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ABSTRACT
Insect olfaction and vision play important roles in survival and reproduction. Diurnal
butterflies mainly rely on visual cues whereas nocturnal moths rely on olfactory
signals to locate external resources. Histia rhodope Cramer (Lepidoptera: Zygaenidae)
is an important pest of the landscape tree Bischofia polycarpa in China and other
Southeast Asian regions. As a diurnal moth, H. rhodope represents a suitable model
for studying the evolutionary shift from olfactory to visual communication. However,
only a few chemosensory soluble proteins have been characterized and information on
H. rhodope chemoreceptor genes is currently lacking. In this study, we identified 45
odorant receptors (ORs), nine ionotropic receptors (IRs), eight gustatory receptors
(GRs) and two sensory neuron membrane proteins (SNMPs) from our previously
acquired H. rhodope antennal transcriptomic data. The number of chemoreceptors of
H. rhodope was less compared with that found in many nocturnal moths. Some specific
chemoreceptors such as OR co-receptor (ORco), ionotropic receptors co-receptor,
CO2 receptors, sugar receptors and bitter receptors were predicted by phylogenetic
analysis. Notably, two candidate pheromone receptors (PRs) were identified within
a novel PR lineage. qRT-PCR results showed that almost all tested genes (22/24)
were predominantly expressed in antennae, indicating that they may be important
in olfactory function. Among these antennae-enriched genes, six ORs, five IRs and
two GRs displayed female-biased expression, while two ORs displayed male-biased
expression. Additionally, HrhoIR75q.2 and HrhoGR67 were more highly expressed
in heads and legs. This study enriches the olfactory gene inventory of H. rhodope and
provides the foundation for further research of the chemoreception mechanism in
diurnal moths.

Subjects Bioinformatics, Entomology, Genomics, Molecular Biology, Zoology
Keywords Chemosensory receptors, Phylogenetic analysis, Histia rhodope, Relative expression,
Diurnal insects

INTRODUCTION
Histia rhodope Cramer (Lepidoptera: Zygaenidae), a diurnal moth, is a destructive forest
pest widely distributed inChina and other Southeast Asian regions (Huang, 1980). Although
H. rhodope is an oligophagous pest, its larvae mainly feed on the leaves of Bischofia
polycarpa (Chinese bishopwood), resulting in severe defoliation. Mature larvae always fall
from the tree by spinning silk, which not only affects the appearance but also disturbs
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human activities (Huang, 1980; Yang et al., 2019). Upon eclosion, males court females
through nuptial flight in the afternoon. In addition, females release sex pheromones for
attracting males. After mating, females then search for suitable oviposition sites and lay
eggs (Yang et al., 2019). Therefore, the detection of sex pheromones is crucially important
for reproduction.

Olfaction plays an important role in many behaviors in insects. Insects depend on their
sensitive olfactory system to detect semiochemicals in complex environments (Gadenne,
Barrozo & Anton, 2016; Haverkamp, Hansson & Knaden, 2018). A myriad of proteins is
implicated in the process of olfactory perception. Chemoreceptors are key proteins that
interact directly with odorants and play an important role in the specificity and sensitivity of
insect peripheral chemoreception (Leal, 2013). Chemosensory receptors include odorant
receptors (ORs) (Clyne et al., 1999), gustatory receptors (GRs) (Agnihotri, Roy & Joshi,
2016) and ionotropic receptors (IRs) (Benton et al., 2009). Additionally, sensory neuron
membrane proteins (SNMPs), located in different dendrites of the olfactory receptor
neurons, function in odor detection (Rogers, Krieger & Vogt, 2001).

Insect ORs were first identified in the Drosophila melanogaster genome. They are
characterized by seven transmembrane domains (TMDs) with an intracellular N-
terminus and an extracellular C-terminus (Clyne et al., 1999). During chemosensory
signal transduction, ORs serve as signal-transducers by converting chemical signals into
electric signals in the insect olfactory process (Hallem & Carlson, 2006). Functional insect
ORs consist of a ligand-gated nonselective cation channel, composed of one divergent OR
subunit that confers odor specificity, and one conserved OR co-receptor (ORco) subunit
(Sato et al., 2008; Butterwick et al., 2018). The OR repertoire size is considerably variable
among insect species, and the genes are rapidly evolving (Andersson, Löfstedt & Newcomb,
2015; Robertson, 2019).

IRs belong to the ionotropic glutamate receptor family (iGluRs). Their molecular
structures consist of an extracellular ligand-binding domain with two lobes and an ion
channel (Benton et al., 2009). IRs can be divided into two subfamilies: conserved ‘antennal
IRs’, involved in olfaction, thermo- and hygrosensation, and species-specific ‘divergent
IRs’, found in peripheral and internal gustatory organs and involved in gustation (Croset
et al., 2010; Koh et al., 2014). Similar to ORco, IRs have highly conserved IR co-receptors
in different insect species, including IR8a, IR25a and IR76b, which are widely expressed
and play different roles in the process of odorant and taste sensation (Abuin et al., 2011).
Besides the perception of acids, amines and amino acids (Hussain et al., 2016), IRs are also
involved in sensing temperature and humidity stimuli, auditory function and regulating the
circadian clock (Senthilan et al., 2012; Chen et al., 2015; Ni et al., 2016; Frank et al., 2017).
To date, IRs function reported in lepidopteran species is quite limited. However, recent
research showed that IR8a was essential for acid-mediated feces avoidance in ovipositioning
hawkmoth, Manduca sexta (Zhang et al., 2019).

GRs and ORs have a similar membrane topology. GRs are mainly expressed in
the gustatory organs (Dunipace et al., 2001; Touhara & Vosshall, 2009; Guo et al., 2017),
although some genes are also expressed in insect antennae (Croset et al., 2010). Generally,
GRs are not highly conserved among insect species, and mainly detect some nonvolatile
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compounds and contact stimuli (Clyne, Warr & Carlson, 2000; Scott et al., 2001). However,
candidate carbon dioxide (CO2) receptors are highly conserved in lepidopteran species,
such as BmorGR1-3 receptor from Bombyx mori (Wanner & Robertson, 2008), HmelGR1-
3 from Heliconius melpomene (Briscoe et al., 2013) and HarmGR1-3 from Helicoverpa
armigera (Ning et al., 2016).

SNMPs belong to the cluster of differentiation 36 (CD36) receptor family with two
TMDs and are mainly expressed in pheromone sensitive neurons in Drosophila and moths
(Rogers, Krieger & Vogt, 2001; Benton, Vannice & Vosshall, 2007; Vogt et al., 2009). SNMPs
are divided into SNMP1 and SNMP2 subgroups (Forstner et al., 2008). Notably, SNMPs
are known to participate in pheromone detection (Jin, Ha & Smith, 2008; Pregitzer et
al., 2014; Sun et al., 2019), although the molecular mechanisms of their involvement in
chemoreception are unknown.

Although various olfactory related genes have recently been identified in numerousmoth
species, most of them are from nocturnal moths, such as Noctuidae and Pyralidae (Yuvaraj
et al., 2018). However, some moth species are diurnal, such as Castniidae, Phaudidae,
Sphingidae and Zygaenidae (Subchev, 2014;Monteys et al., 2016; Zheng et al., 2019; Chen et
al., 2020). Their activities are only observed during the daytime. Studies investigating the
chemosensory genes in diurnal moths are scarce. These genes have only been studied in
one non-ditrysian moth, Eriocrania semipurpurella (Eriocraniidae), belonging to the oldest
lineages of Lepidoptera (Yuvaraj et al., 2017). Visual and/or olfactory cues mediate the
orientation of most lepidopteran adults during mating. The contrasting lifestyles between
the diurnal and nocturnal insects result in a substantial distinction in their sensory biology:
diurnal butterflies primarily rely on visual cues while nocturnal moths largely rely on
olfactory signals (Martin et al., 2011; Arikawa, 2017). However, this does not imply that
butterflies are anosmic or moths are blind. Both butterflies and moths employ olfactory
signals for sex communication. Besides, even at night, male moths strongly rely on visual
cues from the landscape to track a pheromone trail to find a receptive female (Preiss &
Kramer, 1986). While diurnal moths search for mating partners using olfactory cues over
relatively long distances, they employ visual and auditory cues within short distances or
even a combination of visual, olfactory and auditory signals (Chen et al., 2020).

Nevertheless, there has been a notable chemosensory/visual shift between moths and
butterflies that at least affect long-range/short-range sex-attraction/courtship, as well as
certain aspects of host plant recognition (Costanzo & Monteiro, 2007). A previous study
of gene gain and loss within the general odorant binding proteins (GOBP)/pheromone
binding proteins (PBP) of two moths and butterflies revealed that diurnal butterflies
might have lost a PBP gene compared with nocturnal moths (Vogt, Grosse-Wilde & Zhou,
2015). Moreover, in our previous study, we constructed transcriptomes from both male
and female adult antennae of H. rhodope using de novo transcriptome sequencing and
assembly. We identified some chemosensory soluble proteins, such as odorant binding
proteins (OBPs), chemosensory proteins (CSPs) and Niemann-Pick type C2 proteins
(NPC2s) in this diurnal moth. We found that H. rhodope might also have lost a PBP
gene (Yang et al., 2020). Therefore, we hypothesize that H. rhodope could also have lost
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chemoreceptor genes associated with moth pheromone detection. However, the numbers,
expression profiles and functions of chemoreceptor genes in H. rhodope are unknown.

In the present study, we identified candidate chemoreceptor genes based on our
previous antennal transcriptomic data of H. rhodope (Yang et al., 2020). The phylogenetic
relationships between the ORs, IRs, GRs and SNMPs of H. rhodope and other insect
species were further investigated. Finally, we examined their tissue expression using
quantitative real-time PCR (qRT-PCR). This work provides the basis for future functional
characterization of olfactory genes in H. rhodope.

MATERIALS & METHODS
Insect rearing and tissue collection
H. rhodope was collected from B. polycarpa forest in Sui and Tang Dynasties City Ruins
Botanical Garden (112.45◦E, 34.64◦N) in Luoyang city, Henan province, China. We
received verbal permission to collect insects in Sui and Tang Dynasties City Ruins Botanical
Garden from Yi Zhao, the deputy dean of the Garden. The larvae were reared on fresh
B. polycarpa leaves under constant conditions of 25 ± 1 ◦C and 70 ± 5% relative humidity
with 16 h light: 8 h dark photoperiod. Adult moths were grouped based on their sex and
fed with 10% honey solution after emergence. For RNA-seq samples, 500 pairs of 1 day old
adult antennae from each gender were dissected. For qRT-PCR analysis, we collected 50
male antennae (MA), 50 female antennae (FA), 50 heads (♀: ♂ = 1:1; H) whose antennae
were cut off and 50 legs (♀: ♂ = 1:1; L) in three replications from 1 day old virgin adults.
After collection, the samples were preserved in liquid nitrogen for further use.

Identification of putative chemosensory receptor proteins
The antenna transcriptomes of unmated H. rhodope were reported in our previous study.
Six female and male antennae samples (three biological replicates each gender) were
separately sequenced using the Illumina Hiseq4000 platform. The female and male
antennae yielded at least 21.62 and 21.39 million clean reads per sample, respectively.
All clean reads from male and female samples were combined into an assembly that
generated 50,218 unigenes with a mean length of 1,031.08 bp and an N50 length of
2,247 bp (Yang et al., 2020). A tBLASTn analysis was performed using available ORs, IRs,
GRs and SNMPs protein sequences from lepidopteran species as ‘queries’ to identify
candidate unigenes in H. rhodope. All putative ORs, IRs, GRs and SNMPs were manually
checked using the BLASTx program in the National Center for Biotechnology Information
(NCBI) with a cut-off E-value of 10−5. The OR genes were numbered arbitrarily, while
the IR, GR and SNMP genes were named based on the highest scoring Blastx match from
the NR database. Open reading frames (ORFs) were predicted using the ORF Finder
(https://www.ncbi.nlm.nih.gov/orffinder/). The TMDs of the putative chemoreceptor
genes were predicted on the TOPCONS website (http://topcons.net/).

Comparison of transcript abundances of chemosensory
receptor genes
Using the assembled transcriptome as reference sequences, the clean data from various
samples ofH. rhodope weremapped back onto the reference sequences using Bowtie2 v2.1.0
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software (Langmead et al., 2009). The unigene expression levels among various samples
were estimated with RSEM (Li & Dewey, 2011) according to the read count values of the
unigenes for each sample, which were obtained from the mapping results. The transcript
abundance of candidate chemoreceptor genes in male and female antennal transcriptomes
was calculated using fragments per kb per million fragments (FPKM) values (Li & Dewey,
2011). Heatmap plots of the chemoreceptor gene expression were generated in Microsoft
Excel, using the conditional formatting option. For each plot, blue color was used for the
minimum value, yellow for the midpoint and red for the maximum value. For all gene
families, the range was specified for each tissue type independently, such that the color
gradient was set based upon the highest FPKM values within each tissue, not across all
tissues. The criteria for estimating significant differentially expressed genes were set as the
absolute value of log2 Fold Change >1.

Phylogenetic analysis
Phylogenetic trees of candidate chemoreceptors were constructed using MEGA7.0 software
(Kumar, Stecher & Tamura, 2016). Amino acid sequences were first aligned using the
program ClustalX (http://www.clustal.org/clustal2/). Maximum likelihood (ML) statistical
method was used to infer evolutionary relationship and unrooted trees were built with
the Jones-Taylor-Thornton (JTT) model used to obtain the initial trees for the heuristic
search. The tree calculation was carried out using 1,000 bootstrap replicates. Generated
trees were edited using Figtree software (http://tree.bio.ed.ac.uk/software/figtree/). The
protein sequences of chemoreceptors used for building phylogenetic trees are listed in
File S1.

Expression level analysis
We selected 10 ORs, all IRs, 3 GRs and 2 SNMPs to verify their expression profiles.
10 ORs and 3 GRs were selected for qRT-PCR analysis because they were significant
DEGs between male and female antennae according to the criteria as described above.
The relative expression levels of these genes in different tissues were determined using
qRT-PCR. Different tissues were collected from both male and female adults as described
above. Total RNA was extracted using TRIzol reagent. First-strand cDNA was synthesized
from 2 µg of total RNA using the PrimeScript RT reagent kit with gDNA Eraser (Takara,
Dalian, China) according to the manufacturer’s instructions. qRT-PCR primers (Table S1)
were designed with Primer Premier 5 (Premier Biosoft International, CA, USA) and
synthesized by Sangon Biotech Co., Ltd (Shanghai, China). The glyceraldehyde-phosphate
dehydrogenase (GAPDH) gene was identified from theH. rhodope antennal transcriptome
and used as the internal reference (Yang et al., 2020). The qRT-PCR was conducted on a
StepOne Plus Real-time PCR System (Applied Biosystems, Foster City, CA, USA) using
SYBR Premix ExTaq II (Tli RNaseH Plus) (Takara, Dalian, China). Each reaction (20 µL
volume) contained 2 µL cDNA, 10 µL SYBR R© Premix Ex Taq, 0.4 µL forward and reverse
primers (10 µM), and 7.2 µL RNase-free double distilled water. qRT-PCR was performed
as follows: initial denaturation at 95 ◦C for 3 min, 40 cycles at 95 ◦C for 10 s and 60 ◦C
for 30 s. Melting curve analysis was performed from 55 ◦C to 95 ◦C to determine the
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specificity of qPCR primers. To determine the efficiency of the qPCR primers, a standard
curve (cDNA concentration vs. Ct) was produced with a 5-fold dilution series of legs cDNA
corresponding to one microgram total RNA. qRT-PCR efficiencies were then calculated
according to the equation: E = (10−[1/slope] − 1)*100 (Pfaffl, 2001; Radonić et al., 2004).
The 2−11Ct method was used to analyze gene expression profiles (Pfaffl, 2001). All data
were normalized to endogenous GAPDH rRNA levels from the identical tissue sample, and
the relative fold change in the different tissues was calculated with the transcript level of
the legs as the calibrator. Each reaction was performed in triplicate (from three biological
replicates).

Relative expressions of each test gene from the different tissues were compared using
a one-way analysis of variance (ANOVA) in SPSS 20.0 software (IBM, Chicago, IL, USA)
followed by the least significant difference test (LSD) (critical values corresponding to
P = 0.05).

RESULTS
Identification and phylogenetic analyses of ORs in H. rhodope
A total of 45 candidate ORs, including 44 conventional ORs and one ORco, were identified
in H. rhodope antennal transcriptome (Table 1). Among these genes, 25 candidate OR
genes had 7 TMDs and full ORFs encoding more than 370 amino acids. HrhoORco
shared 85.44% sequence identity with Galleria mellonella ORco (NCBI ID: QEI46859)
and 84.81% sequence identity with Ostrinia furnacalis ORco (NCBI ID: XP_028178675).
Gene expression levels of all 45 ORs were assessed using the FPKM values, where 23 ORs
were relatively highly expressed in the FA and two ORs were relatively highly expressed in
the MA. The remaining 20 ORs showed no differences in expression levels between sexes
(Fig. 1A).

A phylogenetic tree was constructed with 195 ORs from H. rhodope, B. mori,
H. armigera, O. furnacalis, Cnaphalocrocis medinalis, Heliothis virescens, Dendrolimus
punctatus, Spodoptera littoralis and M. sexta. Most of the HrhoORs have orthologous
relationships with the other lepidopteran species (Fig. 2). As anticipated, HrhoORco
clustered in the ORco family. In addition, four HrhoORs (HrhoOR4, 16, 39 and 40) were
segregated into one unique clade whereas HrhoOR15/23, HrhoOR2/32 and HrhoOR21/28
clustered together. Interestingly, H. rhodope ORs lacked in the classical moth pheromone
receptor (PR) clade, while HrhhoOR14 and HrhoOR30 clustered within a novel PR clade
containing SlitOR5 in S. littoralis and several candidate PRs from D. punctatus. These
ORs were recently identified as a novel lineage of PRs detecting type I pheromones in
Lepidoptera (Bastin-Héline et al., 2019; Shen et al., 2020).

Identification and phylogenetic analyses of IRs in H. rhodope
Nine putative IRs were identified from the antennal transcriptome of H. rhodope and
named as HrhoIR8a, 21a, 76b, 41a, 60a, 75q2, 68a, 75p and 40a based on homologous
sequences from other insects (Table 2). All candidate IRs were partial sequences and the
TMDs of IRs ranged from 1 to 4.Three IRs (HrhoIR8a, 60a and 75q.2) were significantly
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Table 1 The best Blast match of candidate odorant receptors (ORs) inH. rhodope.

Accession
number

Gene name ORF (bp) Complete
ORF

TMD
(No.)

Blastx annotation (Description/Species) Accession
number

E-value Identity
(%)

MN515166 HrhoOrco 1422 Y 7 Orco [Galleria mellonella] QEI46859.1 0 85.44
MN515167 HrhoOR1 687 N 4 Olfactory receptor 11 [Ctenopseustis obliquana] AIT71985.1 5.00E−40 36.65
MN515168 HrhoOR2 978 N 6 Putative odorant receptor OR57 [Cydia nigri-

cana]
AST36406.1 2.00E−57 34.97

MN515169 HrhoOR3 1215 Y 7 Odorant receptor [Eogystia hippophaecolus] AOG12952.1 1.00E−149 51.36
MN515170 HrhoOR4 1203 Y 7 Olfactory receptor 66 [Ctenopseustis herana] AIT69908.1 3.00E−79 35.09
MN515171 HrhoOR5a 669 N 4 Odorant receptor 94a-like isoform X2

[Manduca sexta]
XP_030035689.1 8.00E−47 47.32

MN515172 HrhoOR5b 603 N 2 Putative olfactory receptor 21 [Ostrinia fur-
nacalis]

BAR43463.1 2.00E−86 64.14

MN515173 HrhoOR6 1212 Y 7 Putative odorant receptor OR27 [Hedya
nubiferana]

AST36262.1 0 67.33

MN515174 HrhoOR7 1224 Y 7 Odorant receptor [Eogystia hippophaecolus] AOG12916.1 1.00E−135 49.63
MN515175 HrhoOR8 714 N 3 Odorant receptor [Eogystia hippophaecolus] AOG12915.1 3.00E−102 63.14
MN515176 HrhoOR9 417 N 3 Putative odorant receptor 92a [Bombyx man-

darina]
XP_028031179.1 1.00E−22 36.96

MN515177 HrhoOR10 1341 Y 7 Odorant receptor 1 [Cnaphalocrocis medinalis] ALT31655.1 0 63.33
MN515178 HrhoOR11 1185 Y 7 Odorant receptor 85c-like [Vanessa tameamea] XP_026493935.1 3.00E−88 38.66
MN515179 HrhoOR12 792 N 6 Odorant receptor [Eogystia hippophaecolus] AOG12948.1 1.00E−143 74.62
MN515180 HrhoOR13 1152 Y 7 Odorant receptors OR25 [Lobesia botrana] AXF48775.1 1.00E−158 56.49
MN515181 HrhoOR14 1206 Y 7 Putative odorant receptor OR30 [Cydia

pomonella]
AFC91738.2 7.00E−122 44.56

MN515182 HrhoOR15 378 N 3 Putative odorant receptor 57 [Conopomorpha
sinensis]

AXY83406.1 1.00E−30 47.54

MN515183 HrhoOR16 1188 Y 7 Olfactory receptor 66 [Ctenopseustis herana] AIT69908.1 2.00E−97 40.54
MN515184 HrhoOR17 1263 Y 7 Putative odorant receptor OR13 [Hedya

nubiferana]
AST36253.1 9.00E−156 55.81

MN515185 HrhoOR18 1176 Y 7 Odorant receptor [Eogystia hippophaecolus] AOG12907.1 0 67.70
MN515186 HrhoOR19 1302 Y 7 putative odorant receptor OR63 [Hedya

nubiferana]
AST36285.1 1.00E−154 49.07

MN515187 HrhoOR20 951 N 4 odorant receptor [Eogystia hippophaecolus] AOG12933.1 2.00E−119 54.78
MN515188 HrhoOR21 1233 Y 7 olfactory receptor 11 [Ctenopseustis herana] AIT69876.1 6.00E−101 40.35
MN515189 HrhoOR22 1200 Y 7 olfactory receptor 20 [Helicoverpa armigera] ACC63240.1 6.00E−121 44.99
MN515190 HrhoOR23 1110 Y 7 olfactory receptor OR54 [Planotortrix octo] AJF23812.1 2.00E−145 54.30
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Table 1 (continued)

Accession
number

Gene name ORF (bp) Complete
ORF

TMD
(No.)

Blastx annotation (Description/Species) Accession
number

E-value Identity
(%)

MN515191 HrhoOR24 1212 Y 7 olfactory receptor 27 [Helicoverpa armigera] ARF06962.1 8.00E−115 45.18
MN515192 HrhoOR25 1197 Y 7 odorant receptor [Eogystia hippophaecolus] AOG12927.1 0 71.43
MN515193 HrhoOR26 1332 Y 7 olfactory receptor 71 [Ctenopseustis herana] AIT69911.1 0 65.08
MN515194 HrhoOR27 378 N 2 olfactory receptor 37 [Carposina sasakii] AYD42255.1 2.00E−42 51.22
MN515195 HrhoOR28 352 N 2 putative olfactory receptor 25 [Ostrinia fur-

nacalis]
BAR43467.1 4.00E−22 36.75

MN515196 HrhoOR29 1230 Y 7 odorant receptor 24a-like [Ostrinia furnacalis] XP_028158823.1 0 71.15
MN515197 HrhoOR30 1194 N 6 odorant receptor [Eogystia hippophaecolus] AOG12934.1 3.00E−91 36.57
MN515198 HrhoOR31 1284 Y 7 odorant receptor [Eogystia hippophaecolus] AOG12926.1 0 75.93
MN515199 HrhoOR32 927 N 3 putative odorant receptor OR57 [Cydia nigri-

cana]
AST36406.1 3.00E−47 33.00

MN515200 HrhoOR33 756 N 5 olfactory receptor 14 [Heortia vitessoides] AZB49428.1 7.00E−84 53.57
MN515201 HrhoOR34 1212 Y 7 odorant receptors OR29 [Lobesia botrana] AXF48779.1 0 65.58
MN515202 HrhoOR35 612 N 3 Olfactory receptor 23 [Manduca sexta] CUQ99405.1 5.00E−64 52.24
MN515203 HrhoOR36 1218 Y 7 odorant receptor [Eogystia hippophaecolus] AOG12941.1 2.00E−134 46.56
MN515204 HrhoOR37 1143 Y 7 olfactory receptor 32 [Cnaphalocrocis medi-

nalis]
ANZ03145.1 4.00E−159 56.74

MN515205 HrhoOR38 1215 N 0 putative odorant receptor [Peridroma saucia] AVF19641.1 0 67.48
MN515206 HrhoOR39 1005 N 6 Olfactory receptor 65 [Manduca sexta] CUQ99419.1 1.00E−69 38.74
MN515207 HrhoOR40 489 N 3 putative odorant receptor OR23 [Athetis lep-

igone]
AOE48028.1 3.00E−41 43.90

MN515208 HrhoOR41 1335 Y 7 gustatory receptor 6 [Helicoverpa armigera] ASW18695.1 0 67.59
MN515209 HrhoOR42 720 N 1 putative odorant response protein ODR-4

[Danaus plexippus plexippus]
OWR50364.1 2.00E−144 84.45

MN515210 HrhoOR43 526 N 3 Odorant receptor [Eogystia hippophaecolus] AOG12949.1 2.00E−28 37.42

Yang
etal.(2020),PeerJ,D

O
I10.7717/peerj.10035

8/28

https://peerj.com
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515191
http://www.ncbi.nlm.nih.gov/protein/ARF06962.1
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515192
http://www.ncbi.nlm.nih.gov/protein/AOG12927.1
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515193
http://www.ncbi.nlm.nih.gov/protein/AIT69911.1
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515194
http://www.ncbi.nlm.nih.gov/protein/AYD42255.1
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515195
http://www.ncbi.nlm.nih.gov/protein/BAR43467.1
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515196
http://www.ncbi.nlm.nih.gov/protein/XP_028158823.1
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515197
http://www.ncbi.nlm.nih.gov/protein/AOG12934.1
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515198
http://www.ncbi.nlm.nih.gov/protein/AOG12926.1
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515199
http://www.ncbi.nlm.nih.gov/protein/AST36406.1
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515200
http://www.ncbi.nlm.nih.gov/protein/AZB49428.1
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515201
http://www.ncbi.nlm.nih.gov/protein/AXF48779.1
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515202
http://www.ncbi.nlm.nih.gov/protein/CUQ99405.1
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515203
http://www.ncbi.nlm.nih.gov/protein/AOG12941.1
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515204
http://www.ncbi.nlm.nih.gov/protein/ANZ03145.1
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515205
http://www.ncbi.nlm.nih.gov/protein/AVF19641.1
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515206
http://www.ncbi.nlm.nih.gov/protein/CUQ99419.1
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515207
http://www.ncbi.nlm.nih.gov/protein/AOE48028.1
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515208
http://www.ncbi.nlm.nih.gov/protein/ASW18695.1
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515209
https://www.ncbi.nlm.nih.gov/nucleotide?term=OWR50364.1
https://www.ncbi.nlm.nih.gov/nucleotide?term=MN515210
http://www.ncbi.nlm.nih.gov/protein/AOG12949.1
http://dx.doi.org/10.7717/peerj.10035


MA FA MA FA MA FA

HrhoOrco HrhoOR22 HrhoIR8a

HrhoOR1 HrhoOR23 HrhoIR21a

HrhoOR2 HrhoOR24 HrhoIR76b

HrhoOR3 HrhoOR25 HrhoIR41a

HrhoOR4 HrhoOR26 HrhoIR60a

HrhoOR5a HrhoOR27 HrhoIR75q.2

HrhoOR5b HrhoOR28 HrhoIR68a

HrhoOR6 HrhoOR29 HrhoIR75p

HrhoOR7 HrhoOR30 HrhoIR40a

HrhoOR8 HrhoOR31

HrhoOR9 HrhoOR32 MA FA

HrhoOR10 HrhoOR33 HrhoGR2

HrhoOR11 HrhoOR34 HrhoGR3

HrhoOR12 HrhoOR35 HrhoGR4

HrhoOR13 HrhoOR36 HrhoGR7

HrhoOR14 HrhoOR37 HrhoGR29

HrhoOR15 HrhoOR38 HrhoGR64a

HrhoOR16 HrhoOR39 HrhoGR67

HrhoOR17 HrhoOR40 HrhoGR68.1

HrhoOR18 HrhoOR41

HrhoOR19 HrhoOR42 MA FA

HrhoOR20 HrhoOR43 HrhoSNMP1

HrhoOR21 HrhoSNMP2
min. mid. max.

A B

C

D

Figure 1 Heat map of FPKM values for ORs, IRs, GRs and SNMPs in male antennae (MA) and female
antennae (FA). Blue color indicates low expression, yellow color indicates moderate expression and red
color indicates high expression. FA, female antennae; MA, male antennae. (A) ORs, odorant receptors, (B)
IRs, ionotropic receptors, (C) GRs, gustatory receptors, (D) SNMPs, sensory neuron membrane proteins.

Full-size DOI: 10.7717/peerj.10035/fig-1

higher expressed in FA than in MA. The highest FPKM value of IRs (HrhoIR68a, FPKM =
202.80) was found in the FA (Fig. 1B).

A phylogenetic tree was constructed with 99 IRs from H. rhodope, Cydia pomonella,
Epiphyas postvittana and D. melanogaster (Fig. 3). We found that HhroIR8a, HrhoIR76b,
HrhoIR75p,HrhoIR75q.2, HrhoIR21a,HrhoIR68a,HrhoIR40a,HhroIR60 andHrhoIR41a
were clustered into IR8a, IR76b, IR75, IR21a, IR68a, IR40a, IR60a and IR41a clades with
high bootstrap values, respectively. According to their positions in the phylogenetic tree
and based on the strong bootstrap support, the candidate HrhoIRs names were consistent
with the number and suffix of known IRs. However, no orthologs for IR25a, IR75d, IR93a
and IR87a were identified from H. rhodope.

Identification and phylogenetic analyses of GRs in H. rhodope
We identified eight candidate GR genes in the antennal transcriptomes of H. rhodope
(Table 3). All GR genes had incomplete ORFs ranging from 390 to 1218 bp in length with
1–5 TMDs. The FPKM values of all HrhoGRs were less than those of OR, IR and SNMP
genes. Three GR genes (HrhoGR3, HrhoIR29 and HrhoIR64a) were significantly higher
expressed in the FA than in the MA (Fig. 1C).

Phylogenetic analysis of 81 GRs from five lepidopteran species showed that several
candidate GRs were closely related to other known insect GRs that function as sugar
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receptors, bitter receptors and CO2 receptors. HrhoGR7 and HhroGR64a clustered into
sugar receptor clade, HrhoGR67 clustered into bitter receptor subfamily and HrhoGR2
clustered into the CO2 receptor clade. Notably, the other four GRs (HrhoGR3/4/29/68.1)
had orthologous relationships with C. pomonella (Fig. 4).

Identification and phylogenetic analyses of SNMPs in H. rhodope
We identified two candidate SNMPs (HrhoSNMP1 and HrhoSNMP2) from antennal
transcriptomes of H. rhodope (Table 4). Two SNMP genes had intact ORFs (length:
1,422-1,581 bp) with 1–2 TMDs. According to the FPKM values of SNMPs, HrhoSNMP1
and HrhoSNMP2 were equally expressed in both the FA and the MA groups (Fig. 1D).
SNMPs phylogenetic tree revealed that HrhoSNMP1 and HrhoSNMP2 clustered into
SNMP1 and SNMP2 clades, respectively (Fig. 5).

Tissue-specific expression analysis by qRT-PCR
To assess the difference in expression of chemoreceptor genes between male and female
antennae, heads (without antennae) and legs and test the RNA-Seq results, 10 ORs, all IRs, 3
GRs and 2 SNMPs were selected for qRT-PCR. The results showed that the expression levels
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Table 2 The best Blast match of candidate ionotrpic receptors (IRs) inH. rhodope.

Accession
number

Gene
name

ORF
(bp)

Complete
ORF

TMD
(No.)

Blastx annotation (Description/Species) Accession
number

E-value Identity
(%)

MN515211 HrhoIR8a 2631 N 4 Ionotropic receptor 8a [Ostrinia furnacalis] BAR64796.1 0 73.84
MN515212 HrhoIR21a 1182 N 2 Ionotropic receptor 21a [Eogystia hippophaecolus] AOG12851.1 0 68.77
MN515213 HrhoIR76b 693 N 1 Putative ionotropic receptor IR76b [Cydia nigricana] AQM73618.1 4E−99 63.22
MN515214 HrhoIR41a 1128 N 1 Ionotropic receptor 41a [Ostrinia furnacalis] BAR64800.1 2E−142 56.75
MN515215 HrhoIR60a 1959 N 3 Ionotropic receptor IR60a [Cnaphalocrocis medinalis] APY22698.1 0 49.92
MN515216 HrhoIR75q.2 1686 N 3 Putative ionotropic receptor IR75q.2 [Cydia fagiglandana] AST36364.1 0 62.14
MN515217 HrhoIR68a 1302 N 4 Ionotropic receptor 68a [Eogystia hippophaecolus] AOG12853.1 0 74.88
MN515218 HrhoIR75p 1707 N 2 Ionotropic receptor 75a-like [Bombyx mandarina] XP_028025288.1 0 63.46
MN515219 HrhoIR40a 1632 N 2 Ionotropic receptor 40a [Manduca sexta] XP_030034643.1 0 79.96
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of the tested genes in the male and female antennae were consistent with the RNA-Seq
results. The qRT-PCR results revealed that all 10 HrhoORs were significantly higher
expressed in the antennae than in the heads and legs. Furthermore, 6 OR genes (HrhoOR9,
24, 26, 33, 37 and 40) were significantly higher expressed in the FA while HrhoOR4 and
HrhoOR13 were significantly higher expressed in the MA. Interestingly, HrhoORco and
HrhoOR11 showed no differences in expression between sexes (Figs. 6A–6J). Notably,
HrhoORco, HrhoOR4 and HrhoOR37 showed higher expression levels in the antennae
compared with the expression levels of other HrhoORs.

The qRT-PCR results revealed that the expression of 5 IRs (HrhoIR8a, 21a, 40a, 60a and
76b) was significantly higher in the FA while that of 3 genes (HrhoIR41a, 68a and 75p) was
equally expressed in the antennae of both sexes. Additionally, we found that HrhoIR75q.2
andHrhoIR40 had higher expression in the heads compared with other genes (Figs. 6K–6S).

HrhoGR2 andHrhoGR64adisplayed significant FA-specific expressions, whileHrhoGR67
had significantly higher expression in the heads than in other tissues (Figs. 6T–6V).
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Table 3 The best BLASTmatch of candidate gustatory receptors (GRs) inH. rhodope.

Accession
number

Gene name ORF
(bp)

Complete
ORF

TMD
(No.)

Blastx annotation (Description/Species) Accession
number

E-value Identity
(%)

MN515222 HrhoGR2 612 N 4 Putative gustatory receptor GR2 [Hedya nubiferana] AST36211.1 7E−116 88.24
MN515223 HrhoGR3 390 N 2 Antennal gustatory receptor 9 [Dendrolimus punctatus] ARO70281.1 5E−36 50.38
MN515224 HrhoGR4 198 N 1 Antennal gustatory receptor 9 [Dendrolimus punctatus] ARO70281.1 7E−10 55.32
Mn515229 HrhoGR7 237 N 1 Gustatory receptor 7 [Operophtera brumata] KOB71247.1 1E−11 47.06
MN515225 HrhoGR29 393 N 2 Putative gustatory receptor GR29 [Cydia fagiglandana] AST36346.1 1E−29 45.45
MN515226 HrhoGR64a 1218 N 5 Gustatory receptor for sugar taste 64a-like [Bombyx

mandarina]
XP_028037655.1 7E−153 53.50

MN515227 HrhoGR67 693 N 4 Gustatory receptor 67 [Bombyx mori] NP_001233216.1 4E−48 38.29
MN515228 HrhoGR68.1 879 N 4 Putative gustatory receptor GR68.1 [Hedya nubiferana] AST36219.1 1E−43 34.56
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HrhoSNMP1 and HrhoSNMP2 were significantly expressed at high levels in the antennae
in both sexes; HrhoSNMP2 was also highly expressed in heads (Figs. 6W–6X).

DISCUSSION
To date, a growing number of chemosensory genes have been identified inmoths. However,
most of the genes are from nocturnal moths (Ditrysia) (Yuvaraj et al., 2018). Currently,
the molecular basis of chemoreception in the Zygaenidae family of diurnal moths is poorly
understood. The identification and characterization of the chemoreceptor genes of H.
rhodope, an important forest pest and diurnal moth, will improve our understanding
of olfaction mechanisms in Zygaenidae and provide the basis for further exploration of
sensory disparities between the diurnal and nocturnal moths.

In the present study, we identified 45 ORs, 9 IRs, 8 GRs and 2 SNMPs from our previous
H. rhodope transcriptomic data (Yang et al., 2020). The number of chemoreceptor genes
in H. rhodope was less compared to previously reported numbers in other nocturnal
lepidopteran species, such as 62 ORs, 20 IRs and 16 GRs in Mythimna separata (Du et al.,
2018), 64 ORs, 22 IRs and 30 GRs in Spodoptera exigua (Zhang et al., 2018), 60 ORs, 21
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Table 4 The best BLASTmatch of candidate sensory neuronmembrane proteins (SNMPs) inH. rhodope.

Accession
number

Gene
name

ORF
(bp)

Complete
ORF

TMD
(No.)

Blastx annotation (Description/Species) Accession
number

E-value Identity
(%)

MN515220 HrhoSNMP1 1581 Y 2 Sensory neuron membrane protein 1 [Papilio xuthus] KPI90909.1 0 66.22
MN515221 HrhoSNMP2 1422 Y 1 Sensory neuron membrane protein 2 [Ostrinia nubilalis] E5EZW9.1 0 64.08
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IRs and 197 GRs in H. armigera (Liu et al., 2014; Xu et al., 2016), 60 ORs, 17 IRs and 17
GRs in S. littoralis (Walker III et al., 2019) and 58 ORs, 21 IRs and 22 GRs in C. pomonella
(Walker III et al., 2016). Previous studies reported that different chemosensory behavior
(Zhang et al., 2017), life stage (He et al., 2017), ecological niche breadth (Gouin et al., 2017),
phenotype (Purandare & Brisson, 2020), mating status (Jin et al., 2017), circadian rhythm
(Gadenne, Barrozo & Anton, 2016) and feeding trait (Taparia, Ignell & Hill, 2017) influence
the variation in chemosensory gene number. The smaller number of genes identified in the
current study may be due to the following reasons. Firstly, we identified olfactory related
genes from antenna transcriptome data only, whereas previous studies used transcriptome
data from different developmental stages and organs, especially for GRs. Secondly, the
number of chemosensory genes may be related to its ability for diverse host-odor detection
to feed on the range size of host plants (Gouin et al., 2017). H. rhodope is an oligophagous
pest requiring no additional olfactory proteins to perceive single host chemicals (Gouin
et al., 2017; Yang et al., 2020). Finally, H. rhodope is a diurnal insect, although it is a moth
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Figure 6 Relative expression levels of the chemoreceptor genes in the male antennae, female antennae,
heads and legs fromH. rhodope. (A–J) ORs. (K–S) IRs. (T–V) GRs. (W–X) SNMPs. MA, male antennae;
FA, female antennae; H, heads (without antennae); L, legs. The GAPDH was used as the reference gene,
Gene expressions in various tissues are normalized relative to that in legs. Different lowercase letters mean
significant difference between tissues (p< 0.05, ANOVA, LSD).

Full-size DOI: 10.7717/peerj.10035/fig-6

and not a butterfly. Diurnal moths mainly depend on visual cues while nocturnal moths
mainly depend on their odorant signals (Vogt, Grosse-Wilde & Zhou, 2015). Chemosensory
gene loss in diurnal moths compared to nocturnal moths could result from the shift from
olfactory to visual communication.

Odorant receptors act as signal-transducers that convert chemical molecules to electrical
signals in insects (Leal, 2013). ORs are desirable targets for alternative strategies to control
insect populations due to their critical roles in the initial steps of the olfactory response
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process (Venthur & Zhou, 2018). In this study, 44 specific ORs and 1 ORco were identified.
ORco genes are widely expressed and highly conserved among lepidopteran species and
play a key role in insect olfaction (Touhara & Vosshall, 2009). HrhoORco shared a high
degree of similarity with the ORco genes of other insects and clustered into the ORco
subfamily. Previous studies showed that many ORco mutants were anosmic. For instance,
mutagenesis of BmolORco and MsexORco severely disrupted the olfactory system (Liu
et al., 2017a; Fandino et al., 2019), suggesting that the ORco genes might be the primary
potential target genes for pest management.

Generally, phylogenetic analysis of lepidopteran ORs showed two specific branches
comprising the ORco orthologs and the traditional PR clade. Interestingly, no PRs were
related to the conserved lepidopteran PR clade. However, two ORs (HrhoOR14 and 30)
clustered into a novel lineage distantly related to the conserved lepidopteran PR clade.
Notably, several DpunPRs (Shen et al., 2020) and SlitOR5 (Bastin-Héline et al., 2019) that
grouped with HrhoOR14 and 30 were recently characterized as a new evolution origin of
PRs in Lepidoptera. We speculate that these two ORs may be involved in the detection of
H. rhodope sex pheromones, although further functional analysis is needed to confirm this
hypothesis. Besides phylogenetic analysis, the expression pattern is another main criterion
used to select candidate PRs for functional studies. SlitOR5 and DpunPRs were all highly or
specifically expressed in the MA. Unfortunately, we did not conduct the expression levels
of HrhoOR14 and 30 by qRT-PCR. However, according to the FPKM values, HrhoOR14
exhibited male-biased expression while HrhoOR30 exhibited female-biased expression.
This expression pattern was similar to the novel lineage of PRs, whereby approximately
one-half of the ORs were male-biased and the other half were female-biased (Bastin-Héline
et al., 2019).

The expression patterns of candidate genes may reveal important clues into their
functions. Overall, sexually differential expressions of ORs in antennae suggest a possible
involvement of PRs in sexual behaviors. Female-biased ORs are believed to play a role
in detecting oviposition-related odorant (Pelletier et al., 2010) or pheromones (signals)
released by males (Anderson et al., 2009), whereas male-biased ORs potentially function
in the detection of sex pheromones released by females (Zhang & Löfstedt, 2013). ORs
expressed evenly between female and male antennae are predicted to take part in general
odorant perception (Yan et al., 2015). Therefore, we speculate that male-biased expressed
ORs (HrhoOR4 and 13) are likely to participate in female pheromone perception. On the
other hand, female-biased expressed HrhoORs, including HrhoOR9, 24, 26, 33, 37 and
40, may function in the detection of oviposition-related plant odors or male-produced
courtship pheromones. The other HrhoORco and HrhoOR11 with approximately equal
expression levels between female and male antennae are likely to function in the detection
of food source odors. In addition, HrhoOR37 was orthologous to CmedOR32 according
to phylogenetic analysis, and the expression levels of these two OR genes were higher in the
FA than in the MA (Liu et al., 2017b). Therefore, we speculate that these two orthologous
OR genes may play similar roles in odor detection. Detailed functional studies of these
sex-specific ORs should be performed in further studies.
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IRs are a new subfamily of chemosensory receptors. IRs are relatively conserved in
both the sequence and the expression patterns and are widely distributed throughout the
body parts, including the labellum, pharynx, leg and wing compared with ORs (Koh et
al., 2014; Rimal & Lee, 2018). In this study, 9 IRs were identified. IR8a, IR25a and IR76b
were regarded as co-receptors just like ORco as they were co-expressed along with other
stimulus-specific IRs (Abuin et al., 2011). HrhoIR8a and HrhoIR76b clustered in the
IR8a/IR25a/IR76b subfamily, indicating that these two genes may perform a function
similar to that of the co-receptors in D. melanogaster. Interestingly, IR25a, one of the
conserved IR co-receptors, was not identified in this study. The failure to identify IR25a
could be due to the low expression levels in the antennae in this species. Other IRs found
in antennae belong to the conserved ‘‘antennal IRs’’ (Croset et al., 2010) and have their
respective orthologs. This revealed that IRs are highly conserved across insect orders and
HrhoIRs may have conserved functions, retaining their roles as IRs in other Lepidoptera
species. However, the function of these IRs has been studied in D. melanogaster. For
example, DmelIR21a and 25a are essential for cool sensing (Ni et al., 2016), IR40 and
IR68a are involved in the detection of temperature and humidity (Enjin et al., 2016;
Frank et al., 2017), IR75 functions in acid sensing (Prieto-Godino et al., 2017) and IR76b is
involved in the sensation of taste (Ganguly et al., 2017). Therefore, HrhoIR21a, HrhoIR40a,
HrhoIR68a, HrhoIR75 and HrhoIR76b are predicted to perform functions similar to those
in D. melanogaster, which may involve activation by acids, temperatures, humidity and
other factors. The function of IRs in lepidopteran species is still unclear, warranting further
functional studies. In the expression patterns of the 9 IRs identified, 8 HrhoIRs were highly
expressed in the antennae, indicating that these IRs may participate in odor, thermo- and
hygrosensation. Three IRs,HrhoIR40a,HrhoIR75p andHrhoIR75q.2, were also expressed in
the heads and legs except for the antennae. Notably,HrhoIR75q.2 had the highest expression
level in the heads compared with the other four tissues studied. The expression of these
three IRs in different tissues suggests that they may have multiple functions. In addition to
olfaction, IRs are associated with gustation, hygrosensation and thermosensation (Rimal
& Lee, 2018). In D. melanogaster, IR21a, IR40a, IR68a and IR93a were expressed in the
antennae and played critical roles in thermosensation and hygrosensation (Enjin et al.,
2016; Knecht et al., 2016; Ni et al., 2016; Frank et al., 2017; Rimal & Lee, 2018). In our
study, HrhoIR21a and HrhoIR40a showed a close evolutionary relationship to DmelIR21a
and DmelIR40a. Additionally,HrhoIR21a andHrhoIR40a showed high expression levels in
the antennae (Figs. 6L–6M). However, further analysis should be carried out to establish
whether these two IRs function in the mediation of thermotransduction in H. rhodope.

GRs function in detecting CO2 and nonvolatile bitter, sugar, amino acid and plant
secondary metabolite compounds via contact chemosensation (Agnihotri, Roy & Joshi,
2016). Phylogenetic tree analysis showed that HhroGR2 clustered with BmorGR2 in the
CO2 receptor subfamily (Fig. 4). Moreover, just like BmorGR2, HrhoGR2 exhibits higher
expression levels in the antennae compared with other tissues (Guo et al., 2017). Therefore,
HrhoGR2 may contribute to CO2 detection. Furthermore, HrhoGR67 was clustered into a
bitter receptor family and highly expressed in the heads (Figs. 4 and 6V). Kasubuchi et al.
(2018) reported three bitter receptors (BmorGR16/18/53) expressed at different levels in
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the labrum, maxillary palp and maxillary galea, which perceived various feeding deterrents
such as coumarin and caffeine. Further studies should explore whether HrhoGR67 has a
similar function to the three receptors.

Generally, there are two SNMPs in insects, whichwere also identified in the present study.
HrhoSNMP1 and HrhoSNMP2 were highly expressed in H. rhodope antennae, suggesting
that they might be involved in olfactory functions. However, HrhoSNMP2 was also
expressed in the heads. Similar broad expression patterns were also observed in other moth
species, such as Sesamia inferens, C. medinalis, Spodoptera litura and H. armigera (Zhang
et al., 2013; Zhang et al., 2015; Zhang et al., 2020). The ubiquitous expression pattern of
SNMP2 means that in addition to odorant detection, they may have various functions
specific to different organs (Vogt et al., 2009). On the other hand, SNMP1 subfamilies
are implicated in mediating responses to lipid pheromones (Li et al., 2014). HrhoSNMP1
showed higher expression levels in the FA, indicating that HrhoSNMP1 may be associated
with the detection of sex pheromones. However, SNMP1 identified fromM. destructor was
reported not to be crucial in pheromone perception (Andersson et al., 2016). This finding
calls for further investigation to determine whether HrhoSNMP1 functions in pheromone
detection in H. rhodope.

CONCLUSION
In conclusion, 45 ORs, 9 IRs, 8 GRs and 2 SNMPs were identified in antennae
transcriptomes of H. rhodope. The putative functions of some genes were predicted by
comparative phylogenetic analyses and tissue expression assays. Our results enrich the
olfactory gene inventory of H. rhodope and provide the foundation for further research on
the molecular mechanism and evolution of the olfactory system in diurnal moths.
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