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ABSTRACT
Nanopore sequencing is rapidly becoming more popular for use in various microbiota-
based applications. Major limitations of current approaches are that they do not
enable de novo species identification and that they cannot be used to verify species
assignments. This severely limits applicability of the nanopore sequencing technology
in taxonomic applications. Here, we demonstrate the possibility of de novo species
identification and verification using hexamer frequencies in combination with k-
means clustering for nanopore sequencing data. The approach was tested on the
human infant gut microbiota of 3-month-old infants. Using the hexamer k-means
approach we identified two new low abundant species associated with vaginal delivery.
In addition, we confirmed both the vaginal delivery association for two previously
identified species and the overall high levels of bifidobacteria. Taxonomic assignments
were further verified by mock community analyses. Therefore, we believe our de novo
species identification approach will have widespread application in analyzing microbial
communities in the future.

Subjects Bioinformatics, Ecology, Microbiology, Molecular Biology
Keywords Nanopore, 16S rrNA, Infant gut, Microbiota

INTRODUCTION
Third generation nanopore sequencing has revolutionized the field of analyzing microbial
communities, with the promise of on-site high throughput analyses (Acharya et al., 2019).
However, despite several recent advances in nanopore sequencing, the error rates are too
high for de novo species identification (Shin et al., 2016). Therefore, all current approaches
are based on some kind of reference, or black-box systems for species identification (Winand
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Figure 1 Schematic outline of the 16S rRNA gene nanopore sequencing approach. (A) The V3 to V9
region of the 16S rRNA gene is amplified with PCR primers targeting conserved flanking regions. (B) In-
dexes for recognizing which sample the sequence is coming from is added in a subsequent PCR step, fol-
lowed by ligation of adapters containing motor proteins for nanopore sequencing. (C) Sequencing of sin-
gle DNA molecules through nanopore passage. (D) Identification of which sample the sequences belong
to. (E) Identify forward and reverse reads, and transform the sequences to hexamer frequencies. (F) Per-
form k-mean clustering in order to identify sequence types.

Full-size DOI: 10.7717/peerj.10029/fig-1

et al., 2019). This severely limits the widespread application of nanopore sequencing in
explorative-based applications. In order to exploit the full potential of nanopore sequencing,
there is a clear need for de novo approaches for sequence identification.

The aim of the present work was therefore to develop an analytical strategy enabling de
novo identification and quantification of bacterial species using nanopore sequencing. This
was achieved through a novel hexamer frequency-based approach in combination with
k-means clustering to identify k-mer clustered sequence variants (KSVs). The approach is
outlined in Fig. 1.

We evaluated the nanopore de novo species identification approach, both by analyzing
the human infant gut microbiota of 3-month-old children and a mock community.
The rationale for choosing the infant gut microbiota is that the commonly used black-box

Angell et al. (2020), PeerJ, DOI 10.7717/peerj.10029 2/11

https://peerj.com
https://doi.org/10.7717/peerj.10029/fig-1
http://dx.doi.org/10.7717/peerj.10029


nanopore sequencing analytical approach provided by EPI2ME (OxfordNanopore,Oxford,
UK) does not detect Bifidobacterium using the standard workflow (Kai et al., 2019). Since
Bifidobacterium is an important genus in the human infant gut (Avershina et al., 2013), the
black-box EPI2ME system cannot reliably be used for human gut microbiota applications.

MATERIALS AND METHODS
Consent by the participants
The PreventADALL study has been approved by the Regional Ethical Committee (REK)
for Medical and Health Research Ethics in South-Eastern Norway (2014/518) as well as in
Sweden (2015/4:3) by the Regional Ethical Trial Committee of Stockholm. The study is
registered as NCT02449850 at clinicaltrial.gov. We received a written consent from all the
participants.

16S rRNA gene Nanopore sequencing
Genomic DNA from a mock community (HM-783D, BEI Resources, Manassas, Virginia,
USA), containing genomic DNA from 20 bacterial strains mixed based on 16S rRNA gene
copy number counts, was used as a control and followed the library preparation along with
the genomic DNA isolated from the infant fecal samples as described below.

Genomic DNA from 96 fecal samples from 3-month-old children was extracted using
theDNAMagMidi kit on the KingFisher Flex robot (Thermo Scientific, USA), following the
manufacturer’s recommendations (LCG genomics, UK). 16S rRNA gene amplicons were
amplified using a modified CoverAll primer pair (Genetic Analysis, Oslo, Norway) (Casen
et al., 2015) tailed with the Oxford Nanopore Technologies (ONT) universal sequences.
Each reaction contained 1x HOT FIREPol R© Blend Master Mix RTL with 12.mM MgCl2
(Solis BioDyne, Estonia), 0.2 uM of each primer, and 0.1-10 ng DNA template. The
following cycling conditions were used: 95 ◦C for 15 min, followed by 30 cycles of 95 ◦C
for 30 s, 55 ◦C for 30 s and 72 ◦C for 1 min 20 s. A clean-up of the amplicons was
performed using a 1x volume of AmpureXP beads (Beckman Coulter, USA) following
the manufacturer’s recommendations. Next barcoding PCR was performed, using the
PCR Barcoding Expansion Pack 1-96 (ONT, UK) where each reaction contained 1x HOT
FIREPol R© Blend Master Mix RTL with 12.mMMgCl2, 0.2 uM barcode, and 0.5 nM DNA
template. Amplification was done at 95 ◦C for 15 min, followed by 12 cycles of 95 ◦C
for 30 s, 62 ◦C for 15 s, 65 ◦C for 2 min before a final elongation step at 65 ◦C for 10
min. The resulting amplicons were quantified using a Qubit fluorometer (Thermo Fisher
Scientific, USA) and pooled together to one library using equimolar concentrations of each
sample. The final library was cleaned as described above. DNA repair, end-prep, adapter
ligation and clean-up was done using the Ligation Sequencing Kit (SQK-LSK109, ONT,
UK) according to the manufacturer’s recommendations.

The sequencing was performed using a R9.4.1 Flow cell (FLO-MIN106) on a MinION
sequencing device (ONT, UK) for 24 h. Controlling of the MinION sequencing device and
base calling was done using MinKNOW software (ONT, UK). Demultiplexing of barcodes
was done using the EPI2ME software (ONT, UK).
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The sequencing data has been uploaded in the NCBI SRA database under the BioProject
PRJNA637202.

Sequence processing and analyses
The sequences per sample were first rarefied to 10 000 sequences. In the next step, each
sequence was transformed to hexamer frequencies, omitting homopolymer tracts. The
hexamer frequency table formed the basis for the identification of KSVs.

We identified KSVs using k-means clustering. The k-means algorithm uses a heuristic
approach to find centroid seeds for k-means clustering. Details about the clustering
algorithm are given by Arthur and Vassilvitskii (Arthur & Vassilvitskii, 2007). We first
split the data in two by k-means clustering, assuming two clusters, one for the forward
reads and one for the reverse reads. For each of the two clusters, we identified KSVs by
stepwise increasing the number of clusters until there was no decrease in residual variance.
This number was assumed to be the total number of detectable KSVs in the dataset. The
taxonomic assignment for each of the clusters was subsequently determined by identifying
the closest match in the RDPII database (Cole et al., 2005) for full-length 16S rRNA gene
sequences >1,200 bp using the Jaccard similarity index (comparing the presence and
absence of hexamers). The assignments were made towards the closest matches in the
RDPII database, both for the infant and for the mock data.

For the pairwise Smith-Waterman sequence alignments (Smith & Waterman, 1981), we
used a local reference database consisting only of bacteria included in themock community,
with a taxonomic assignment to the sequences showing the overall highest score in the
database. A local database was used due to the extensive computational requirements of
alignment-based approaches.

Statistical analyses
The nonparametric Kruskal–Wallis test was used to compare differences in species
abundance between vaginally and c-section delivered children. Pearson correlation was
used to determine the association between forward and reverse reads. False discovery was
corrected using the Benjamini–Hochberg approach. The statistical analyses were conducted
using Matlab version R2019a (MathWorks Inc, Natick, MA, USA) and Minitab version 18
(Minitab Inc, State College, PA, USA).

RESULTS
Microbiota composition
We obtained a total of 3,168,160 sequencing reads for 96 samples with an average length of
1,137 bp, totaling 4.6 billion bp of sequence information, with a mean number of reads per
sample of 33,002 ± 8,603 [mean ± SD]. The sequences were rarefied to 10,000 reads per
sample prior to further analyses. Six samples did not satisfy the rarefying criteria, leaving
90 samples for further analyses.

For the rarefied samples, the main variation was covered by approximately 92 k-mean
KSVs both for the forward and the reverse reads (Figs. 2A and 2B). The matches towards
the reference database for taxonomic assignments were also distinct for most of the KSV
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Figure 2 k-mean clustering and taxonomic assignment. (A and B) Residual variance after stepwise k-
mean analyses from 2 to 100 clusters.

Full-size DOI: 10.7717/peerj.10029/fig-2

components (Suppl. Fig. 1). Based on the taxonomic assignments, we identified 33 species
with a Pearson correlation >0.9 between forward and reverse reads, showing particularly
high abundance of Bifidobacterium longum and Escherichia. (Fig. 3). The reads belonging
to these species accounted for 78.9 ± 13.0% [mean ± std] of all the forward reads, and
84.5 ± 12.5 [mean ± std] of the reverse reads.

Association with delivery mode
The microbiota was associated with delivery mode independently for the forward and
the reverse reads. After FDR correction (p< 0.05) we identified four species showing
overrepresentation for vaginal delivery for both forward and reverse reads (Fig. 4A). The
number of sequences for these species was also highly correlated and independent of the
other species when comparing the forward and reverse reads (Fig. 4B).

Verification by mock community analyses
The taxonomic assignments were verified by analyses of a mock community with known
composition. These analyses showed that the k-mean approach could accurately identify
the dominant species in the mock community, while the alignment-based approach failed,
severely overrepresenting the AT-rich Helicobacter (Fig. 5).

DISCUSSION
Our study confirms the vaginal delivery association for Parabacteroides distasonis and
Bacteroides fragilis (Shao et al., 2019; Stewart et al., 2018), while Bacteroides xylanisolvens
and Collinsella aerofaciens have not yet been linked to vaginal delivery in the literature.
B. xylanisolvens is a xylan- degrading bacterium in adults (Chassard et al., 2008) with the
potential to induce an IgM response towards glucan antigens (Ulsemer et al., 2016), while
C. aerofaciens is a proinflammatory gut bacterium that has previously been associated with
nonalcoholic fatty liver in adults (Astbury et al., 2020). Since both bacteria are potential
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immunomodulators in the adult gut, they may play a role in the proper maturation of the
immune system of infants (Rodriguez et al., 2015). However, further studies are needed to
unveil their potential immunological importance.

The current reference-based 16S rRNA gene nanopore sequence analyses are locked to
proprietary databases and primers. This may lead to unforeseen biases such as the lack
of bifidobacterial detection from mock samples containing several bacterial species (Kai
et al., 2019), and a high error rate with respect to species identification (Winand et al.,
2019). Reference-based approaches would therefore both fail to identify the Bacteroides
species that we identified as being associated with vaginal delivery, and the high levels of
Bifidobacterium for the 3-month-old children. Furthermore, reference-based approaches
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lack quality control of the taxonomic assignments. For the k-means KSV approach
presented here, the taxonomic assignment for both forward and reverse reads act as quality
control for the accuracy of the assignments. Similar distribution based systems have also
been used in DADA2 in identifying unique sequence variants from Illumina amplicon
sequencing data (Callahan et al., 2016).
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Comparison of the taxonomic asignments for the forward and reverse reads revealed
that about 80% of the reads showed concordance. Mock community analyses indicated
taxonomic identifcation of species present at 20 and 2%, while failing to detect species
at the 0.2% and below. There was also an overrepresentation of Enterococcus, which we
cannot explain. Thus, a limitation of the KSV approach could be the identification of
species whose abundance is low in all samples. The∼20% unassigned reads from the main
study could therefore partly represent low abundant species.

Poor quality sequences represent a particular challenge with nanopore sequencing data,
as opposed to that of the more labor intensive PacBio sequencing (Callahan et al., 2019).
However, since the error structure of nanopore sequencing data is blockwise (Magi et al.,
2018), we believe using k-mers (Rudi, Zimonja & Naes, 2006) rather than alignment in
the taxonomic assignment would be preferable in obtaining high resolution and accuracy.
This is also supported by the fact that traditional alignment-based approaches failed in the
analyses of nanopore sequencing data.

CONCLUSION
By using the KSV approach we provide evidence for de novo species identification
and relative quantification using nanopore sequencing. However, further validations
by mock community analyses and validation tools, such as TAXCREDIT, are needed
before widespread application.
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