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ABSTRACT

We review the evidence for bio-regulation by coral reefs of local climate through
stress-induced emissions of aerosol precursors, such as dimethylsulfide. This is an
issue that goes to the core of the coral ecosystem’s ability to maintain homeostasis in
the face of increasing climate change impacts and other anthropogenic pressures.
We examine this through an analysis of data on aerosol emissions by corals of the
Great Barrier Reef, Australia. We focus on the relationship with local stressors, such
as surface irradiance levels and sea surface temperature, both before and after notable
coral bleaching events. We conclude that coral reefs may be able to regulate their
exposure to environmental stressors through modification of the optical properties of
the atmosphere, however this ability may be impaired as climate change intensifies.

Subjects Biosphere Interactions, Climate Change Biology, Atmospheric Chemistry,
Biogeochemistry, Biological Oceanography
Keywords Coral reefs, Biogenic aerosol, Dimethylsulfide, Coral bleaching

INTRODUCTION

Coral reefs cover some 600,000 square kilometers of the earth’s surface (0.17% of the ocean
surface), with coral ecosystems amongst the most diverse on the planet (Knowlton, 2001).
Coral reefs currently provide a range of ecological services including food and shelter
for a variety of marine species, nutrient cycling, as well as income from tourism and
fisheries for about 500 million people world-wide (Moberg ¢ Folke, 1999; Hoegh-Guldberg
et al., 2007, 2017). The total economic value of direct and indirect services that corals
provide is estimated to be in the billions to trillions of $US per annum—the highest of all
quantified biomes (Costanza et al., 2014). However, coral reefs globally have suffered
long-term decline in abundance, diversity, and habitat structure due to overfishing and
land-based pollution, with most reefs already degraded by the late 19th C (Pandolfi et al.,
2003). Live coral cover has decreased significantly since baseline monitoring began in
the late 1970s, anywhere from 46% to 93%, depending on the region (Jackson, 2008),
causing many scientists to doubt their long term survival without the use of
non-conventional interventions (Knowlton & Jackson, 2008; Anthony et al., 2017).

On many reefs, reduced stocks of herbivorous fishes together with increased sediment
and nutrient loading from land-based activities (Gabric ¢» Bell, 1993; Bell, Elmetri ¢
Lapointe, 2014) have caused ecological regime shifts away from the original dominance by
corals to a preponderance of fleshy seaweed (Hughes et al., 2007; Brodie et al., 2011). These
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regime shifts can occur suddenly (Bestelmeyer et al., 2011), and are often irreversible
(Schmitt et al., 2019). In non-linear systems theory these alternate stable states are known
as alternate attractors or basins of attraction (Walker et al., 2004). Coral-to-macroalgae
regime shifts cause severe changes in a coral ecosystem by altering biotic interactions,
disrupting trophic structure, lowering biodiversity, and changing the productivity of reef
fisheries (Hempson et al., 2018).

Since the late 20th century coral reefs have been subjected to a new range of
environmental threats associated with climate change that can seriously jeopardize their
continued existence unless radical change occurs in the governance and management
of reef systems (Hoegh-Guldberg & Bruno, 2010; Anthony et al., 2017; Hughes et al., 2017).
These threats include increasingly frequent and extensive marine heat waves (Oliver et al.,
2018; Babcock et al., 2019), often leading to severe bleaching, and ocean acidification
that modifies carbonate chemistry and reef calcification (Hoegh-Guldberg et al., 2007).
Coral bleaching is caused by the synergistic effect of elevated light and temperature,
leading to the breakdown of normal symbiont photosynthetic pathways and causing
damage to the host and expulsion of the algal symbionts (Lesser ¢ Farrell, 2004). Although
mass coral bleaching appears to be a relatively recent phenomenon with reports first
emerging in the 1980s (Glynn, 1983), the problem has rapidly amplified with mass
bleaching events occurring in the late 1990s (Lough, 2000) and again during 2015-16, the
latter affecting 75% of Indo-Pacific coral reefs, including 84% of Australia’s tropical reefs
(Hughes et al., 2018a).

Interestingly, reduced incoming light due to cloudy conditions has been shown to
mitigate bleaching in the Pacific (Mumby et al., 2001). Coral reefs within or near the
western Pacific warm pool (WPWP)—the so-called “coral triangle”—have had fewer
reported bleaching events relative to reefs in other regions (Kleypas, Danabasoglu ¢
Lough, 2008). Analysis of sea surface temperature (SST) indicates the warmest parts of
the WPWP have warmed less than elsewhere in the tropical oceans, supporting the
existence of a thermostat mechanism that depresses warming beyond certain temperature
thresholds. One of the suggested thermostat mechanisms was via a cloud-SST feedback
(Ramanathan ¢ Collins, 1991), with a more detailed description of cloud feedbacks given
by Stephens (2005).

Over the past 10-15 years, field and laboratory studies have provided evidence for
the existence of a hitherto unrecognized climate bio-regulation process in coral reefs
(Broadbent, Jones & Jones, 2002; Broadbent ¢ Jones, 2004; Jones, 2015). This is through
the production of a suite of volatile compounds that can act as precursors of marine
biogenic aerosol (MBA) in response to physiological stress experienced by the coral
related to high irradiance or ocean temperature. In remote marine atmospheres, these
secondary biogenic aerosols are thought to influence the local radiative budget through
backscattering of incoming short-wave solar radiation, and indirectly through their effect
on cloud microphysics and precipitation forming processes. The climate regulation
potential of MBA was first discussed over 30 years ago by Charlson et al. (1987), with the
so-called “CLAW hypothesis” spawning a plethora of related research regarding the
possibility of a natural thermostat which would offset the warming caused by
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anthropogenic greenhouse gases (GHG). This research theme has proved to be remarkably
resilient and continues to the present day (Gabric et al., 2018; Mahmood et al., 2019),
although the strength and sign of any MBA feedback on climate warming is likely to be
regionally variable and is still uncertain at the global scale (Ayers & Cainey, 2007; Heinze
et al., 2019).

Our understanding of aerosol-climate interactions although growing, is still incomplete,
being identified by the Intergovernmental Panel on Climate Change (IPCC) as one
of the key sources of uncertainty in our knowledge of Earth’s energy budget and
anthropogenic climate forcing (Schneider et al., 2017; Simpkins, 2018). This is particularly
true of coral reef ecosystems where the relationship between MBA emissions and coral
physiological stress is complex (Jackson, Gabric ¢ Cropp, 2018). Here we review the
current knowledge of MBA emissions from coral reef ecosystems, examine changes in
aerosol emissions as a response to physiological stressors and discuss the implications for
the future resilience of coral reefs in response to climate change related stressors.

SURVEY METHODOLOGY

The quite separate fields of coralline ecology and aerosol-climate interactions both have
a long and rich history. Unsurprisingly however, given the distinct disciplines involved,
the intersection of these fields is relatively recent. Indeed, most of the published research
on biogenic aerosol emissions by coral reefs has appeared in the last two decades.
Notwithstanding the emerging nature of the field, there are numerous aspects of the
topic that bridge the disciplines of climatology, aerosol science and coral reef ecology.
Consequently, we have chosen to employ an integrative or critical review approach.

Our aim is to assess the current evidence for coral reef bio-regulation of climate and to
synthesize the literature in a way that will enable a new theoretical framework and
paradigm to emerge (Torraco, 2005, 2016). Literature searches were conducted using the
key bibliographic databases both full text, such as Web of Science and Google Scholar and
Abstract only databases, such as Scopus. The search time frame was limited to the last
30 years as most of the relevant literature has been published relatively recently. Boolean
searches were used to narrow the results to capture the literature on both coral reefs
and aerosols. Search terms such as “coral stress”, “aerosol emissions”, “dimethylsulfide
AND corals” were used.

Marine biogenic aerosol

Aerosols are minute solid or liquid particles suspended in the atmosphere and are derived
from a variety of natural and anthropogenic sources, ranging from industrial processes,
volcanic eruptions, biomass burning and marine ecological processes. Aerosol particles
are either emitted directly to the atmosphere (primary aerosols) or produced in the
atmosphere from precursor gases (secondary aerosol). All atmospheric aerosols scatter
incoming solar radiation, and a few aerosol types (e.g., black carbon) can also absorb solar
radiation. Aerosols that mainly scatter solar radiation have a cooling effect, by enhancing
the total reflected solar radiation from the Earth (Twomey, 1977). However, it is the
interaction of some aerosols with clouds that leads to a suite of complex but radiatively
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important effects. The concentration of droplets in clouds that influences planetary
albedo is sensitive to the availability of aerosol particles on which the droplets form.

An impact on cloud droplet numbers affects rain formation, and thus the cooling effect
may be further enhanced by suppressed precipitation followed by increased cloud lifetime,
cloud amount and cloud extent (Albrecht, 1989; Pincus ¢» Baker, 1994). However,
notwithstanding recent progress in our understanding of aerosol-climate interactions,
there is still uncertainty about the links between microphysical and larger scale
mechanisms, and how climate feedbacks may be affected (Fan et al., 2016; Brooks &
Thornton, 2018).

The most convincing evidence for aerosol modulation of cloud properties has been
seen in the marine atmosphere (Hegg, 1999; Hegg et al., 2004), specifically the increase in
albedo of marine stratocumulus clouds, which cover about a third of the global oceans.
Over the last two decades, the availability of satellite-based data has enabled a better
understanding of MBA, which has been shown to play an important role in the radiative
budget of remote marine atmospheres and potentially shaping regional climate (McCoy
et al., 2015; Fan et al., 2016; Vergara-Temprado et al., 2018). However, despite over
three decades of research, there are still gaps in our understanding of the effect of
aerosol-cloud interactions on climate (Ayers ¢» Cainey, 2007; Carslaw et al., 2013). MBA
can be primary aerosols consisting of sea-salt and particulate organic matter (Leck ¢
Bigg, 2005; Orellana et al., 2011; Modini et al., 2015), or secondary aerosols formed through
the atmospheric oxidation of volatile precursor compounds, such as dimethylsulfide
(DMS) (Andreae ¢ Crutzen, 1997), organo-halogens (O’Dowd et al., 2002) and other
organic compounds. In the original CLAW hypothesis MBA precursor compounds such as
DMS were thought to be synthesized solely by pelagic phytoplankton, but as shown in
Fig. 1, other organisms such as corals and benthic algae are also known to be sources
(Broadbent ¢ Jones, 2004; Raina et al., 2013; Burdett, Hatton ¢ Kamenos, 2015). It is now
recognized that the synthesis and emission of these biogenic climate active compounds
is shaped by a range of marine ecosystem processes (Liss et al., 2000; Carslaw et al., 2010).
Thus, the sea-to-air flux of these aerosol precursor compounds and particles depends
in a complex fashion on the structure and dynamics of the entire marine food web (Simd,
2001).

Potential to regulate climate

The effect of an change in atmospheric aerosol concentrations on the distribution and
radiative properties of Earth’s clouds is the most uncertain component in model
projections of the global radiative forcing of climate (Seinfeld et al., 2016). This makes

it imperative to investigate the current and future sources of these climate-active
compounds. However, there are several factors that constrain an improved estimate of the
effect of aerosol-cloud interactions. Although aerosol—cloud processes are reasonably well
understood at the scale of a single cloud, the difference in scale between the spatial
resolution of general circulation models (GCMs) and individual cloud processes
introduces considerable uncertainties (Seinfeld et al., 2016). Secondly, the change in future
aerosol emissions is uncertain, with anthropogenic emission trends already negative in
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Figure 1 The cycling of reduced sulfur compounds in coral reef waters. Simplified overview of the
cycling of reduced sulfur compounds in coral reef seawaters and their role in coral homeostasis. Corals
upregulate dimethylsulfide (DMSP) biosynthesis and cleavage to dimethylsulfide (DMS) in response to
physiological stress. DMS(P) scavenge reactive oxygen to mitigate oxidative damage, forming dimethyl
sulfoxide (DMSO). Full-size K&l DOT: 10.7717/peerj.10023/fig-1

developed economies (Zhao et al., 2017). This trend is likely to be reinforced as pollution
controls are implemented in developing economies which are suffering serious impacts
from particulate air pollution (Huang et al., 2014; Samset et al., 2018).

The role of natural aerosol emissions in cloud radiative forcing is less certain but
thought to be even greater than that due to anthropogenic aerosol (Carslaw et al., 2013).
With respect to future trends in natural aerosol emissions such as sulfur-containing
MBA, the model projections vary markedly depending on the ocean region considered
and the model complexity and parametrizations used (Gabric et al., 2004, 2005;
Cameron-Smith et al., 2011; Six et al., 2013; Menzo et al., 2018). In the rapidly warming
Arctic Ocean decadal data on DMS suggests a positive trend in emissions (Galf et al.,
2019). In other parts of the global ocean the trend is not clear, often due to sparseness of
the existing database. This is particularly true for the Southern Ocean where the sparse
databases are currently being augmented and improved (Jarnikova ¢ Tortell, 2016;
Webb et al., 2019). Modelling experiments suggest that increasing atmospheric greenhouse
gas concentrations may enhance future DMS emissions, and thus sulfate aerosol
concentrations, in both the Arctic and Southern Oceans, introducing a negative feedback
to offset the warming (Gabric, Whetton ¢ Cropp, 2001; Gabric et al., 2005; Qu et al.,
2015; Kim et al., 2018). Increasing ocean acidification may also impact marine DMS
emissions, although the sign of the feedback appears to be regionally variable (Wingenter
et al., 2007; Archer et al., 2013, 2018; Six et al., 2013).
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Aerosol precursors in Coral Reefs

Reef-building corals are prolific producers of dimethylsulfoniopropionate (DMSP),

a central molecule in the marine sulfur cycle and precursor of DMS (Broadbent ¢ Jones,
2004). Both DMS and DMSP are particularly abundant in coral reef ecosystems (Jores,
Curran ¢ Broadbent, 1994; Hill, Dacey ¢ Krupp, 1995), being present in macroalgae
(Broadbent, Jones ¢ Jones, 2002), coralline algae (Burdett, Hatton & Kamenos, 2015),
soft corals (Haydon, Seymour ¢ Suggett, 2018) and also detected in coral polyps themselves
(Raina et al., 2013). DMSP is produced by both the algal endosymbiont Symbiodinium
(Hill, Dacey & Krupp, 1995) and coral host (Raina et al., 2013) which, together with

the breakdown products DMS and dimethyl sulfoxide (DMSO), has various roles in
coral reef ecosystems, including oxidative stress protection (Deschaseaux, Jones & Swan,
2016; Gardner et al., 2017). It has become increasingly clear that the whole coral holobiont
(comprised of the coral animal and its associated microorganisms consisting of
bacteria, fungi, viruses, and protists including the dinoflagellate algae Symbiodinium)

is to some degree involved in the synthesis and cycling of these sulfur compounds
(Raina et al., 2010).

The first hint of a link between coral physiological stress and DMS(P) was noted
some decades ago in the Florida keys, where extremely high concentrations of atmospheric
DMS were observed after aerial exposure of the reef at low tide (Andreae, Barnard ¢
Ammons, 1983), and later a possible effect of stress-related DMS emissions on the local reef
climate was also hypothesized (Hill, Dacey ¢» Krupp, 1995). A detailed treatment of
the anti-oxidant role of dimethylated sulfur compounds was first reported for pelagic
phytoplankton by Sunda et al. (2002). More recently this has been extended to other
marine organisms such as benthic algae (Burdett, Hatton ¢» Kamenos, 2015) and corals
themselves (Deschaseaux et al., 2014b). The anti-oxidant role of DMSP is especially evident
in Acropora corals (Gardner et al., 2016), the dominant species throughout the Great
Barrier Reef (GBR), Australia. Acropora are among the highest producers of DMS and
increased emissions have been detected in response to increases in sea temperature,
solar irradiance and osmotic stress (Fischer ¢ Jones, 2012; Swan et al., 2017). Seasonal
increases in DMS emissions from coral reefs have been observed during low tides when the
reef can be aerially exposed (Hopkins et al., 2016; Jones et al., 2018). If aerial exposure
coincides with high irradiance then significant coral mortality can occur (Anthony &
Kerswell, 2007). Corals can also be stressed during periods of high rainfall when
hyposalinity may affect coral physiology (Gardner et al., 2016; Aguilar et al., 2017).

Notwithstanding the recent progress in the field, there is limited understanding of
the mechanisms of DMS production by the coral holobiont and relatively sparse data on
either dissolved or atmospheric DMS concentrations in coral reef areas. Similarly,
estimates of DMS fluxes to the atmosphere from reefal environments are as yet poorly
constrained and not included in global DMS data bases such as that of Lana et al. (2011).

Effects on local climate
Although the nexus between MBA emissions and changes in the properties of maritime
clouds has been debated for a long time (Ayers ¢» Cainey, 2007), significant progress in the
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Figure 2 Influence of dimethylsulfide (DMS) emissions on marine atmosphere over coral reefs.
Summary of the influence of dimethylsulfide (DMS) emissions on marine aerosol, cloud condensation
nuclei (CCN) and low-level clouds (LLC) over coral reefs. DMS is oxidized by hydroxyl radicals (OH) to
sulfur dioxide (SO,) and secondarily to sulfuric acid (H,SO,). DMS-derived sulfates may condense onto
pre-existing aerosols or undergo homogenous nucleation to form new non-sea salt sulfate (nns-SO,)
particles, which can influence the local radiative balance. ~ Full-size k&l DOI: 10.7717/peerj.10023/fig-2

understanding of aerosol chemistry and climate has been made in the last two decades
(McNeill, 2017). The advent of high-resolution satellite data has permitted the analysis of
aerosol-cloud interactions over large swaths of the global ocean. Several studies have
shown a strong correlation between MBA and marine cloud cover and cloud properties
(Kruger & Grassl, 2011; Lana et al., 2012; McCoy et al., 2015). Notwithstanding this,

a recent comprehensive review concluded that the relationship between marine
biogeochemical processes and cloud formation is potentially significant but still poorly
defined (Brooks ¢ Thornton, 2018).

In pristine coral reefs such as the WPWP, DMS emissions are thought to be the key
driver behind an ocean thermostat which suppresses ocean warming below coral thermal
tolerance thresholds (~30 °C) through a build-up of low-level clouds (LLC), as shown in
Fig. 2. Despite corals in the WPWP living close to their thermal maxima, few coral
bleaching events have been recorded in this region, and although uncertain (due to the
possible under-reporting of bleaching events) this resilience to heat stress is thought to be
due to cloudiness (Kleypas, Danabasoglu ¢ Lough, 2008; Kleypas et al., 2015). The role of
cloud cover in moderating the intensity of bleaching in the Society Islands was also
noted by Mumby et al. (2001). In the GBR, a decadal analysis of the connection between
bleaching and solar radiation showed that the area of maximum bleaching corresponded
closely to the area of maximum solar insolation (Masiri, Nunez ¢» Weller, 2008). Some
evidence points to a similar aerosol-climate feedback mechanism operating in the
GBR, where although ocean temperatures in north-eastern Australia are warming, SST's in
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Figure 3 Diverse coral community at Norman Reef in the northern Great Barrier Reef, Australia.
Source: Rebecca Jackson. Full-size K&) DOI: 10.7717/peerj.10023/fig-3

the northern GBR are rising at a slower rate compared to southern regions (Lough, 2008).
As conjectured for the WPWP, this may be due to the high biomass of DMS(P)-producing
corals and the accumulation of DMS-rich air in the prevailing south-east trade winds
over the GBR (Jones & Trevena, 2005; Jones et al., 2017).

An 18-year time series study (Jackson, Gabric & Cropp, 2018) of satellite-derived
fine-mode aerosol optical depth (AOD) in the GBR found that AOD correlated positively
with SST and irradiance and increased two-fold during spring and summer. Jackson,
Gabric & Cropp (2018) posit that the positive correlation between AOD and both SST and
irradiance is consistent with enhanced DMS-derived particle formation over the GBR.

Case study: the GBR, Australia

The GBR is the world’s largest coral reef ecosystem, consisting of 3,000 individual coral
reefs spanning 2,300 km of the north-eastern Australian coastline (10°S-24°S) (See Fig. 3).
The Great Barrier Reef Marine Park (GBRMP) was established in 1975 to manage a
diversity of species, including more than 400 Scleractinian (stony) corals, 1,500 species
of fish, 30 species of marine mammals and six of the seven species of marine turtles.
The diversity and size of the GBR makes it incredibly important for tourism, fisheries,
ecosystem services (reviewed in Stoeckl et al. (2011)). Acropora spp. are the dominant coral
genus throughout the GBR and Indo-Pacific and are strong producers of climatically active
dimethylated sulfur compounds (Raina et al., 2013; Swan et al., 2016). The GBR and
lagoon waters (347,000 km?®) are estimated to emit 20 Gg S year ' as DMS (Jones et al,
2018) and may therefore play an important role in local climate.
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Table 1 Range of atmospheric dimethylsulfide (DMS,) concentrations during field surveys of various
ocean regions.

Region DMS, (nmol m™>) Reference(s)

Great Barrier Reef, Australia® 0.1-45.9 Broadbent & Jones (2006); Jones ¢ Trevena (2005);
Jones et al. (2007); Swan et al. (2016, 2017)

North Coral Sea* 0.3-6.9 Jones & Trevena (2005)

Gulf of Papua”® 0.5-2.9 Jones ¢ Trevena (2005)

Bismarck Sea™ 1-5.3 Jones & Trevena (2005)

Solomon Sea* 1.2-5.3 Jones ¢ Trevena (2005)

Bahamas™ 0.08-10.8 Andreae et al. (1985)

Tropical East Pacific Ocean” 1.1-6.7 Andreae et al. (1985)

Indian Ocean” 1.3-11.3 Bandy et al. (1996); Conley et al. (2009); Nguyen,
Mihalopoulos & Belviso (1990)

North Pacific Ocean 2.5-11.1 Aranami & Tsunogai (2004)

North Atlantic Ocean 0.03-6.6 Andreae et al. (1985); Andreae et al. (2003)

Arctic Ocean 0.04-47.2 Ferek et al. (1995); Lundén, Svensson ¢ Leck (2007);
Mungall et al. (2016); Park et al., (2013)

Southern Ocean 0.5-17.2 Andreae et al. (1985); Berresheim et al. (1990); Curran,

Jones & Burton (1998); Curran & Jones (2000);
Yang et al. (2011)

Mediterranean 0.3-8.9 Kouvarakis & Mihalopoulos (2002)
Sargasso Sea 0.02-16.3 Andreae et al. (1985)
Notes:

* Coral reef dense regions.
" Oceanic cruise tracks with intermittent coral reef regions.

The climate of the GBR ranges from sub-equatorial in the north, to sub-tropical in
the south, with hot monsoonal summers (November-April) and dry, mild winters
(May-October). Corals upregulate the biosynthesis of DMSP and catabolism to DMS
during physiological stress caused by exposure to elevated SST and solar irradiance, or
due to low salinity associated with seasonal rainfall and riverine discharge (Raina et al.,
2013; Deschaseaux et al., 2014b; Jones et al., 2014). These processes likely drive seasonal
increases in DMS emissions from the GBR during spring and summer (Broadbent ¢
Jones, 20065 Jones et al., 2018). Seasonally aberrant spikes in atmospheric DMS (DMS,) also
occur when the coral reef is aerially exposed at low tide (Hopkins et al., 2016; Swan et al.,
2017), with atmospheric concentrations reaching 45 nmol m™> (Table 1) over corals at
Heron Island in the southern GBR (Swan et al., 2017). Similar to the CLAW hypothesis,
it is possible that coral reef emissions of DMS may influence the chemical and physical
properties of aerosols and cloud condensation nuclei (CCN), thereby increasing the
radiative cooling effect of low-level marine clouds over coral reefs. Whether this effect
exerts a regional climate impact depends on a number of factors. Any local climate
feedback depends on the spatial extent of the reef system, and the strength and direction of
prevailing winds which could transport aerosols and their precursor compounds away
from the reefal source area (Cropp et al., 2018). The large spatial extent of the GBR makes it
the most likely candidate for a local aerosol-climate feedback.
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Aerosol climatology of the GBR

Prevailing south-easterly winds accumulate marine aerosols as air is advected northward
along the GBR. These aerosols largely consist of clusters of sea-salt, organics (Mallet et al.,
2016) and non-sea salt sulfates derived from DMS (Modini et al., 2009; Swan et al.,
2016). Aerosol emissions vary seasonally and meridionally in the GBR (Jackson, Gabric ¢
Cropp, 2018). In the northern GBR, aerosol loading is highest during the winter dry season
and early spring (Jackson et al., 2020), coinciding with frequent biomass burning and
wildfires on the Australian continent (Harris et al., 2008). Here, the situation is complex
as the marine biogenic source of aerosol is likely augmented by continental aerosol
sources, with quite different composition (carbonaceous) and radiative properties
(Langmann et al., 2009). Dust storms from the arid inland regions of the continent can
also traverse the GBR region later in spring, but these events are episodic and their
likelihood of occurrence is low (Cropp et al., 2013). Conversely, in the southern GBR
(>15°S), seasonal, high frequency increases in aerosol occur in spring and summer,
followed by a decline in winter (Cropp et al., 2018; Jackson, Gabric & Cropp, 2018).

This seasonal cycle is commonly observed in the remote MBL and is driven by temperature
and irradiance-dependent shifts in ocean biology (Korhonen et al., 2008; McCoy et al.,
2015; Gabric et al., 2018). Seasonal peaks in phytoplankton biomass are usually

found during the summer wet season when fluvial nutrient loads to the inshore GBR
are high (Gabric, Hoffenberg ¢» Boughton, 1990; Brodie et al., 2007). Given the remote
location and vast size of the GBR, seasonal shifts in stress-induced emissions of

DMS from corals, and other volatile organics such as isoprene from reef sediments
(Swan et al., 2016; Hrebien et al., 2020), may be driving the increase in aerosol in spring
and summer.

Several studies support the hypothesis that the GBR is a significant source of marine
aerosols. Early field studies found that total atmospheric particle concentration was up to
seven times higher in maritime air directly over the GBR compared to the adjacent open
ocean (Bigg & Turvey, 1978). Three decades later, observations of nucleation events at
Lizard Island in the northern GBR identified a strong seasonal cycle in atmospheric
particle concentration (Leck ¢ Bigg, 2008). The concentration of nucleation mode aerosol
was an order of magnitude higher in spring, reaching up to 40,000 cm >, compared to
4,000 cm ™ in winter (Leck ¢ Bigg, 2008), following a similar seasonal cycle to that of
DMS emissions from the GBR (Broadbent ¢ Jones, 2006; Jones et al., 2018). Other recent
field studies have observed nucleation events in the southern GBR during daylight, low
relative humidity (~60%) and low wind speeds (Modini et al., 2009; Swan et al., 2016),
when conditions for the local gas-phase nucleation of DMS-derived sulfates is favorable
(Chang et al., 2011). New fine-mode aerosols (<1 pwm) consisted of ~40-50% organics and
50-60% sulfates, were likely derived from DMS emissions from the coral reef. Remote
sensing approaches have also demonstrated a significant correlation between estimates of
coral physiological stress and aerosol optical depth (AOD) in the GBR, especially when
wind speeds are low allowing for longer aerosol residence time over the reef area (Cropp
et al., 2018; Jackson, Gabric & Cropp, 2018).
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Recent coral bleaching events

Corals in the GBR are exposed to multiple stressors, including ocean warming,
acidification and poor water quality, which individually and synergistically diminish
coral resilience and can result in coral bleaching and subsequent mortality (Anon, 2019).
Reduced cloud cover and marine heatwaves often coincide with an El Nifio phase of the
Southern Oscillation Index and are the most common drivers of bleaching events in

the GBR (McGowan & Theobald, 2017; Hughes et al., 2018b). Over the past two decades,
the GBR has experienced five mass thermal bleaching events in the summers of 1997-1998,
2001-2002, 2005-2006, 2015-2016 and 2016-2017. Inshore coral reefs are particularly
vulnerable to declining water quality due to runoff from adjacent catchments and

urban areas (Gabric ¢ Bell, 1993; Brodie et al., 2011; De’ath et al., 2012). In the
summers of 2008-2009 and 2010-2011, La Nina associated flooding, low salinity and
eutrophication combined to result in mass coral bleaching (Thompson et al., 2011, 2013).
These stressors are often exacerbated by destructive wave action and hyposalinity resulting
from fluvial inputs or rainfall associated with tropical cyclones, which frequently occur
in summer (Anon, 2011; De’ath et al., 2012).

Acropora spp. are temperature-sensitive and are particularly vulnerable to rises in
SST (Fischer & Jones, 2012; Hughes et al., 2018a). The two most recent mass coral
bleaching events occurred due to marine heatwaves in the summers of 2015-2016 and
2016-2017. SST was well above average in the summer of 2015-2016 (Jackson, Gabric &
Cropp, 2018), resulting in wide spread coral bleaching and mortality (Hughes et al., 2018a).
This was the worst coral bleaching event on record in the GBR, affecting 92% of coral
reefs in the marine park (Anon, 2017), with Acropora spp. suffering catastrophic mortality
(Hughes et al., 2018a). Field surveys conducted by the Australian Institute of Marine
Science (AIMS) estimated that 29% of shallow-water corals were lost reef-wide, with
the largest loss reported in the far northern GBR (~75%) (Anon, 2017). Corals in the
southern GBR were least affected by this event as SST rapidly subsided with category five
tropical cyclone Winston in late February, although temperature-sensitive Acropora
and Pocillopora colonies were still affected (Kennedy, Ordofiez ¢ Diaz-Pulido, 2018).

Sea surface temperature remained above average throughout the GBR in winter 2016
and by the following summer, resulted in a second mass coral bleaching event. Coral
mortality was lower in the far northern GBR during this event due to the loss of many
temperature sensitive corals during the previous summer (Anon, 2018). Consequently,
the most severely affected region shifted south to the north-central GBR in 2017.
Temperature-sensitive spawning corals comprise ~90% of reet-building corals in the
GBR, many of which were lost during these consecutive coral bleaching events.
Consequently, larval recruitment has fallen by an average of 89% across the GBR (Hughes
et al., 2019) resulting in regional scale shifts in community structure (Hughes et al., 2018b).

Changes in aerosol emissions before and after bleaching events

Corals in the GBR increase DMSP biosynthesis and catabolism to DMS in response to
oxidative stress (Deschaseaux et al., 2014b). Reactive oxygen species (ROS) are released
from zooxanthellae photosystems when damage caused by intense photosynthetically
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active radiation (PAR) or elevated SST exceeds photoprotective mechanisms (Lesser et al.,
1990; Yakovleva et al., 2009). DMSP and particularly DMS, have a high affinity for
these ROS (Sunda et al., 2002), and act as an efficient antioxidant system in corals to help
protect against stressors leading to coral bleaching. When oxidative stress exceeds coral’s
photoprotective mechanisms, the rate of DMS(P) oxidation to DMSO increases, and ambient
DMS concentrations decline (Fischer ¢ Jones, 2012; Deschaseaux et al., 2014b). When
Acropora spp. in the southern GBR were exposed to SST >26 °C or PAR >6 mol m > h™",
DMS emissions declined by 93% and 82%, respectively (Fischer & Jones, 2012). A decline
in DMS emissions results in fewer aerosol precursor compounds and potentially less
aerosol formation events and condensational growth of pre-existing aerosols above the
coral reef.

The non-linearity in coral physiological stress and potential effects on aerosol loading
was recently investigated during four mass thermal coral bleaching events between
2001-2017 (Jackson, Gabric ¢ Cropp, 2018). The coherence between satellite-derived
anomalies of fine-mode (<0.1 wm) AOD and estimates of coral thermal stress, calculated as
degree-heating weeks (DHW), was examined. Prior to coral bleaching, SST increased,
and corals were likely emitting large quantities of DMS in an attempt to mitigate thermal
stress (Raina et al., 2013). During this time, AOD was highly variable and often above
the long-term average (2000-2017). However, the pattern of DMS emissions with coral
physiological stress is non-linear and shows a decline when the coral thermal stress
threshold is exceeded (Fischer ¢ Jones, 2012). This threshold or tipping-point was
calculated as the climatological maximum summertime SST and ranged from 27.3 °C at
Heron Island in the southern GBR, to 29.1 °C at Fife Island in the far northern GBR
(Jackson, Gabric & Cropp, 2018). As SST approached this tipping-point, and DHW
and field-based reports indicated that coral bleaching was occurring, AOD declined to
average, or below average levels where coral bleaching and mortality was severe (Jackson,
Gabric & Cropp, 2018). The synchronous decline in AOD with the onset of coral bleaching
may have been driven by a decline in DMS and MBA emissions from the coral reef.
Although the AOD can be affected by a range of aerosol types, the spatio-temporal
coherence between the timing of coral bleaching and sharp AOD changes support the
hypothesis of a strong causal link between coral physiological stress and aerosol emissions
in the GBR.

Implications for future Coral Reef resilience and adaptation

Reef-scale micrometeorology is an important determinant of the extent and severity of
coral bleaching in the GBR (McGowan ¢ Theobald, 2017; McGowan et al., 2019). DMS and
other volatile biogenic compounds influence aerosol and cloud properties in the remote
MBL (Gabric et al., 2013; Fiddes et al., 2018; Sanchez et al., 2018) and likely play an
important role in the local climate of the GBR. However, ongoing coral reef degradation
and bleaching could lead to a decline in DMS emissions from the GBR, with concerning
implications for coral resilience to future temperature rises. A decline in biogenic
aerosol emissions could weaken the aerosol and LLC radiative cooling effect in the GBR,
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exacerbating coral physiological stress and potentially leading to more frequent bleaching
events.

Coral DMS(P) biosynthesis increases with thermal and irradiance stress, followed by
oxidation by ROS to DMSO in temperature-sensitive species. These species are the
dominant reef-building corals in the GBR and are the strongest individual producers of
DMS(P) (Swan et al., 2016). The rate of oxidation to DMSO determines the amount of
DMS available to be ventilated to the MBL. Thus when oxidative stress is high, DMS
emissions decline as the concentration of DMSO increases in the coral holobiont
(Fischer ¢ Jones, 2012; Deschaseaux et al., 2014b). A shift in community structure and
decline in the abundance of these species could lead to a significant decline in coral DMS
emissions from the GBR. Degraded coral reefs often become dominated by fleshy
macroalgae (Bell, 1992; Diaz-Pulido & McCook, 2002; De’ath & Fabricius, 2010; Barott &
Rohwer, 2012), some of which (e.g., Polysiphonia and Ulva spp.) are also capable of
producing high concentrations of DMSP (Van Alstyne ¢ Puglisi, 2007; Liu et al., 2020) and
may counteract a decline in overall coral reef DMS emissions. Recent work has shown
that climate change may result in an increase in seawater DMSP concentration in the
tropics, primarily due to an increase in DMSP/O biosynthesis in a range of coral reef taxa,
and an increase in the biomass of DMSP-producing fleshy macroalgae (Green, 2019).
However, the implications for coral reef health and community structure, and whether this
may assist coral reefs in coping with ongoing climate change via antioxidant activity or
climate regulation, remains highly uncertain.

The ability of corals to adapt to the rapidly changing climate will govern changes to
DMS emissions from the GBR. Corals have a close association with a range of microbes
and therefore harbor a diverse genome (Bourne, Morrow & Webster, 2016) that may
facilitate rapid phenotypic change in the coral host (Torda et al., 2017). Corals can
also enhance their thermo-tolerance by changing their endosymbiont composition via
zooxanthellae switching or shuffling (Bay et al., 2016). Acropora spp. favor Clade D
endosymbionts when exposed to thermal stress (Jones ¢» King, 2015), which can increase
their temperature tolerance by 1.5 °C (Berkelmans & Van Oppen, 2006). This may be
enough to maintain internal homeostasis in the coral holobiont and protect against mild to
moderate marine heatwaves. However, the predicted rate of ocean warming may still
exceed the tolerance thresholds of temperature tolerant coral taxa (van der Zande et al.,
2020). Rapid rises in SST remove gradual “warm-up” periods, which are thought to
alleviate temperature shock in corals, helping to mitigate oxidative stress prior to past
bleaching events (Ainsworth et al., 2016). Temperature-tolerant endosymbionts are
typically weaker producers of DMSP under current conditions (Deschaseaux et al., 2014a;
Bay et al., 2016), although tolerance does not always predict DMSP biosynthesis
(Steinke et al., 2011) and will depend on the rate of future ocean warming.

CONCLUSIONS

Biogenic emissions of DMS are a significant source of atmospheric sulfur, which in remote
marine environments, are an important source of secondary sulfate aerosols. These
non-sea salt sulfates play a significant role in the local climate of these remote marine
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environments, yet emissions of natural aerosols and their precursors remain one of the
largest contributors to our uncertainty in aerosol radiative forcing (Carslaw et al., 2013),
and ultimately our understanding of what determines the climate sensitivity.

Pristine coral reef dense regions such as the GBR, are particularly strong sources of
atmospheric DMS, similar in magnitude to highly productive high-latitude oceans.
Corals upregulate the biosynthesis of DMSP and catabolism to DMS in response to
physiological stress, with both processes important in maintaining coral homeostasis and
promoting resilience to rising ocean temperatures. It is hypothesized that coral reef
emissions of DMS increase the formation and condensational growth of marine aerosols
and CCN, thereby increasing the brightness, lifetime and cover of low-level marine
clouds. Local cloud cover is an important determinant of the spatial extent and severity of
coral physiological stress and coral bleaching. Thus, enhanced MBA emissions and LLC
cover may establish a negative feedback over coral reefs to mitigate coral physiological
stress.

This review has discussed evidence of significant links between coral physiological
stress, DMS emissions, aerosol loading and local cloud cover over coral reefs, highlighted
by a case study on the GBR, Australia. Given the vast size and relatively remote,
pristine location of the GBR, it is possible that the 20 GgSyr ' emitted from the 3,000
individual coral reefs and surrounding lagoon waters significantly influences aerosol
and cloud properties in north-eastern Australia. However, there remains substantial
uncertainty surrounding the importance of DMS emissions in the properties of the local
atmosphere above coral reefs, and what implications ongoing coral reef degradation may
have on these complex biogeochemical processes.

FUTURE DIRECTIONS

The current rate of ocean warming and coral reef degradation increases the urgency at
which we must improve our understanding of the importance of DMS in the coral reef
radiative climate. Non-linear changes in DMS emissions have been reported in response
to thermal and light stress in corals (Fischer ¢ Jones, 2012; Jackson, Gabric & Cropp, 2018).
However, the impacts of ocean warming are being exacerbated by ocean acidification,
declining water quality and increased susceptibility to disease, predation and competitive
displacement. The synergistic impacts of these co-varying stressors on DMS emissions
from coral reefs are largely unknown.

It is possible that rising ocean temperatures will lead to an increase in DMS emissions
from coral reefs, although as indicated above, there are limits on the DMS increase
associated with the onset of bleaching (Jackson, Gabric ¢» Cropp, 2018). This possibility
could be examined through a modeling approach akin to those used to project future
change in open ocean DMS emissions under warming, eg (Cameron-Smith et al., 2011;
Gabric et al., 2013). This approach is limited by the sparse DMS database in coral reef
regions (Lana et al., 2011), which currently constrains our ability to derive empirical
parametrisatons between DMS water concentration and sea temperature. This may
also be complicated if corals are capable of acclimating to rising stressors (Jurriaans ¢
Hoogenboom, 2020), or if coral reefs become dominated by more temperature-tolerant
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species or zooxanthellae types which do not experience significant oxidative stress under
warmed conditions. Interestingly, field surveys of the GBR have demonstrated that
concentrations of dissolved DMS decline along a gradient of healthy to disturbed coral
reefs (Jones et al., 2007). Consequently, DMS sea-air flux will likely be lower for coral reefs
that are exposed to multiple synergistic stressors. Although, as noted above, DMS(P)
biosynthesis from enhanced algal biomass in degraded coral reef systems may counteract a
decline in coralline emissions. These are critical areas for future research and will inform
the importance of coral reef emissions of biogenic sulfates in local climate regulation.

The predicted increase in the frequency and severity of mass coral bleaching events may
require the implementation of biological and/or physical interventional management
strategies. The propagation of temperature-tolerant coral species may allow coral reefs
to recover from recent bleaching events (Van Oppen et al., 2015). Physically mitigating the
warming effects of GHG through solar radiation management (SRM) may also assist corals
in coping with future temperature rises. SRM strategies essentially mimic natural
biogeophysical processes and involve injecting sea salt aerosol or sulfates into the
atmosphere above coral reefs to increase the brightness of LLC (Crabbe, 2009; Latham
et al., 2013; Irvine et al., 2017). Several modeled scenarios have found that this significantly
reduces the incidence of mass coral bleaching predicted to occur in the GBR, French
Polynesia, Caribbean and other tropical coral reefs to the end of this century (Latham
et al., 2013; Kwiatkowski et al., 2015; Zhang, Jones ¢» Crabbe, 2018). An additional benefit
of these SRM strategies is the potential reduction in the severity of tropical cyclones with a
decline in SST. Although climate engineering is a cost and resource-intensive option, it
may be necessary to provide short-term protection for high-value or vulnerable coral reefs
from rising temperatures.

There is enormous incentive to improve our understanding of the drivers of coral
resilience, including the role of dimethylated sulfur compounds in alleviating oxidative
stress and influencing the radiative balance. Future research needs to focus on the
quantification and characterization of the flux of these compounds from coral reefs
and its influence on aerosol and cloud formation. An improved understanding of these
biogeophysical processes will provide insight into how to enhance the natural defense
mechanisms of corals and inform climate engineering proposals, which may need to be
implemented as a last resort to conserve coral reefs in the face of ongoing climate change.
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