence were excluded from the calculation. To
test the significance of covariance components and fixation indices, 1,000 permutations
were performed.

To test if spatial distance is structuring the molecular diversity we run two types of
isolation by distance tests: Mantel test (Mantel, 1967) and general spatial autocorrelation
test using the program Alleles in Space (Miller, 2005). Both tests analyse correlation
between spatial and molecular distance, to assess the significance tests were run with 1,000
permutations.

Further, the demographic and spatial dynamics of studied beetle populations were
examined by the mismatch distribution analysis in Arlequin v3.5. The recent demographic
expansion in both species was tested with Tajima’s D (Tajima, 1989), Fu’s Fs (Fu, 1997)
and Fu and Li’s D (Fu & Li, 1993) tests of selective neutrality and population stability,
performed in DnaSP. The significance of these tests was assessed with 10,000 permutations.

The fluctuations of demography of E. aenea and L. perrisi in the W Carpathians over
time were identified with the extended Bayesian Skyline Plot (eBSP) in BEAST v2.6.2
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software package (Bouckaert et al., 2019). The strict molecular clock was calibrated with
the standard mitochondrial rate for arthropod COI equal to 0.0115 substitutions/site/Myr
(Brower, 1994). The models of molecular evolution were set up through bModelTest
(Bouckaert & Drummond, 2017). For comparison, two runs of Monte Carlo Markov
Chains (MCMC) were performed for each species, each 40 million iterations long and
sampled every 10,000 iterations for eBSP log. The runs were examined in Tracer v1.7
(Rambaut et al., 2018) and all the parameters reached the effective sampling size (ESS)
above 200. After removal of 10% burn-in, the eBSP plots were produced using R v4.0.2
software (http://www.r-project.org). Both plots for each species were identical therefore
only one is presented.

All analysed sequences with GenBank accession numbers are available within two BOLD
datasets: DS-SKLIMPER for L. perrisi (DOI: dx.doi.org/10.5883/DS-SKLIMPER) and
DS-SKELMAEN for E. aenea (DOI: dx.doi.org/10.5883/DS-SKELMAEN).

RESULTS
The distribution of E. aenea and L. perrisi suggests statistically significant different habitat
preferences between these species in the W Carpathians (p< 0.0001; Fisher’s exact test).
E. aenea has a rather wide distribution in karst springs (31 sites), while it is less widespread
in streams (16 sites). On the contrary, L. perrisi was found only in eight springs, but in
30 streams. L. perrisi was also found in four streams of VM (Inner Eastern Carpathians)
and in one stream of PM (Outer Eastern Carpathians), while E. aenea was not recorded in
these geomorphological subunits. Both species co-occurred only in three springs and 14
streams from the total of 73 sites sampled in theWCarpathians (Table S1). There was also a
significant effect of altitude on the presence of both species registered, but the dependence
between altitude and habitat type (spring and stream) has not been demonstrated. The
altitude range of both elmid species is shown by boxplots in Fig. 1C.

The haplotype distribution within investigated area shows that local subpopulations of
the two elmid species are dominated, each, by the samewidespread haplotype (Figs. 2A, 3A).
Haplotype networks (Figs. 2B, 3B) also showed the similar haplotype pattern i.e., star-like
topology with a central most-frequent haplotype. However, statistical comparisons of
molecular genetic indices: haplotype diversity (H), nucleotide diversity (π), number of
polymorphic sites (S), and average number of nucleotide differences (K) showed significant
differences between the studied species. The population of E. aenea was significantly more
diverse than L. perrisi (P < 0.05, Wilcoxon signed-rank test, Fig. 4).

The W Carpathian population of E. aenea shares haplotypes with locations in Romania,
Bulgaria, Finland, Germany and France. 13 COI haplotypes of E. aenea were identified
within 276 individuals collected from 47 localities in the W Carpathians (Fig. 2A). The
haplotype diversity was 0.336. Considerable genetic homogeneity of the E. aenea population
in the W Carpathians resulted from the wide distribution of the dominant haplotype Ea1.
The haplotype map (Fig. 2B) revealed that the majority of haplotypes present in southern
part of the Carpathians Arc (Romania) and the haplotypes of the Balkan region (Bulgaria)
were not recorded from the W Carpathians. The exception was Ea14 shared between one
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Figure 2 Elmis aenea sampling sites with mtDNA (COI) haplotype distribution and haplotype net-
work. (A) Investigated springs (31) and streams (16) with 13 mtDNA haplotypes distribution. Haplotype
colors follow the Haplotype legend. Geomorphological units are represented by different fill color accord-
ing to the legend. (B) Median-Joining network showing the relationships among haplotypes Ea1 - Ea20
(including available haplotypes outside W Carpathians). Sequences from Romania (12 sequences), Bul-
garia (nine sequences), Finland (two sequences), Germany (15 sequences) and France (one sequence) are
used for suggesting possible phylogenetic relationships and haplotype distribution of the W Carpathian
haplotypes in the broader context. Circle fill colors follow the legend. Mutational steps are indicated with
bars, small black dots represent undetected haplotypes.

Full-size DOI: 10.7717/peerj.10039/fig-2

stream in Bulgaria and one spring (V050) in Slovakia (SOM). Individuals from Germany
shared the haplotype Ea3 with a single locality in the geomorphological unit FTA (V070).
In addition to dominant haplotype Ea1, another five haplotypes were found in FTA and
seven in SOM. Haplotypes Ea5 and Ea11 were private forWCarpathians and each occurred
in one spring of FTA (V009, V086). The private haplotypes of SOM included Ea7, Ea12
and Ea13, while all of them were located in the springs of SOM1 subunit (V038, V048).
Besides that, one spring of SOM1 (V043) shared haplotype Ea8 with the spring of the
geomorphological unit FTA (V020). In geomorphological unit WB, four haplotypes were
found, while Ea9 was found only at two localities (CZ03, CZ05). On the contrary, the
haplotype Ea4 was common in the SOM, FTA, CB and in Romania (Figs. 2A, 2B).
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Figure 3 Limnius perrisi sampling sites with mtDNA (COI) haplotype distribution and haplotype net-
work. (A) Investigated springs (eight) and streams (35) with 7 mtDNA haplotypes distribution. Hap-
lotype colors follow the Haplotype legend. Geomorphological units are represented by different fill col-
ors according to the legend. (B) Median-Joining network showing the relationships among haplotypes
Lp1 - Lp13. Sequences from Romania (16 sequences), Bulgaria (two sequences) and Germany (six se-
quences) are used for suggesting the possible phylogenetic relationships and haplotype distribution of the
W Carpathian haplotypes in the broader context. Circle fill colors follow the legend. Mutational steps are
indicated with bars, small black dots represent undetected haplotypes.

Full-size DOI: 10.7717/peerj.10039/fig-3

The W Carpathians population of L. perrisi was genetically more homogeneous. Eight
haplotypes with a haplotype diversity of 0.007 were found at 43 localities (245 sequences,
Fig. 3A). A group of five haplotypes (Lp5, Lp6, Lp7, Lp8, Lp9) recorded in Romania
and Bulgaria was highly divergent from the group found in the W Carpathians (Fig. 3B).
Haplotype Lp1 dominated in all geomorphological units of the W Carpathians; all German
sequences also belonged to this haplotype. The presence of private haplotypes was lower
compared to E. aenea: Lp14 from the one spring of SOM (V088), Lp10 in a stream of WB
(CZ06) and Lp11 from one spring of geomorphological unit FTA (V070). Besides that, two
more haplotypes (Lp3, Lp13) were present in the FTA. Lp13 was shared with the locality
of the different geomorphological unit SMC (SEL1). Lp3 was also present in unit WB, in
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addition to FTA (BEL3). The haplotype Lp2 was detected in a stream (CZ01) of WB and
occurred also in one stream (KRV1) located in VM (Figs. 3A, 3B).

The AMOVA showed that most of the observed molecular variance in theW Carpathian
populations of both elmid species is generated predominantly within subpopulations
(single localities). However, in E. aenea, the molecular variation among subpopulations
within geomorphological subunits is more than twice (34.99%) compared to L. perrisi
(12.86%) (Table 1). The same results were provided by the AMOVA according to the river
basins, where there is also almost no variation associated with the above sub-population
(locality) level (Fig. S1, Table S2).

The FST values indicate different levels of genetic differentiation between the E. aenea
localities 0–0.8 (Fig. 5A) compared to L. perrisi with 0–0.38 (Fig. 5B). The FST values of
E. aenea suggest that springs V009 (FTA1 - Little Carpathians), V038, and V048 (SOM1
- Slovak Karst) have relatively high pairwise differences in allele frequency, but some
level of genetic connectivity cannot be refused. Pairwise comparisons of differences in the
frequency of alleles that include mentioned springs are largely significant (P < 0.05). On
the other hand, none of L. perrisi FST values are statistically significant.
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Table 1 Analysis of molecular variance (AMOVA) calculated from 273 COImtDNA sequences of Elmis aenea and 245 COImtDNA sequences
of Limnius perrisi from studied springs and streams in theWCarpathians. Subunits= geomorphological subunits. The subpopulation is defined
as individuals of one sampling site, Table S1.

Source of variation dfa SSb Variance components % of variation F value p-value

E. aenea
Among subunits 10 5.704 0.00206 1.02 FCT = 0.010 > 0.352
Among subpopulations within subunits 36 19.768 0.07080 34.99 FSC = 0.353 > 0.000
Within subpopulations 230 29.784 0.12950 64 FST = 0.360 < 0.000
L. perrisi
Source of variation dfa SSb Variance components % of variation F value p-value
Among subunits 12 0.657 −0.00148 −3.16 FCT = 0.010 > 0.335
Among subpopulations within subunits 29 2.145 0.00602 12.86 FSC = 0.125 > 0.097
Within subpopulations 192 8.117 0.04227 90.3 FST = 0.097 < 0.074

Notes.
adf, Degree of freedom.
bSS, Sum of squares.

Tests of isolation by distance between springs of both species revealed a positive
correlation (Mantel test: E. aenea - r = 0.313, P = 0.000; L. perrisi - r = 0.4122, P = 0.039).
Although, only marginally positive but statistically significant correlations suggest a slight
structuring effect of the geographical distance among springs in both species. Additionally
in case of E. aenea, the spatial autocorrelation was also significant (P = 0.0009, Fig. S2),
for L. perrisi it was impossible to calculate it due to lack of data. The genetic distance of E.
aenea and L. perrisi in streams was not significantly correlated with the geographic distance
(Mantel test: r =−0.071, P = 0.153; r = 0.0574, P = 0.115).

Both species were characterized by the statistically significant, negative Fu’s Fs, Tajima’s
D and Fu and Li’s D neutrality test values (Table 2). This indicates a recent change in
population size of both species. The mismatch distribution analysis suggested a population
expansion event for both species, which was indicated by the unimodal shape of the
mismatch distribution plot, a small SSD value, and a non-significant p-value (Fig. 6).
The eBSP showed a signal of population growth in both species, although the time and
character was different. The W Carpathians population of E. aenea (Fig. 7A) started to
expand demographically roughly ca. 3,000–2,500 years ago, whereas the population of L.
perrisi expanded relatively sharply around 8,000 years ago (Fig. 7B).

DISCUSSION
This study was focused on the two oligo-stenotherm riffle beetles, Elmis aenea and Limnius
perrisi (Elmidae). The E. aenea occurred predominantly in karst springs and was rarely
found in streams of the W Carpathians, while the distributional pattern of L. perrisi
was opposite. This contradicts the previous claims about their common occurrence
and similar biotope preference (Moog & Jäch, 1995; García-Criado, Fernández-Aláez &
Fernández-Aláez, 1999). Differences in distribution probably can be also explained by
altitude, flow type or different ecological demands (Illies & Botosaneanu, 1963). However,
according to several studies, E. aenea is more sensitive to harsher conditions resulting from
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Table 2 Values of neutrality tests (Fu’s Fs, Tajima’s D, Fu and Li’s D test with p-values for Elmis aenea
and Limnius perrisimtDNACOI sequences.

Species Fu’s Fs test (p-value) Tajima’sD test (p-value) Fu and Li’sD test (p-value)

Elmis aenea −17.331 (0.000) −2.047 (0.001) −3.323 (< 0.02)
Limnius perrisi −14.064 (0.000) −2.004 (0.002) −3.320 (< 0.02)

changes of the aquatic environment, manifested, for example, by the loss of macrophytes
and moss (Maitland, 1967; Bradley & Ormerod, 2001; Hoffsten, 2003). These findings
may explain much greater affinity of E. aenea to springs that generally, with respect to
chemical, physical and trophic conditions, are more stable ecosystems compared to other
lotic habitats (Minshall & Winger, 1968; Odum, 1971; Butler & Hobbs, 1982; Cushing &
Wolf, 1984; Glazier & Gooch, 1987; Gooch & Glazier, 1991). This suggests that karst springs
ensured a suitable environment for survival of some aquatic species even during the ice age
(Thorup & Lindegaard, 1977). It supports the dinodal hypothesis (Malicky, 1983; Malicky,
2000) proposing that suitable aquatic habitats, persisted throughout the Pleistocene within
the periglacial area (dinodal biome), providing suitable conditions for the survival of
specialized oligo-stenotherm communities in Central Europe. However, based on our data
from the W Carpathians only, the dinodal hypothesis cannot be unequivocally confirmed
or refuted, but it clearly opens up new questions in the field of historical-molecular patterns
of elmid species in the W Carpathians.

Different results of the Bayesian Skyline Plot analyses between E. aenea and L. perrisi
confirmed an exceptional position of the springs. The springs could have a special status
in terms of providing stable environmental conditions irrespective of the climatic changes
even during the glacial and interglacial periods which did not provoke a dramatic decline or
increase of theE. aenea population size in theWCarpathians. In contrast, the populations of
L. perrisi, occurring predominantly in streams, began to expand rapidly after the LGP. At the
beginning of the Holocene (about 11.5–7.5 ka), a thermal maximum was recorded, which
probably enhanced the expansion of species (Dabkowski et al., 2019), which corresponds
to sudden expansion of L. perrisi. At that time, local W Carpathian glaciers disappeared
completely (Lindner et al., 2003), which led to opening of new migration routes and likely
also accelerated species dispersal. Early-Holocene warming is thought to be a major driving
force for population divergence in temperate species (Hewitt, 1999). On the other hand,
differences in genetic diversity among species, as recorded between E. aenea and L. perrisi
may be also influenced by variation in diversification rates (Ricklefs, 2007; Stadler, 2011).

The E. aenea population has occurred in springs at a significantly higher rate,
corresponding to its higher molecular diversity compared to L. perrisi that prefers streams
and its population is much more uniform. In line with our results, populations of two
cofamilial caddisfly species in south-eastern UK showed contrasting genetic patterns.
Polycentropus flavomaculatus showed much more pronounced genetic structure than
Plectrocnemia conspersa in the same region (Wilcock et al., 2007). In another study on
caddisflies of the Central European highlands, Drusus discolor contained three times more
haplotypes than Hydropsyche tenuis. Such findings suggest that the isolation of D. discolor
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Figure 6 Mismatch distribution analysis of (A, B) Elmis aenea and (C, D) Limnius perrisi of theW
Carpathian populations based onmtDNA. Each plot shows the number (Y axis) of pairwise nucleotide
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ferences, the dotted red line represents the pattern expected under a model of sudden demographic expan-
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Full-size DOI: 10.7717/peerj.10039/fig-6

populations in Central Europe is stronger and persists for a longer time than in H. tenuis
(Lehrian, Pauls & Haase, 2009). Both cases, similarly with species studied herein, confirm
that related and co-occurring species may currently have significantly different patterns of
molecular diversity, reflecting the different phylogeographical histories of the species and
their different autecological traits (Wilcock et al., 2007; Lehrian, Pauls & Haase, 2009).

Compared to aquatic species occurring in streams, the species preferring springs are
generally unable to spread extensively and likely persisted at the foothills of mountains
during unfavorable climatic conditions (Schmitt, 2007). As a consequence, many of the
geomorphological units of the European mountain systems have their own genetic lineages
or at least private haplotypes. In our study, we recorded significantly higher values of
molecular diversity and higher number of private haplotypes in E. aenea. In addition,
analysis of spatial autocorrelation for E. aenea in springs was significant and consistent
with these results. This suggests subpopulations in springs persisted in the study area for
a longer time, and are relatively isolated. Conversely, stream subpopulations are more
homogeneous and smaller, suggesting that they are probably more recent and are being
re-created when environmental conditions improve. Valuable examples documenting the
importance of the W Carpathians in terms of biodiversity richness were recent discoveries
of local endemism of cold-adapted gammarids from Gammarus balcanicus (Mamos et al.,
2014; Mamos et al., 2016) and Gammarus fossarum species complexes (Copilaş-Ciocianu
et al., 2017) or caddisfly species Drusus discolor. The latter persisted in the Tatra Mts in
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numerous refugia over multiple glacial cycles, allowing many local endemic clades to form
(Pauls, Lumbsch & Haase, 2006). In the case of E. aenea, the two localities in the Slovak
Ore Mts (SOM: V038, V048) and one locality in the Fatra-Tatra area (FTA: V009) had
remarkably high FST values, suggesting that some W Carpathian springs could constitute
Pleistocene refugia. According to several studies, the role of the W Carpathians as a glacial
refugium (Jamřichová, Potučková & Horsák, 2014; Mráz & Ronikier, 2016; Jamřichová, Petr
& Jiménez-Alfaro, 2017) for various species or genetic lineages is undoubted (Pinceel et
al., 2005; Magri et al., 2006; Wielstra, Babik & Arntzen, 2015; Mamos et al., 2016; Copilaş-
Ciocianu et al., 2017). However, to test whether this hypothesis also applies to Elmidae
riffle beetles requires further study in a broader geographical context.

Overall, the genetic differences between populations from different geomorphological
subunits of the W Carpathians were very low in both elmid species. However, higher FST
values in E. aenea correlated with the results of AMOVA. Genetic differentiation among
E. aenea subpopulations within geomorphological subunits was relatively high (34.99%).
This indicates that there are some well-pronounced differences in genetic composition
among most of the spring subpopulations of E. aenea within each geographical unit.
Similar results emerged from the study on the black fly Prosimulium neomacropyga in the
US Southern Rockies ecoregion with alpine tundra streams, where the differences among
streams within the region were 24.58% (Finn et al., 2006). In both elmid species, only a
single haplotype was abundant and widespread along the W Carpathians, surrounded
by several rare peripheral haplotypes in a star-shaped topology. Similarly, lack of deeper
genetic population structure was also found in the W Carpathian populations of the
blackfly Simulium degrangei (Jedlička et al., 2012). The maintenance of intraspecific genetic
diversity is generally very important for the adaptation potential and long-term survival
of species (Spielman, Brook & Frankham, 2004; Frankham, 2005). However, prolonged
persistence is possible even despite low levels of genetic diversity (Johnson et al., 2009).
Relatively homogeneous population patterns of both studied riffle beetles may reflect
their short history in the W Carpathians. The comparatively low genetic differentiation
among populations of trickle midges (Diptera: Thaumaleidae) in Northern Europe was
also explained by relatively recent, possibly post-glacial dispersal (Haubrock et al., 2017).

CONCLUSIONS
In conclusion, it seems that different habitat preferences of the two related aquatic beetle
species E. aenea and L. perrisi preserved their similar population-geographical patterns, but
shifted their molecular diversity, as well as the time and character of their distribution in the
W Carpathians. E. aenea, with higher molecular diversity, occurred mainly in the springs
compared to the genetically more homogenous population of L. perrisi that was found
mostly in streams. These findings support the attribution of the W Carpathian springs
to potential refugia with a suitable environment allowing for survival of aquatic biota
even during the unfavorable climatic conditions through geological ages and maintaining
or even developing its intraspecific genetic diversity. In addition, an isolation of the
W Carpathians springs is also indicated by the significant results of Mantel and spatial
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autocorrelation analysis in E. aenea. This study added new information about understudied
riffle beetle fauna of one of the world’s biodiversity hotspots, the W Carpathians. However,
further studies should include more samples from Southern and Eastern Europe in order
to understand the holistic biogeographic pattern of the target species and spring fauna in
general.
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