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ABSTRACT
Mitochondrial genomes of twelve species of Trigonopterus weevils are presented, ten of
them complete. We describe their gene order and molecular features and test their
potential for reconstructing the phylogeny of this hyperdiverse genus comprising
> 1,000 species. The complete mitochondrial genomes examined herein ranged from
16,501 bp to 21,007 bp in length, with an average AT content of 64.2% to 69.7%.
Composition frequencies and skews were generally lower across species for atp6, cox1-3,
and cob genes, while atp8 and genes coded on the minus strand showed much higher
divergence at both nucleotide and amino acid levels. Most variation within genes was
found at the codon level with high variation at third codon sites across species, and
with lesser degree at the coding strand level. Two large non-coding regions were found,
CR1 (between rrnS and trnI genes) and CR2 (between trnI and trnQ), but both with
large variability in length; this peculiar structure of the non-coding region may be a
derived character of Curculionoidea. The nad1 and cob genes exhibited an unusually
high interspecific length variation of up to 24 bp near the 3′ end. This pattern was
probably caused by a single evolutionary event since both genes are only separated by
trnS2 and length variation is extremely rare in mitochondrial protein coding genes. We
inferred phylogenetic trees using protein coding gene sequences implementing both
maximum likelihood and Bayesian approaches, each for both nucleotide and amino
acid sequences. While some clades could be retrieved from all reconstructions with
high confidence, there were also a number of differences and relatively low support
for some basal nodes. The best partition scheme of the 13 protein coding sequences
obtained by IQTREE suggested that phylogenetic signal is more accurate by splitting
sequence variation at the codon site level as well as coding strand, rather than at the gene
level. This result corroborated the different patterns found in Trigonopterus regarding
to A+T frequencies and AT and GC skews that also greatly diverge at the codon site
and coding strand levels.

Subjects Entomology, Genomics, Zoology
Keywords Cryptorhynchinae, Curculionidae, Mitochondrial genomes, Next generation
sequencing, Phylogenetic analysis

INTRODUCTION
The hyperdiverse weevil genus Trigonopterus Fauvel has been the focus of a research project
covering its taxonomy (Riedel, 2010; Riedel, 2011), ecology (Riedel, Daawia & Balke, 2010;
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Tänzler et al., 2012; Letsch et al., 2020a), biogeography (Tänzler et al., 2014; Tänzler et al.,
2016), and functional morphology (Van de Kamp et al., 2011; Van de Kamp et al., 2014;
Van de Kamp et al., 2015). To date, there exist 451 described species, but more species
are undergoing formal taxonomic description, suggesting that the number of existing
species may exceed by far the known number. Since additional fieldwork shows no sign of
saturation of species discovery (A Riedel, pers. comm., 1990–2019) the number of existing
species may exceed 2,000 or even 3,000 species. An integrative approach has been applied
to make species descriptions and diagnoses more efficient (Riedel et al., 2013a), largely
relaying on cox1 sequences for sorting and identifying specimens, also known as ‘‘DNA
barcoding’’ (Hebert et al., 2003). Combining this technique with traditional morphological
taxonomy, the number of described species could be increased significantly (Riedel et al.,
2013b; Riedel et al., 2014; Riedel & Tänzler, 2016; Riedel & Narakusumo, 2019; Van Dam,
Laufa & Riedel, 2016).

All Trigonopterus species are apterous (Van de Kamp et al., 2015) and of limited dispersal
ability. Their cumulative distribution roughly encompasses the area between Sumatra,
Samoa, the Philippines, and New Caledonia, presumably with the center of species diversity
in New Guinea. Distribution patterns are of great value to historical biogeography of the
Indo-Australian Archipelago: studies on the colonization of Sundaland (Tänzler et al.,
2016; Letsch et al., 2020a; Letsch et al., 2020b) and New Caledonia (Toussaint et al., 2017)
have relied on multi-marker datasets generated by PCR and Sanger sequencing, e.g., the
mitochondrial genes cox1 and rrnL (16S), and the nuclear genes arginine kinase (AK),
carbamoyl synthase (CAD), Enolase (EN), and histone 4 (H4). With the advent and
increasing use of next generation sequencing (NGS) techniques (Voelkerding, Dames
& Durtschi, 2009), our earlier approach of PCR and Sanger sequencing of short DNA
fragments appeared no longer efficient, respectively cost-effective and we looked for
alternative ways generating datasets on the Illumina platform. A genome-skimming
approach (Straub et al., 2012) targeting mitochondrial genomes appeared promising for
three reasons: first, the costs were reasonable. Second, a mitogenome dataset would provide
a reasonable overlap with our previous sequencing data including short mitochondrial
sequences (cox1 and rrnL). Third, mitogenomes had been used successfully to resolve
phylogenies of weevils (Haran, Timmermans & Vogler, 2013;Gillett et al., 2014), so datasets
should contain sufficient signal to resolve relationships within a single genus.

Mitochondrial genomes (mitogenomes) in beetles, and most metazoans, usually contain
13 protein coding genes (PCGs), 22 transfer RNA (tRNA), two subunits of ribosomal
RNA (rRNA) and a control region, which gene order is similar to the ancestral insect
mitogenome (Cameron, 2014a; Cameron, 2014b). This composition of 37 genes and a
control region is well-conserved in the bilaterian animals (Bernt et al., 2012), though there
are rare deviations from this general pattern. In beetles, they involve gene order reversal
and presumably deletion of tRNA genes (Timmermans & Vogler, 2012; Liu et al., 2019)
and in rare cases rearrangements of PCGs genes, e.g., in Iberobaenia sp. (Iberobaemidae)
(Andujar et al., 2016) and Omus cazieri (Carabidae) (López-López & Vogler, 2017). Insect
mitogenomes are generally AT-rich including a large non-coding region with even higher
AT content, which contains the origins of replication and transcription (Cameron, 2014b;
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Bernt et al., 2012). Mitochondrial genomes were used to produce phylogenies of many
arthropod groups, e.g., beetles (Linard et al., 2018; Timmermans et al., 2016; Yuan et al.,
2016), crustaceans (Stokkan et al., 2018), hymenopterans (Tang et al., 2019), and stone
flies (Ding et al., 2019) just to name a few. The main advantages of mitogenomes over
nuclear genes in molecular systematics stems from (1) the technical ease of sequencing,
even of old museum specimens (Gilbert et al., 2007) and subfossil remnants (Brown et al.,
2016) due to a much higher number of copies compared to nuclear genes; (2) a fairly
conserved structure and genes missing introns (Cameron, 2014a; Cameron, 2014b); this
makes annotation and alignment of genes straightforward and easier compared to nuclear
genes (3) an increased evolutionary rate useful in diagnosis and phylogenetic reconstruction
of closely related species (DeSalle, Schierwater & Hadrys, 2017). Unfortunately, there are
also some drawbacks summarized by Rubinoff, Cameron & Will (2006). Most seriously,
gene trees may differ from species trees due to hybridization and incomplete lineage sorting
(Edwards, 2009; Maddison, 1997). Since mitochondrial genes are linked and behave as a
single marker, a multispecies coalescent approach (Liu et al., 2016) potentially solving these
issues cannot be taken. However, facing millions of species (most of them arthropods) that
need an improved phylogenetic placement, mitogenomes are our first choice. Approaches
using nuclear genes requiring more resources can always follow as a second step for taxa
of special interest.

Trigonopterus belongs to the hidden snout weevils, Cryptorhynchinae (Riedel et al.,
2016; Letsch et al., 2020a; Letsch et al., 2020b). To date, there exist only two published
mitochondrial genomes of this subfamily, i.e., two species of the genus Eucryptorrhynchus
(Liu et al., 2016). Herein, we describe the complete mitogenomes of twelve Trigonopterus
species from Sulawesi and the Tanimbar Archipelago and test their potential for
reconstructing the phylogeny of this hyperdiverse genus.

MATERIALS & METHODS
Selection of specimens and DNA extraction
Twelve Indonesian Trigonopterus species were selected from the fauna of Sulawesi (Riedel
& Narakusumo, 2019) and the Tanimbar Archipelago (Narakusumo, Balke & Riedel, 2019):
T. carinirostris Riedel (ARC3221), T. jasminae Riedel (ARC2804), T. kotamobagensis Riedel
(ARC2888), T. porg Narakusumo & Riedel (MZB0043-m), T. selaruensis Narakusumo
& Riedel (MZB0023-m), T. singkawangensis Riedel (ARC2547), T. tanimbarensis
Narakusumo & Riedel (MZB0028-m), T. triradiatusNarakusumo & Riedel (MZB0029-m),
T. sp. 1113 (MZB0052-m), Trigonopterus sp. 1114 (MZB0053-m), Trigonopterus sp.
1115 (MZB0110-m), and Trigonopterus sp. 1116 (MZB0099-m). Vouchers starting with
accession numbers ‘‘ARC’’ are deposited at the State Museum of Natural History Karlsruhe
(SMNK), vouchers starting with ‘‘MZB’’ are deposited at Museum Zoologicum Bogoriense
(MZB). Trigonopterus is not regulated or protected species in Indonesia. We obtained
a permission letter to enter conservation areas issued by Center for National Resources
(BKSDA, Ministry of Forestry and Environment No.: S.359/IV-K.30/PKA.1.0/2018), and a
permission letter to collect and transport wildlife for research purposes (BKSDA, Ministry
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of Forestry and Environment: No.: B.1550/IPH.1/AP.01/III/2018). A shipping invoice for
loan specimens was issued by the Museum Zoologicum Bogoriense (Research Center for
Biology, Indonesia Institute of Sciences: Register file no. 13/SI/MZB/2018).

Species were selected to represent different clades and maximize phylogenetic diversity
based on a preliminary phylogeny of cox1 sequences comprising a larger species number.
For earlier extractions (ARC2547, ARC2804, ARC2888, ARC3221) whole genomeDNAwas
extracted non-destructively from entire specimens using Qiagen DNeasy DNA extraction
kits (Qiagen, Hilden, Germany) as described by Riedel, Daawia & Balke (2010). For later
extractions (MZB), we used head and prothorax only, excluding the proventriculus and
other parts of the digestive track, thus reducing the amount of bacterial DNA contained in
these organs.

Sample preparation and sequencing
Sequencing libraries were prepared with theNextera DNAFlex R© Library Prep kit (Illumina,
San Diego, CA, USA). Procedures were followed the manufacturer’s protocol except that
only half of the recommended volumes were used, i.e., starting with 15 µl of genomic DNA
template containing 1.5–5.0 ng DNA. Resulting libraries were quantified using a Qubit R©

3.0 Fluorometer with the dsDNA HS assay kit (Thermo Fisher Scientific, Waltham, MA,
USA). Fragment distribution of libraries was examined using a Fragment Analyzer R©

dsDNA 910 kit (Agilent Technologies, Santa Clara, CA, USA) for a range of 35 to 1,500 bp.
Based on the concentration and the average size distribution, the molar concentration was
calculated for each sample. The twelve samples of this project were pooled in equimolar
amounts together with other 84 samples and submitted to Macrogen Inc. (Seoul, South
Korea) for sequencing on one lane of an Illumina Hiseq Xten for 2 x 150 bp.

Mitogenome assembly and annotation
Adapters and poor quality ends of Illumina reads were trimmed using the BBDuk (Bushnell,
2016) implemented as plugin for Geneious Prime R© 2019.1.3 (Biomatters Ltd, Auckland,
New Zealand). Quality of trimmed reads was checked in FastQC (Andrews, 2010). Reads
for each species-specific library have been deposited in the BioProject PRJNA642015. The
paired ends reads were de novo assembled using Novoplasty 3.7 (Dierckxsens, Mardulyn &
Smits, 2017). The sequence of the mitochondrial cox1 gene of each Trigonopterus species
was used as seed, and the Trigonopterus trigonopterus mitochondrial genome (AP Vogler,
pers. comm., 2015) as reference sequence. We implemented default settings in Novoplasty
except for a kmer value of 29. The integrity and circularity of each mitogenome was then
assessed by interactively mapping only those paired-reads with aminimum length of 240 bp
to the consensus sequence of each mito-contig in Geneious Prime with custom sensitivity,
a minimum overlap of 60 bp, and a minimum overlap identity of 98%. If necessary, the
resulting consensus sequence was trimmed and the process repeated until overlap was
established by ends showing an identical sequence of at least 100 bp. Mitogenome contigs
obtained inGeneious Primewere exported in bam format and parsed to pileup format using
samtools v1.8 (Li et al., 2009) to finally estimate coverage with the Perl script calculate-
coverage+GC.pl (http://www.popoolation.at/mauritiana_genome/scripts/) using awindow
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size of 100 bp and a step size of 50 bp. The MITOS2 server (Bernt et al., 2013; Donath et al.,
2019) was used for preliminary annotations. Furthermore, the precise boundaries of protein
coding genes (PCGs), tRNA, and rRNA were determined by aligning the individual genes
with MUSCLE v3.8.1551 (Edgar, 2004) as implemented in Seaview v4.7 (Gouy, Guindon
& Gascuel, 2010). We used the annotated gene sequences of other beetle mitogenomes
available in Genbank as references to assess the 5′ and 3′ ends of PCGs and rRNAs:
Tribolium castaneum, NC_003081 (Friedrich & Muqim, 2003), Eucryptorhynchus brandti,
NC_025945 (Nan, Wei & He, 2016), Eucryptorrhynchus chinensis NC_026719 (Liu et al.,
2016), Anoplophora glabripennis, DQ768215 (unpublished), Sphenophorus sp., GU176342
(Song et al., 2010), Naupactus xanthographus GU176345 (Song et al., 2010), Rhynchophorus
ferrugineus, KT428893 (Zhang et al., 2017), Sitophilus oryzae, KX373615 (Ojo et al., 2016).
The annotation of each tRNA gene was validated as accurate if its secondary structure
matched the canonical cloverleaf structure of tRNAs in metazoans. Nucleotide and amino
acid frequencies and skews were calculated using an in-house developed python2 script
(mitocomposition.py v. beta1, Data S1) including biopython modules (Cock et al., 2009).
Intra-strand composition skews were calculated based on formulas proposed by Perna &
Kocher (1995); AT-skew = (A− T) / (A + T) and GC-skew= (G− C) / (G + C). Box plots
and heat maps were obtained using python libraries matlibplot, numpy and seaborn. We
used the programs einverted, equicktandem, etandem, and palindrome included in the
EMBOSS suite v6.6.0.0 using default parameters (Rice, Longden & Bleasby, 2000) to find
repetitive sequences on non-coding regions. Control regions were highly divergent and thus
aligned with BlastAlign (https://bioconda.github.io/recipes/blastalign/README.html),
which can detect conserved regions using local alignments. Effective Number of Codons
(ENC), GC frequencies at 3rd codon positions, and Measure Independent of Length and
Composition (MILC) were calculated in INCA v2.1 (Supek & Vlahoviček, 2004). ENC
values can vary from 62, since stop codons TAA and TAG are excluded, when all possible
codons are used (i.e., no codon usage bias) to as low as 20 when one single codon is used
per amino acid. Some studies demonstrated that length and nucleotide composition of
sequences were factors introducing noise to the ENC estimates (Supek & Vlahoviček, 2004).
Thus, they suggested MILC formula to calculate codon usage bias since is not affected by
length and nucleotide composition. MILC values close to 0.5 indicate that all codons are
used (ENC 62), and values higher than 1.9 indicate that few codons are used (ENC 26),
i.e., there is strong codon bias (Supek & Vlahoviček, 2004).

Phylogenetic analyses and estimation of divergence times
Best partition schemes and substitution models (-TESTMERGE), tree topology
reconstruction, and node supports (1,000 fast bootstrap replicates, alrt 0, and abayes),
were performed under Maximum Likelihood (ML) in IQTREE v1.6.10 (Nguyen et al.,
2015). Best partition schemes and substitution models were selected based on the lowest
Bayesian Information Criterion (BIC) values as implemented in IQTREE. Tree topology
and branch lengths were also built in MrBayes v3.2.6 (Ronquist et al., 2012) with 30 million
generations, sampling every 5,000th ensuring ESS values were above 200 after 25% of
burnin. The consensus tree in MrBayes was obtained with the command ‘‘Allcompat’’
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that adds all compatible groups to such a tree, and its branch lengths were averaged over
those sampled trees in which that branch was present. The mitochondrial sequences of two
species of the genus Eucryptorhynchus, a member of Cryptorhynchinae (Letsch et al., 2020a)
like Trigonopterus, were included as outgroup representatives: E. brandti (NC_025945), and
E. chinensis (NC_026719). The topological tree symmetry was calculated using the total
cophenetic index (Mir, Rosselló & Rotger, 2013) and nucleotide substitution saturation
implementing Xia’s test (Xia et al., 2003).

Divergence times were estimated in BEAST v1.10.4 (Suchard et al., 2018) by running
two independent analyses of 100 million generations, sampling every 5,000th. After
discarding 10% of the samples as burnin, convergence of the runs was assessed in Tracer
v1.7 (Rambaut et al., 2018) ensuring parameter values reached effective sample size (ESS)
above 200 after convergence. Independent runs were combined in a single file using
LogCombiner. Besides, mean values and 95% confidence intervals of parameters and
ages of combined runs were estimated using the ‘‘maximum clade credibility’’ tree in
TreeAnnotator. Different clock relaxations were statistically compared based on Bayes
Factors (BFs) estimated from marginal likelihoods under the path-sampling scheme as
implemented in BEAST.Weperformed 40 steps of onemillion generations each using a path
scheme with a betaQuantile 0.33 (Baele et al., 2012), discarding 25% of each step as burn-in.
The tree was calibrated based on the age of the most recent common ancestor (mrca) of
Trigonopterus excluding the T. squamosus-, the T. scissops- and the T. bisinuatus-group as
estimated by Letsch et al. (2020a) and Letsch et al. (2020b): mean 45.88 (42.31–48.10) Ma.
We implemented this event as a log-normal distribution prior in real space with a mean of
45.88 Ma and standard deviation of 1.5.

RESULTS
The mitochondrial genomes of ten Trigonopterus species studied here were complete and
circular DNA molecules which ranged from 16,501 bp in Trigonopterus sp. 1115 to 21,007
bp in T. carinirostris (Table 1). Accession numbers and nucleotide compositions for each
mitogenome are detailed in Table 1. The mitochondrial sequences of the other two species,
T. selaruensis and T. porg, were partial because their control region could not be completed.
Themean coverage of mitogenome contigs was >800x in Trigonopterus sp. 1114, and >400x
in Trigonopterus sp. 1116; in most species, it ranged between 100x and 200x, while it was
<50x in T. carinirostris (Table 1). The plot of coverage across mitogenome contigs (Fig. S1)
and their standard deviations (Table 1) showed that coverage values may differ greatly in
adjacent regions. Sliding windows of 100 bp indicated the following minimum coverages:
e.g.,T. jasminae 15x,T. tanimbarensis 13x,T. carinirostris 13x, andT. sp. 1113 12x (Table 1).
The mitogenomes harbored the typical metazoan gene set consisting of 37 genes: thirteen
protein-coding genes (PCGs), 22 tRNAs and two ribosomal genes, with 23 genes coded
on the plus strand and 14 on the minus strand (Fig. 1). The gene order was identical
to that described in most beetles and considered the ancestral pattern in pancrustaceans
(Boore, 1999; Boore, Lavrov & Brown, 1998). As previously described in beetles and other
arthropods, Trigonopterusmitogenomes were also A+T rich with percentages ranging from
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64.2% to 71.2% (Table 1). At the gene level, atp8, nad1-6, and all RNA coding genes showed
higher A+T values than atp6, cox1-3, and cob genes (Fig. 2A, Table S1). PCGs also differed
in AT richness among codon positions. A+T values increased from 1st to 3rd codon sites
of genes coded on the plus strand (Fig. 2B). On the other hand, codon sites of genes on
the minus strand had high values similar to those found in 3rd codon sites of genes on the
plus strand. Interspecific variation in A+T contents was higher in PCGs and lower in RNA
coding genes; at the codon level it was low in the 1st and 2nd codon sites but very high in
the 3rd codon sites (Figs. 2A–2B, Table S1).

Complete mitochondrial genomes possess slightly positive AT skews (Fig. 2C), i.e., an
intra-strand surplus of As over Ts ranging from 0.031 to 0.157. On the other hand, GC
skews showed the opposite trend with negative values from −0.373 to −0.176, i.e., an
intra-strand lack of Gs over Cs. A closer look at the gene level revealed slightly positive
AT skew values for PCGs genes coded at the plus strand and RNA coding genes, and high
negative values for those genes coded on the minus strand (Fig. 2C, Table S1). The same
pattern was observed at the codon level except that the 2nd codon sites of genes at the plus
strand showed higher negative AT skew values compared to codon sites of genes of the
minus strand (Fig. 2D). The GC skew showed the opposite trend to AT skew at both gene
and codon levels with negative values for PCGs coded at the plus strand and RNA coding
genes, whereas those coded on the opposite strand had positive values (Fig. 2E). Across
species, AT and GC skews revealed lower divergences at the 1st and 2nd codon sites, but
higher for the 3rd codon sites on genes coded on the minus strand (Figs. 2D, 2F).

The most frequent amino acids were Leu, Ser, Ile, and Phe, which accounted for about
50% of the set of 20 amino acids while others such as Cys, Asp, Glu, and Arg were extremely
rare (Fig. 3, Table S2). Variation across genes was quite low for atp6, cox1-3, and cob genes,
and a bit higher for some nad genes such as nad3, nad4L and nad6 (Fig. 3, Table S2). The
gene atp8 showed extremely high divergence at the amino acid frequencies across species
maybe because it is very short (159 bp) and most of its sequence is located outside of the
mitochondrial membrane (see http://www.ianlogan.co.uk/TMRjpgs/tmrpage.htm). Most
PCGs (56.41%) started with the canonical codon ATA (37) and ATG (51) whereas the
large remaining fraction (68) begun with non-canonical start codons such as ATT, ATC,
TTG, CTG, GTG, and GTA. The latter differ by one nucleotide relative to the canonical
ones, and were already described elsewhere as putative non-canonical start codon (Pons et
al., 2014). In very few genes, the starting codon were GTC, ACT, and ACG, the latter being
rare but known in few other species. The stop codons were the canonical TAA (98) and
TAG (36) for most genes (85.89%) while the remaining ones had truncated stop codons
(22). The Effective Number of Codons (ENC) ranged from 53.473 to 43.525 indicating
that codon bias usage is not extremely high. The analysis of the codon frequencies showed
that codons with 3rd sites including A or T were more used than those including G or
C. In fact, there is a positive correlation between ENC values and GC frequencies at 3rd
codon positions, i.e., higher GC content is correlated with higher numbers of codons used
(ENC values, Fig. 4). The MILC values ranged from 0.499 to 0.538, which corroborated
the presence of a low bias in codon usage in Trigonopterus. The combined analysis of genes
coded on the minus strand had lower GC content at third codon sites and ENC values than

Narakusumo et al. (2020), PeerJ, DOI 10.7717/peerj.10017 7/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.10017#supp-1
http://dx.doi.org/10.7717/peerj.10017#supp-1
http://dx.doi.org/10.7717/peerj.10017#supp-1
http://dx.doi.org/10.7717/peerj.10017#supp-2
http://dx.doi.org/10.7717/peerj.10017#supp-2
http://www.ianlogan.co.uk/TMRjpgs/tmrpage.htm
http://dx.doi.org/10.7717/peerj.10017


Table 1 Acronyms, accession numbers and sequence statistics of mitochondrial genomes of twelve Trigonopterus species. Summary of length (bp), coverage (mean,
standard deviation, minimum and maximum values), A+T frequencies, and AT and GC skews. Sequence Read Archive (SRA).

coverage

Species Acronym GenBank SRA Biosample Length Average Stdev Min Max A+T AT skew GC skew

T. carinirostris ARC3221 MT653608 SRR12124845 SAMN15395793 21,007 39 13 13 83 0.683 0.157 −0.176

Trigonopterus sp. 1116 MZB0099 MT653610 SRR12124852 SAMN15376232 18,825 446 123 46 912 0.669 0.110 −0.356

Trigonopterus sp. 1113 MZB0052 MT653604 SRR12124843 SAMN15395797 18,442 202 115 12 547 0.667 0.077 −0.276

T. kotamobagensis ARC2888 MT653609 SRR12124846 SAMN15395792 18,038 281 85 50 545 0.693 0.047 −0.373

T. jasminae ARC2804 MT653603 SRR12124849 SAMN15395791 17,417 156 52 15 304 0.642 0.071 −0.288

T. tanimbarensis MZB0028 MT653601 SRR12124847 SAMN15395794 16,993 98 42 13 282 0.697 0.107 −0.290

Trigonopterus sp. 1114 MZB0053 MT653606 SRR12124851 SAMN15376233 16,893 819 261 119 1,676 0.696 0.114 −0.343

T. triradiatus MZB0029 MT653605 SRR12124844 SAMN15395795 16,795 338 72 46 476 0.667 0.073 −0.361

T. singkawangensis ARC2547 MT653607 SRR12124850 SAMN15395790 16,742 186 42 24 297 0.689 0.127 −0.362

Trigonopterus sp. 1115 MZB0110 MT653602 SRR12124842 SAMN15375528 16,501 114 26 29 182 0.675 0.075 −0.317

T. selaruensis MZB0023 MT653600 SRR12124853 SAMN15376231 >15,529 252 99 20 617 0.691 0.090 −0.298

T. porg MZB0043 MT653611 SRR12124848 SAMN15395796 >15,346 207 55 26 396 0.712 0.031 −0.299
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the combined analysis of those coded on the plus strand (Fig. 4) though such pattern can
be driven by the shorter overall length of genes coded on the minus strand.

The accurate reconstruction of secondary structures of the large (rrnL gene or 16S) and
short (rrnS gene or 12S) subunits of rRNA were not performed here since such remodeling
requires complex analyses and posterior manual refinements that are beyond the scope
of this study. All 22 tRNAs showed the expected canonical cloverleaf structure except for
tRNA S1 that in most metazoans, and hence in Trigonopterus, lost its DHU-arm (Fig. 5).
The secondary structures were conserved across the twelve Trigonopterus species studied
herein and a closer look at the alignment of their sequences showed many compensatory
mutations, such as from A-U to G-C and from GU to GC, or vice-versa, and very few
mismatches in base pairings of arms (see tRNA alignments on Data S2).

The twelve Trigonopterus species studied herein possess two large non-coding regions,
CR1 (between the rrnS and the trnI genes), and CR2 (between the trnI and the trnQ
genes). They were difficult to assemble, particularly CR1, since they harbor many repetitive
motifs. Coverage plots (Fig. S1) did not show any unusually high peak within the CR that
would be an indication of collapsed reads within repetitive regions. The first non-coding
region was longer than the second one except in T. carinirostris and Trigonopterus sp. 1113.
The CR1 of the ten complete mitogenomes had an average length of 2,072 bp (±614 bp)
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Figure 2 Box plot of nucleotide content. A+T frequencies (A–B), AT skews (C–D) and GC skews
(E–F) for complete mitochondrial genomes, individual genes, gene partitions, and codon sites
across Trigonopterus species. Acronyms: cds (13 protein coding gene sequences concatenated), cds+
(concatenated PCG sequences of genes in the plus strand), cds- (concatenated PCG sequences of genes in
the minus strand), trna (tRNA sequences), trna- (tRNA sequences on plus strand), trna- (tRNA sequences
on minus strand), and ribo (ribosomal RNA sequences).

Full-size DOI: 10.7717/peerj.10017/fig-2

ranging from 3,178 to 1,345 bp, and CR2 a lower average length of 867 bp with extremely
large standard deviation (±1,142 bp, range 4,082 - 98 bp). They were also AT rich, 68.60%
(±3.57%, max. 73.18-% and min. 63.53%), and 60.83% (±7.51%, max. 77.94% and min.
49.77%), respectively. The non-coding region CR1 harbors many repetitive sequences, long
homopolymer runs of A or T >10 bp, and many palindromic sequences forming secondary
structures that are common features associated with control regions. Besides, CR1 includes
a motif of 21 bp (ATTTATAGTTATATATATAAAT) which forms a palindromic structure
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Figure 3 Heat maps of amino acid frequencies.Mean (A), and standard deviation (B) for amino acid
frequencies across Trigonopterus species for each protein codon genes and by codon sites and strands. See
legend of Fig. 2 for acronyms.

Full-size DOI: 10.7717/peerj.10017/fig-3

in six out of twelve Trigonopterus species examined. This motif was enclosed within larger
sequences recognized as putative origins of replication of the plus strand by MITOS2.
Besides, the complete CR1 of each species contained one or two short inverted repeats
ranging from 20 to 80 bp in length and a high nucleotide identity ranging from 97% to
68% (see Data S3). The alignment of those CR1 sequences using BlastAlign showed that
very few sites (<100 for most pairwise comparison, see Data S3) were conserved across the
ten complete control regions, mostly homopolymer runs, and hence without phylogenetic
signal. The CR2 showed similar features without conserved regions and its homopolymer
stretches were shorter. Besides, it neither included the motif of 21 bp, nor the presence
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of inverted repeats. Besides, according to MITOS2 it included the origin of replication
of the minus strands for several species though primary sequences were not conserved
across them. Therefore, we refer to it as ‘‘CR2’’ while Song et al. (2020) described it as
‘supernumerary’ non-coding region (IGS).

There was another short non-coding region between trnS2 and nad1, including the
sequence resembling a motif of 22 bp described in several longhorn beetles between
the same genes (TTACTAAATTTAATTAACTAAA; Wang et al., 2019). This sequence is
capable of forming a palindrome in Trigonopterus and includes two TACTA motifs at both
ends (see Data S4).

The ML phylogenetic analyses of the 13 mitochondrial PCGs based on a comparison
of BIC factors showed that the 39 preliminary partitions (13 genes per three codon sites)
could be merged in seven blocks (see Table 2). This partitioning scheme had better BIC
values than analyzing the data as a single partition, by gene (13 partitions), splitting by
gene and by codon (39), by codon (3), and by codon and strand (6, see Table 2). The
best partition scheme estimated in IQTREE included the 2nd codon sites of atp8 within
1st codon sites of partition 1. However, the inclusion of those atp8 sites with the other
2nd codon sites of genes coded on the plus strand just increased the BIC value by 40.867
units (Table 2). Since this alternative partitioning makes more sense from a functional
point of view, we selected it for further phylogenetic analyses. Partitions were as follows:
(1) 1st codon sites of genes cob, atp6, atp8, cob, nad2, nad3, nad6, (2), 1st codon sites
of cox1-3 genes (3) 1st codon sites of genes coded on minus strand, (4) 2nd codon sites
of genes coded on plus strand, (5) 2nd codon sites of genes coded on minus strand, (6)
3rd codon sites of genes coded on plus strand, and (7) 3rd codon sites of genes coded
on minus strand. The best nucleotide substitution models were GTR+I+G for partitions
1 to 5 except that partition 2 did not include the Gamma parameter, and HKY+I+G for
partitions 6 and 7. The best partitioning and models at the amino acid level were in three
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Figure 5 Secondary structure of the 22 tRNA of Trigonopterus selaruensis.
Full-size DOI: 10.7717/peerj.10017/fig-5

blocks starting from 13 independent gene partitions (Table 2): (1) atp6, atp8, nad2, nad3,
and nad6 (mtMAM+F+I+G), (2) cob, cox1, cox2, and cox3 (mtMet+I+G), (3) genes coded
on the minus strand (nad1, nad4, nad4L, nad5; mtMet+F+I+G4). The ML and Bayesian
trees based on the best partitions and models at both DNA and amino acid levels showed
similar topologies with low support for several deep nodes (Fig. 6).

Two different clock relaxation models, UCLN and RLC, were statistically compared
against a strict clock using BF estimated frommarginal likelihoods in BEAST:−97881.813,
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Table 2 Bayesian Information Criterion (BIC) for different nucleotide and amino acid partitions as
estimated in IQTREE.

Data type / Model n partitions BIC

nucleotide
IQTREE best 7 194375.986
alternative (see text) 7 194416.853
by strand + by codon 6 194476.674
by codon 3 200087.080
by gene + by codon + by strand 39 202208.392
by gene 13 204293.956
none 1 206210.303
amino acid
IQTREE best 3 91091.530
by strand 2 91254.723
none 1 91782.952
by gene 13 93110.067

T. kotamobagensis

Trigonopterus sp. 1113
Trigonopterus sp. 1114

T. singkawangensis

T. jasminae

Trigonopterus sp. 1116

Trigonopterus sp. 1115

T. carinirostris

T. triradiatus

T. selaruensis

T. porg

T. tanimbarensis

E. brandti (NC_025945)

E. chinensis (NC_026719)

0.2 0.7

*

*
*

*

a b

Figure 6 Phylogenetic tree hypothesis of twelve Trigonopterus species studied herein. Two weevil
species of Eucryptorhynchus included as outgroup representatives. Tree estimated with Bayesian frame-
work at amino acid level in A; tree based on ML criterion at nucleotide level in B. Numbers on nodes indi-
cate posterior credibility support (A), and alrt, abayes and fast bootstrap support (B). Asterisks denote lack
of posterior credibility support.

Full-size DOI: 10.7717/peerj.10017/fig-6

−97882.255, and −97912.858, respectively. Thus, the strict clock was statistically rejected
(BF > 62) vs UCLN, but not RLC since BF was lower than one. The UCLN model was
favored over RLC since the marginal likelihood value was smaller and the former contains
fewer number of parameters. The tree topology under the UCLN model (Fig. 7) was
identical to those obtained under strict and RLC clocks and similar to that retrieved based
on ML with no support for basal nodes. Most node ages were between 25 and 45 Ma with a
single younger split at ca. 15Ma between T. kotamobagensis and Trigonopterus sp. 1113. The
mean rate estimated for the mitochondrial PCGs under UCLN clock was 0.0104 × 10−08
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nucleotide substitutions per site, year and linage, with a 95% confidence interval between
0.0085 and 0.0131 × 10−08.

The concatenated nucleotide sequences of the 13 PCGs showed low saturation based
on Xia’s test (Iss 0,605 < Iss.c 0,838, Two-tailed p< 0.001). Absent or low saturation was
also retrieved after independent analysis of codon sites: 0.531 vs 0.822, 0.398 vs 0.822, and
0.724 vs 0.822 for 1st, 2nd and 3rd codon sites, respectively (Two-tailed p< 0.001 for all of
them). These values were estimated for a symmetrical topology as that estimated for our
BEAST tree (Total Cophenetic Index 243 within a maximum of 364 and a minimum of 64,
and a value of 118.956 for a yule tree).

DISCUSSION
The patterns of nucleotide composition and intrastrand asymmetry observed in
Trigonopterus mitogenomes are similar to those previously described in ecdysozoans,
particularly in arthropods, most insects, and also in other beetles (Wang et al., 2019; Pons
et al., 2014; Lavrov, 2014; Rota-Stabello et al., 2010). AT richness is not as high as in others
arthropods, sometimes exceeding 70% (e.g., Cameron, 2014a; Cameron, 2014b; Boore,
Lavrov & Brown, 1998). Such A+T content in Trigonopterus is also reflected in the codon
usage which is not as biased as in other insect species, although 3rd codon sites have
higher chances of showing A or T rather than G or C. Most of the variation found among
several features described in Trigonopterus were at the strand and codon level: e.g., higher
A+T content on 3rd codon sites, higher positive AT skews but lower GC skew values for
genes on plus strand, as described elsewhere in arthropods (Pisani et al., 2013; Pons et al.,
2014). In insects, the sign of GC skew value is related to replication orientation but that
of AT skew value fluctuate with gene direction, replication and codon positions (Wei et
al., 2010). Those unbalanced usages and asymmetrical patterns were also observed in the
amino acid content: some amino acids are used frequently (e.g., Leu, Ser, Ile, and Phe),
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whereas others rarely (e.g., Cys, Asp, Gln, and Arg; e.g., Pons et al., 2014). Finally, the
presence of non-canonical start codons is quite common as previously described in other
pancrustacean taxa (e.g., Pons et al., 2014).

Pinpointing the start of the cox1 gene is a contentious issue in insects; in Diptera even
four base pairs start codons have been proposed (Cameron, 2014b). For Coleoptera, it was
suggested that Asp might act as a start codon being the first in-frame codon following the
tyrosine tRNA and appearing conserved across Polyphaga (Sheffield et al., 2008; Cameron,
2014a). However, our alignment shows that three Trigonopterus species deviate from
this pattern: T. carinirostris has Gln, T. tanimbarensis His, and T. triradiatus Lys in this
position. A start codon of ATT, respectively ATC, and in one species (T. singkawangensis)
ACT appears most likely, although this involves an overlap of eight base pairs with tyrosine
tRNA. On the other hand, most PCGs in Triponopterus terminated in full stop codons
(TAA or TAG) which is not unusual in beetles, although it is also known that beetles have
incomplete stop codon such as T and TA in various genes (Sheffield et al., 2008; Chen et al.,
2018; Takahashi, Okuyama & Martin, 2019). Other arthropod taxa have many PCGs with
truncated stop codons (Cameron, 2014a; Stewart & Beckenbach, 2009). Alignments of five
PCGs in Trigonopterus showed no gaps near the ends (i.e., atp6, cox3, cox2, nad2, nad3,
nad4), while in others only a single amino acid was lost or gained (three gaps in the DNA
alignment; atp8, cox1, nad5, nad4L, nad6). However, cob and nad1 showed a larger length
variation of up to 24 nucleotide positions at the 3′ end although both genes terminated
with a full canonical stop codon (TAA / TAG). The presence of a non-coding spacer
between nad1 and the 3′ end of trnS2 could explain the difference in length plasticity in
nad1. Another plausible explanation is that the length variability at the 3′ end of the NADH
subunit 1 protein is placed in the inner mitochondrial space, while the trans-membrane
regions are generally highly conserved in length (∼22 amino acids per trans-membrane
section). The cob gene also exhibits a marked length variation at the 3′ end (from 3 to 15
bp) in Trigonopterus, but there is no spacer between the 3′ end of cob and the adjacent
5′ end of trnS2. In spite of its marked length variation cob just overlaps two nucleotides, or
is separated by a two-nucleotide spacer, with trnS2. The 3′ end of the cytochrome b protein
is located in the outer part of the mitochondrial membrane, which is also more variable in
length than the trans-membrane regions. However, other mitochondrial proteins coded in
the mitochondrial genomes have inner and outer parts but their lengths are conserved at
their 5′ and 3′ ends. In fact, this pattern is located in a single region of the Trigonopterus
mitogenome, (3′ end of cob - trnS2 -spacer - 3′ end of nad1, since the latter is coded on
the minus strand), and hence length variation and presence of a non-coding spacer could
be related to a single evolutionary event. In fact, this intergenic spacer, including TACTA
motifs, between cob-trnS2 and nad1 genes of Trigonopterus was also described in other
Cryptorhynchinae (Liu et al., 2016), Cerambycidae (Kim et al., 2009;Wang et al., 2019; Liu
et al., 2018), other beetles families (Du et al., 2017; Kim et al., 2009; Liu et al., 2018), and
is extremely long in Bruchinae (Sayadi et al., 2017). This spacer was probably formed by
slipped-strand mispairing and duplication/random loss, and the conserved motif could
be a binding site of a transcription termination peptide (Du et al., 2017; Wang et al., 2019)
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and references therein). Finally, the length increment of nad1 in Trigonopterus implies an
enlargement of the mitochondrial sequence, and not a larger overlap between genes.

Trigonopterus mitogenomes harbor two large non-coding regions split only by the trnI
gene (64–72 bp). They are extremely long, particularly CR2 that is presumably a secondary
control region since it contains the origin of replication of the minus strand in several
Trigonopterus species tough Song et al. (2020) described it as a non-coding region (IGS) in
someweevils. The non-coding regionCR1 shows all typical features of amain control region
with long homopolymers of As or Ts >10 bp, palindromic sequences forming secondary
structures, repetitivemotifs and a putative origin of replication of the plus strand. However,
the origins of replication of plus and minus strands are not conserved across species, for
neither their primary nucleotide sequence, nor their secondary structure. It is remarkable
that a similar pattern of two non-coding regions was described in some orthocerous
species of weevils (Song et al., 2020 for Apion squamigerum-Brentidae, Ojo et al., 2016) for
Sitophilus - Rhynchophorinae), as well as in some Curculionidae (Ceutorhynchus obstrictus
- Ceutorhynchinae, Lee et al., 2019 and Trigonopterus spp-Cryptorhynchinae herein)
while it is allegedly missing in other closely related species (Rhynchophorus ferrugineus
- Rhynchophorinae, Zhang et al., 2017, Eucryptorhynchus brandti and E. chinensis -
Cryptorhynchinae, Liu et al., 2016). Interestingly, theRhynchophorusmitogenome ofZhang
et al. (2017) shows strange duplications of tRNA-Ile, tRNA-Met and tRNA-Thr, while the
Eucryptorhynchus mitogenomes of Zhang et al., 2017 are missing the tRNA-Ile. A more
recent mitogenome assembly of Rhynchophorus ferrugineus was published within a whole
genome project (Hazzouri et al., 2020). Its published sequence is in reverse-complement
and contains numerous indels. However, based on the original read data it is evident
that it has two non-coding regions and misses the oddities described by Zhang et al.
(2017). Thus, the hypothesis that some of the published weevil mitogenomes are not
correctly assembled appears more plausible than stipulating character reversal or multiple
independent evolution.Mitogenomes covering the full phylogenetic range of weevils should
be examined to ascertain if the peculiar structure of the control region is a consistent and
possibly apomorphic character of this family.

As mentioned above, the nucleotide pattern in PCGs of Trigonopterus suggests that
most differences in A+T frequencies, and AT and GC skews is due to variation at the
codon and strand levels, and not at the gene level. A similar pattern is recognized at the
amino acid level where most divergence is explained by the coding strand. Interestingly,
the best partition scheme estimated in IQTREE using a PartitionFinder approach was very
similar to the pattern of variation found at the A+T frequencies, and AT and GC skews.
Both suggest and agree to split nucleotide divergence of PCGs by codon sites and coding
strands. Many researcher overlooked the A+T frequencies and AT / GC skews features
in most phylogenetic analyses, if any, they estimate the best partition scheme in IQTREE
(Nguyen et al., 2015), PartitionFinder2 (Lanfear et al., 2017) or similar software. If they do
so, they may use different approaches: (1) edge-linked partition models (-q command
in IQTREE), (2) allowing partition-specific rates (-spp option), and (3) edge-unlinked
partition models (-sp). Linked branch lengths share a single set of relative branch lengths
but they can be modified in a second step to allow partition-specific rates (Lanfear et al.,
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2012). Under the same topology and depending on the likelihood of each subset model,
an independent rate multiplier is added to each subset so all branch lengths may increase
or decrease by such factor (Lanfear et al., 2012). By contrast, when branch lengths are
fully unlinked they are estimated independently for each model in each subset (Lanfear
et al., 2012). The results obtained here based on A+T frequencies, and AT and GC skews
suggest that their nucleotide substitution models must be estimated independently (-sp)
since the substitution model parameter values across partitions are different. However,
many studies apply the edge-linked partition model, in which all partition share the same
set of branch length, in mitochondrial PCGs datasets so they generally overestimate the
number of independent partitions (e.g., Wang et al., 2019). The analysis of our data based
on an edge-unlinked partition model or allowing partition-specific rates also produced
schemes with more independent partitions (nine and eight, respectively; see Data S5). Such
larger splitting overestimate the differences in A+T frequencies, and AT and GC skews
particularly, because splits include first and second codon sites that possess lower number
of substitutions (i.e., a lower rate). A recent study based on simulations determined that
phylogenetic models proportionally linking branch lengths across partitions fits better
than unlinked models (Duchêne et al., 2020). However, unlinked branch length models
over subsets is more accurate only for phylogenetic studies comprising long sequences from
moderate to large numbers of terminals (Duchêne et al., 2020) such as most mitogenomic
analyses. On the other hand, fully unlinked branch length models would be strongly
disfavored for phylogenomic studies with large numbers of loci (Duchêne et al., 2020). Our
findings also apply to phylogenetic analyses at the amino acid level and hence we suggest
implementing edge-unlinked partition model in IQTREE and other similar software in
phylomitogenomic analyses.

The published phylogenies comprising a larger number of Trigonopterus species (Tänzler
et al., 2014; Tänzler et al., 2016; Toussaint et al., 2017) clearly indicate its origin in New
Guinea-Australia, a subsequent dispersal to Sulawesi, followed by multiple colonization
of the islands further west. Thus, T. triradiatus and T. selaruensis from the Tanimbar
Archipelago belonging to the T. illitus- respectively the T. nasutus-group can be expected
in a basal phylogenetic position. The remaining ten species are characterized by the derived
morphological character of a stridulatory patch. A clade comprising all species from
Sulawesi and Borneo (T. kotamobagensis to T. carinirostris, Fig. 7) and dated 37.06 MA is
equivalent to ‘‘clade G’’ of Tänzler et al. (2016-Fig. S1). This evolutionary scenario is best
compatible with the Bayesian reconstruction based on AA sequences, possibly by reducing
the low saturation found at the nucleotide level particularly on third codon sites (Fig. 6,
left panel). The ML reconstruction of nucleotide sequences (Fig. 6, right panel), e.g., places
T. tanimbarensis with high support at the base—a very implausible position under the
considerations above. The same effect is visible in the BEAST analysis (Fig. 7) with none
of the basal nodes showing high support. The twelve Trigonopterus species included herein
cover most of the genus’ diversity, i.e., a large clade that presumably evolved rapidly in
‘‘Proto New Guinea’’. This newly formed island arc to the North of Australia would later
be amalgamated with other terranes into present New Guinea. Its supposed emergence
time (Baldwin, Fitzgerald & Webb, 2012; Hall, 2009) coincides with the age of the crown
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group of Trigonopterus found here and by Letsch et al. (2020a) and Letsch et al. (2020b). The
rate estimated from our calibration constraint of 0.0104 × 10−08 nucleotide substitution
per site, year and lineage (95% confidence interval 0.0085–0.0131 × 10−08) is equivalent
to a pairwise divergence of 2.08% per my, and similar to Brower’s rate of 2.3% per my
for mitochondrial genes (Brower, 1994). Our nucleotide substitution rate estimation in
Trigonopterus is also within the confidence interval estimated from mitochondrial PCGs in
Coleoptera (Pons et al., 2010; mean 2.68% per my, 95% confidence interval 1.76–3.78%).

It is remarkable that the mitogenomes studied do not allow the reconstruction of an
identical, robust infrageneric phylogeny of Trigonopterus with all methods applied. Since
phylogenetic signal is not saturated in this highly diverse genus, a rapid radiation about
50 Ma could also explain the lack of resolution on the basal nodes. A denser sampling
with more species included should break some of the long branches and lead to more
uniform results across phylogenetic analyses. In fact, the analyses of many species and
the implementation of complex models taking into account compositional biases, (i.e.,
heterogeneity) such as a site heterogeneous mixture model in Phylobayes (Lartillot, Lepage
& Blanquart, 2009; Lartillot, Brinkmann & Philippe, 2007) and a nonhomogeneous model
in nhPhyML (Boussau & Gouy, 2006), improved the phylogeny of higher taxonomic ranks
within Coleoptera by suppressing or reducing long-branch attraction (Timmermans et
al., 2016; Yuan et al., 2016). Those studies also suggested that partitioning mitochondrial
PCGs by codon sites and strands already improved the phylogenetic signal though hard
polytomies (true polytomies) as consequence of an ancient fast radiation cannot be solved
in spite of adding more data or applying state-of-the-art evolutionary models.

CONCLUSIONS
This study summarizes the gene content of ten complete and two partial mitogenomes of
twelve Trigonopterus weevil species representing a large radiation from the Indo-Australian
Archipelago. A comprehensive analysis of nucleotide and amino acid composition across
genes, codons, strands, and species indicates the most variation in mitogenome sequences
at the codon and strand level. The best partition scheme estimated by IQTREE for
the 13 mitochondrial PCGs matched those previous results suggesting that the split
of sequence variation at the codon and strand level increases phylogenetic signal. The
phylogeny obtained from PCGs sequences propose the origin of Trigonopterus in New
Guinea-Australia, a posterior colonization of Sulawesi, and finally to islands further west.
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