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ABSTRACT
Background. This work presents a forecast model for non-typhoidal salmonellosis
outbreaks.
Method. This forecast model is based on fitted values of multivariate regression time
series that consider diagnosis and estimation of different parameters, through a very
flexible statistical treatment called generalized auto-regressive and moving average
models (GSARIMA).
Results. The forecast model was validated by analyzing the cases of Salmonella enterica
serovar Enteritidis in Sydney Australia (2014–2016), the environmental conditions and
the consumption of high-risk food as predictive variables.
Conclusions. The prediction of cases of Salmonella enterica serovar Enteritidis infec-
tions are included in a forecast model based on fitted values of time series modeled by
GSARIMA, for an early alert of future outbreaks caused by this pathogen, and associated
to high-risk food. In this context, the decision makers in the epidemiology field can led
to preventive actions using the proposed model.

Subjects Epidemiology, Statistics, Computational Science, Data Science, Environmental Impacts
Keywords Forecast, GSARIMA model, Salmonella outbreaks, Surveillance

INTRODUCTION AND BIBLIOGRAPHICAL REVIEW
Non-typhoidal salmonellosis is a foodborne illness considered as a major health issue
with a great impact on the economy and the food industry. This diarrhea-producing
pathology is globally distributed, with 93 million cases worldwide and 155,000 deaths
per year (Majowicz et al., 2010). The main challenges for the control of this pathology are
the environmental ubiquity of the pathogenic agents, their spreading pathways and their
presence in food (Hamlet et al., 2006). Yerushalmy & Palmer (1959) proposed the term
epidemetrics, which emphasized the quantitative nature of epidemiologic studies. In this
scenario, newmodels for the accurate prediction of infectious outbreaks are needed. Brauer,
Castillo-Chavez & Feng (2019) focused on the development of thesemodels and highlighted
the need to update them according to the advances in statistical science. Currently, a new
generation of surveillance strategies have emerged, whose help to detect emerging infections
and identify a high risk of outbreaks of infectious diseases, related to climate change and
other factors. Traditional surveillance methods are based on retrospective strategies,
therefore the development of new epidemiological models that allow the prediction of
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infectious outbreaks is of great interest, in order to take the necessary measures to limit
their expansion and impact on public health (Rees et al., 2019). In these types of methods,
risk factors (explanatory variables, such as open source internet data) are used to predict
the outcome of interest (for example, number of cases reported) (Ginsberg et al., 2009).
For example, Santillana et al. (2014) used these types of regression models to forecast the
number of cases of seasonal influenza in the future. In this context, regression methods
can be expanded using machine learning algorithms, to find complex associations between
the result and the explanatory variables (Santillana et al., 2015).

Many of the current epidemetricmodels, like simulation, were implemented several years
ago and need to be updated (Mori, 1996). In this scenario, the control of non-typhoidal
salmonellosis should include new innovative surveillance and forecast statistical tools for its
prevention, specially focused on the production and consumption of high-risk food (Boyen
et al., 2008; Ashton et al., 2016) and improving the existing predicting tools (Thakur &
Anbanandam, 2017). Non-typhoid salmonellosis outbreaks have been widely associated
to climatic and environmental factors, like extreme rainfall, flooding, increased average
temperatures, augmented frequency of extreme high-temperatures and changes in weather
seasonal patterns (Amuakwa-Mensah, Marbuah & Mubanga, 2017). In this context, these
parameters should be considered for the development of new models.

One of the strategies used to evaluate the link between number of infections and
predictive variables (co-variables) for the monitoring, prediction and measurement of the
impact of interventions is the analysis of time series, nevertheless, the vast majority of the
approximations using Gaussian methods are prone to inaccuracies when the case counts
are low and the bias of the statistical distribution of the real data is not symmetric (Allen,
2017). Therefore, appropriate statistical methods are required for count data, which allows
the identification of infectious outbreaks through high precision forecasting.

Often, the count of reports of infections is a random variable that depends on
time (Konradsen et al., 2000). In order to adequately describe this variable, the modeling
of the possible temporal dependence related to multiple periods is needed. This time
dependence of a variable can be described by an autoregressive moving average (ARMA)
model in a time series.

The advantage of considering an ARMA framework lies in its malleability to model
time-dependent variables, its easy estimation and interpretation, and its prediction
power (Gilbert, 2005). On the other hand, its main disadvantages are related to its
linear formulation between the response indexed in the time and its predictors, like
the assumption that the modeled variable follows a Gaussian probability distribution. To
overcome this last restriction, the original data are transformed, generating a complication
in the interpretation of results (Fischer & Kamps, 2011).

To improve these limitations, McCullagh & Nelder (1983) formulated generalized
linear models (GLM). In these models, the error is not modeled like in the classic
regression models, but it is assumed that the response variable can be modeled by some
type of statistical distribution belonging to the exponential family, where the normal
distribution is a particular case. This approach allows linear and non-linear linking of
the mean of the statistical distribution that best fits the real data of the response variable,
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respect the predictors through a linking function. In this context, Benjamin, Rigby &
Stasinopoulos (2003) proposed a GLM version of ARMA models known as Generalized
ARMA (GLARMA). In thismodel, the systematic component allows us to express a function
of the mean (the link function) by means of an additive arrangement, with parameters or
coefficients that indicate the direction and magnitude of the relationship with explanatory
variables (covariates) and the autoregressive and moving average components. This
type of formulation gains in flexibility and the possibility of using other types of non-
linear associations, under the ARMA framework. The parameters of a GLARMA model
can be estimated using the maximum likelihood (ML) method, assuming a statistical
distribution of the exponential family for the response variable. Often, a normal (or
Gaussian) distribution is considered in the modeling of random variables (Box et al.,
2015), but other distributions might also be assumed (Rojas, 2016; Rojas et al., 2019).
ARMA and GLARMA models are often used to predict future values (Benjamin, Rigby &
Stasinopoulos, 2003; Calfa, 2015). GLARMA models are also used to estimate mean values
and find the conditional probability density function (PDF) to past data, like what occurs
with random variables when temporal dependence and covariates are present. This last
aspect is of particular interest in stochastic predictive models.

If the time series for modeling is non stationary and/or a stochastic seasonal component
is considered, the GLARMA model described by Benjamin, Rigby & Stasinopoulos (2003)
is appropriate. To overcome the aforementioned restrictions, GLARMA evolved into the
generalized multiplicative seasonal autoregressive integrated moving average (GSARIMA)
models, considering the differentiation and seasonality components in its formulation,
see Briët, Amerasinghe & Vounatsou (2013).

The aim of this paper is to propose a forecast model based on fitted values of multivariate
time series and its projection, for prevention of non-typhoidal salmonellosis outbreaks,
considering diagnosis and estimation of parameters obtained fromGSARIMAmodel, given
the high predicted accuracy that this model can achieve, which makes it a useful tool for
epidemiological prevention.

METHODOLOGY
GLM, GLARMA and GSARIMA framework
Let Y be an RV related to the counting reports of infections by a pathogen of interest
such as Salmonella enterica. We consider that statistical distribution of Y it belongs to the
exponential family and that its PDF is

fY (y;ϑ,ϕ)= exp
(
yϑ−b(ϑ)

ϕ
+ c(y,ϕ)

)
, y ∈RY , (1)

where ϑ,ϕ are canonical and scale parameters, respectively, RY is the support of Y and b,c
are specific functions whose characterize a member of the exponential family of statistical
distributions.

This parametrization has the following properties for the description of mean and
variance as the first and second derivatives of the canonical and scale parameters, where
E(Y )= b′(ϑ) and Var(Y )=ϕb

′′

(ϑ), respectively.
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In GLM, a function denominated link function of the mean of Y is equal to a systemic
component, then g (µ)= η. In turn, the mean of Y corresponds to the inverse link function
of η, which is related to know values of r covariates x = (x0,x1,...,xr )>, with x0= 1, where

µ= E(Y )= g−1(η)= g−1(x>β), (2)

with β= (β0,β1,...,βr )> being the regressors associated with x.
Now we will derive the expressions for the case of an RV as Y but ordered in a temporal

sequence t , this RV indexed over time t , with t = 1,...,n is denominatedYt .The conditional
distribution of Yt given the past data set

Ht ={x1,...,xt ,y1,...,yt−1}, (3)

which is also assumed to belong to the exponential family of statistical distributions. In
this context, the past data conditional PDF similar to Eq. (1) is expressed as

fYt |Ht (yt ;ϑt ,ϕ)= exp
(
ytϑt −b(ϑt )

ϕ
+ c(yt ,ϕ)

)
, yt ∈RYt .

Note that here the canonical parameter ϑt and values of covariates xt depend on a
temporal sequence, while the parameter ϕ, remains constant and independent of the time
sequence. In this conditions, we denote the conditional mean and variance of Yt given
Ht by µt = E(Yt |Ht )= b′(ϑt ) and Var(Yt |Ht )= ϕb′′(ϑt ), for t = 1,...,n, respectively.
g (µt ) can be expressed as a GLARMA model of p and q orders. This model is denoted by
GLARMA(p,q), where

ηt = g (µt )= x>t β+
p∑

h=1

φh(g (yt−h)−x>t−hβ)+
q∑

j=1

λj(g (yt−j)−ηt−j). (4)

In this model φh and λj correspond to the hth and jth components of an ARMA(p,q)
model, related to the autoregressive and moving average components, respectively. β are
the regressors, related with known values of r covariates, depending over time, denoted by
xt = (x0,x1t ,...,xrt )>, with x0= 1. The link function ηt = g (µt ) of the GLARMA model
given in Eq. (4) can any as the identity function inverse or logarithmic (log) functions
(allowing to consider non-linear associations). In this model the variance is assumed to be
constant over time. In the case of the identity link function, we have that

µt = x>t β+
p∑

h=1

φj(yt−h−x>t−hβ)+
q∑

j=1

λj(yt−j−µt−j). (5)

The above models can be extended to GSARIMA (p,d,q)× (P,D,Q)s analogues by
including seasonality (S) and differentiation (D) components as follows:

g (µt )=8(L)(1−L)d(1−Ls)D8P(L)(x>t β−g (yt ))+g (yt )−3
Q(L)3(Ls)(g (yt )

−g (µt ))+g (yt )−g (µt ),

where s is the length of the period (s=12 for monthly data with an annual cycle),
8P(Ls)= 1−φP1 L

s
−···−φPp L

sP ,3(Ls)Q= 1−λQ1 L
s
−···−φQq L

sQ .
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Parameter estimation
Considering n realizations of Yt , for t = 1,...,n, y1,...,yn, the likelihood function
corresponds to the product of multiple conditional PDFs of Yt given the past observations
Ht . In this context, considering θ= (β>,ϑt ,ϕ,φ>,λ>)> as the vector of model parameters
to be estimated, the associated log-likelihood function for θ is expressed by

`(θ)=
n∑

t=1

log
(
fYt |Ht (yt ;θ)

)
. (6)

The ML estimate of θ, θ̂, are obtained from the derivation of Eq. (6) respect each parameter
β, ϑt , ϕ, φ and λ. The statistical inference of θ is based on the asymptotic normality of the
ML estimator θ̂.

Model checking and diagnostic
The random quantile (RQ) residual is used to diagnose the adequacy of the GLSARMA
or GSARMA models to the data. RQ residual is mathematically defined as rt and can be
calculated by:

rt =8−1(FYt |Ht (yt ;̂θ)), (7)

where FYt |Ht is the cumulative distribution function (CDF) of Yt conditional to past data,
θ̂ is the ML estimate of θ, and 8−1 is the inverse CDF of a standard normal distribution.
RQ residual follows the standard normal distribution. For more details about this residual,
see Dunn & Smyth (1996).

To properly define a GSARIMA or GLARMA model, each competing model must be
compared based on different combinations of order p,q. The global deviation (GD) is
used as an indicator to compare these models. GD is −2 times the logarithmic probability
ratio of the reduced model (in our case a GLM) and the complete model (in our case the
GLARMA or GSARIMA model). To select the best competing model, the Akaike (AIC)
and Bayesian (BIC) information criteria can be used. The expressions of AIC and BIC
correspond to:

AIC=−2`(̂θ)+2m,

BIC =−2`(̂θ)+mlog(n),

with `(̂θ) being the log-likelihood function evaluated at θ= θ̂ and n,m being the sample
size and number of model parameters, respectively. A smaller AIC or BIC indicates a better
model. For more details on GD, AIC and BIC, see Stasinopoulos & Rigby (2007).

Density forecast
The density forecast (DF) technique aims to assess predictive performance outside the
sample. This technique consists of dividing the original sample of data into a training
set (2/3 of the first data) that is used to estimate the parameters, and then evaluate the
performance outside the sample with the third rest of the data. That is, an out-of-sample
test. These out-of-sample tests should be considered in the model validation process, see
details in Rojas (2016). A probability integral transform (PIT) is the cumulative probability
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evaluated at the actual, realized value of the target variable. It measures the likelihood of
observing a value less than the actual realized value, where the probability is measured by
the DF. The PIT is uniform, independent and identically distributed if the density forecast
is correctly specified.

Forecast with GSARIMA or GLARMA models
Forecasts using GSARIMAorGLARMAmodelsmay be carried out in an analogousmanner
to GARCH models; see Tsay (2009). Thus, based on GSARIMA or GLARMA models, and
supposing that the forecast origin is j = n and its horizon is h, we have the h-step ahead
forecast is obtained from yn+h, with initial prediction or fitted value ŷn at the origin n and
forecast error en(h)= yn+h− ŷn(h), for h≥ 1.

GSARIMA Forecast model for prevention of foodborne outbreaks by
non-typhoidal salmonellosis
We adapted our methodological framework from Maëlle, Dirk & Michael (2014). In this
context, we considered an a-head time series based on fitted values of GSARIMA to alert
infectious outbreaks, whose can be represented for multivariate forecast time series of
counts. Denote the counts as yit ; i= 1;··· ;m;t = n+1;··· ;n+h, where n+h is the length
of the forecast time series, whose begin at time n+1 and m is the number of entities, e.g.,
geographical regions, hospitals or age groups, being monitored. In the context of a forecast
model for future disease outbreaks, it is essential to detect future changes in the process
occurring at an unknown time τ . As noted by Sonesson & Bock (2003), this change can
be a step increase of the counts of future cases or a more gradual change. Based on the
possibility of such change, for each future time t we want to differentiate between the two
states in-control and out-of-control. At any timepoint t0≥ n+1 the available information
-i.e., fitted values counts - is defined as ŷt0 = {ŷt : t ≤ t0}. Detection is based on a statistic
m(·) with a resulting alarm timeTA=min{t0≥ 1 :m(ŷt0)> a}where a is a known threshold.
The functions for outbreaks detection use fitted values to estimate yt0, and compare it to the
threshold a, above which, the current count can be considered as suspicious and, therefore,
doomed as out-of-control. Then, based on Farrington et al. (1996) we designed a forecast
model of outbreaks that uses the function of an algorithm called algo.farrington of
survillance a package, in R software, see Höhle & Riebler (2005). R is a non-commercial
and open source software for statistical analyses and plotting, which can be obtained from
http://www.r-project.org. We modified this function that summarize the Farrington et al.
(1996) algorithm, to take a range of h-step ahead forecast values of the number of counts
of infection reports. This h-step ahead forecast values are obtained from the multivariate
time series GSARIMA forecast model show in ‘Forecast with GSARIMA or GLARMA
models’. For each time ahead, we use a GSARIMA simulated time series to set the number
of counts in the same periods as a comparison. To obtain GSARIMA simulated time series
we take command garmsim of gsarima package in R software, see Briët, Amerasinghe &
Vounatsou (2013). This command requires an autoregressive representation obtained by
arrep function of same package. The estimated parameters from the time series of the
observed data, necessary to define the autoregressive representation, can be estimated by
glarma function of the same name package in R software, see Dunsmuir (2015). Then, this
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is compared to the forecast values number of counts. If the forecast value is above a specific
quantile of the prediction interval given by simulated time series, then an alarm is raised,
see Algorithm 1.

Algorithm 1 Generation of alarm for prevention of outbreaks
1: Fit of the multivariate GSARIMA model from observed data and initial estimation of mean and overdis-

persion.
2: Generate simulated data of length to require ahead.
3: Forecast time point ahead of length to require with multivariate GSARIMA model.
4: Calculation of the weights omega (correction for past outbreaks).
5: Refitting of the model.
6: Revised estimation of overdispersion.
7: Rescaled model.
8: Omission of the trend, if it is not significant.
9: Repetition of the whole procedure.
10: Calculation of the threshold value.
11: Computation of exceedance score to generate a alarm.

RESULTS
Simulation study
The new methodology proposed in this paper is studied using a Montecarlo (MC)
simulation study.

The GSARIMA forecast is simulated by using the autoregressive representation method,
which is implemented in R, using a package named gsarima. This package contains
methods for the generation of random numbers with univariate structure of time series,
which is expandable to a multivariate response. This package has functions that allow
the generation of generalized time series for a set of statistical counting distributions that
belong to the exponential family. We focused on the negative binomial distribution (NBI),
given its common use in this type of modeling, due to its properties of accumulation of
counts.

We generated 5,000 scenarios of simulation, establishing different conditions given by
a set of parameters in each scenario, in order to verify if the amount of alarms generated
varies according to the configuration of the scenarios. For example, scenarios with a
positive or negative trend must have values of d > 0 and / orD> 0, and positive or negative
autoregressive coefficients, respectively. In turn, scenarios with coefficients of positive
moving average reveal upward trends, and vice versa. To generate these 5,000 scenarios,
we used the following indicators with the mentioned distribution, selected following Briët,
Amerasinghe & Vounatsou (2013):

Statistical parameters of NBI statistical distribution
• dispersion parameter: {2,4}
• mean: {7,10}

GSARIMA parameters
• autoregressive parameter: p∼U (−1,1)
• moving average parameter: q∼U (−1,1)
• seasonal autoregressive parameter: P ∼U (−1,1)
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Table 1 Classification for Monte Carlo study.

Type of parameter Condition Denomination Condition Denomination

autoregressive parameter p< 0 negative ar p> 0 positive ar
moving average parameter q< 0 negative ma q> 0 positive ma
seasonal autoregressive parameter P < 0 negative Sar P > 0 positive Sar
seasonal moving average parameter Q< 0 negative Sma Q> 0 positive Sma
integration of time series parameter d ={1,2} with integration d = 0 without integration
integration of seasonal time series parameter D={1,2} with seasonal integration D= 0 without seasonal integration
dispersion parameter 2 Low dispersion 4 High dispersion
mean parameter 7 Low mean 10 High mean

• seasonal moving average parameter: Q∼U (−1,1)
• integration of time series parameter: d ={2,1,0}
• integration of seasonal time series parameter: D={2,1,0}
• covariate: x ∼U (0,1)
• regressor coefficient: β = 0.7
• intercept: β0= 1

Using these parameters, we simulated 5,000 predicted GSARIMA time series of 156
weeks, each with a frequency of 52 weeks/years (total of 3 years). In each scenario, the
generated outbreak alarms were recorded following the Farrington algorithm adapted to
our methodology, see Algorithm 1. To verify the differences in the quantities of alarms,
in the different generated scenarios, we constructed the classification shown in Table 1,
according to the parameters of our Monte Carlo simulation study.

In order to show the different options that we can explore in our simulation study, we
showed only three examples of simulated GSARIMA time series (ts) of length 156 week
(3 years), using the approach mentioned in ‘GSARIMA Forecast model for prevention of
foodborne outbreaks by non-typhoidal salmonellosis’. The parameters of the simulated
GSARIMA ts were: ts1 = { p> 0, q> 0, P < 0, Q< 0, d = 0, D= 2 }, ts2 = { p> 0, q> 0,
P < 0, Q> 0, d = 0,D= 0 }, ts3 = { p< 0, q> 0, P > 0, Q> 0,d = 1,D= 0}. All these
simulated GSARIMA ts were made considering high dispersion and high mean parameters,
and can be examined in Fig. 1. On the abscissa axis, the time is shown in years divided
weekly, where for example 2018.5 means the 26th week of the year 2018 (which marks the
middle of the year 2018). In Fig. 2 the upperbound is shown as a dashed line (this band
shows four-week aggregated data), while the alarms -timepoints where the upperbound
has been exceeded- is shown as triangles. This date was obtained by the application of
Algorithm 1 to generation of alarms for prevention of outbreaks in forecast GSARIMA
ts1,ts2 and ts3.

We used the Kruskal-Wallis (KW) test to compare medians of indicators related to
the grouped scenario denominations according to the denominations shown in Table 1.
Results of comparative of mean/median, value of statistic KW and its p-value by grouped
scenario denominations are showed in Table 2 .
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Figure 1 Simulated GSARIMA: (A) ts1, (B) ts2 and (C) ts3.
Full-size DOI: 10.7717/peerj.10009/fig-1

Case study
In order to validate our model, we performed a case study based on data reports of
Salmonella enterica serovar Enteriditis cases in Sydney, Australia (2014–2016). These
data were weekly collected during three years (2014–2016) by the National Notifiable
Diseases Surveillance System (NNDSS) from the Health Department of the Australian
Government.

Figure 3 shows weekly time series of number of reports of Salmonella enterica serovar
Enteriditis cases, whereas Fig. 4 presents (a) Autocorrelation function (ACF), (b) Partial
Autocorrelation function (PACF) and (c) Negative binomial (NBII) Quantil-Quantil
(QQ)-plots of the variable under study (weekly time series of number of reports of
Salmonella enterica serovar Enteriditis cases), respectively. ACF and PACF show measures
of the correlation between the observations of a time series separated by k lag time units,
in this case, k= 1 week. In our case, we have autocorrelation in several weeks of lag, whose
are shown on the lines that exceed the confidence intervals shown by the scored lines.
QQ plot indicates the comparison between theoretical quantiles (given by the proposed
statistical distribution, NBII) and empirical data of the variables under study, whose all
appear within the confidence intervals shown by the scored lines. Note that these figures
show that the probability distribution of these variables are NBII but not independent and
identically distributed. The adjusted forecast to deal with a zero inflation is covered by the
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Figure 2 Plot of generation of alarms for prevention of outbreaks in forecast GSARIMA: (A) ts1, (B)
ts2 and (C) ts3.

Full-size DOI: 10.7717/peerj.10009/fig-2

Table 2 Results of MC simulation study.

Type of parameter Denomination Mean/Median Denomination Mean/Median KW p-value

autoregressive parameter negative ar 2/1.73 positive ar 2/1.87 1.7158 0.1902
moving average parameter negative ma 2/1.74 positive ma 2/1.85 9.9086 0.0016
seasonal autoregressive parameter negative Sar 2/1.76 positive Sar 2/1.83 1.818 0.1775
seasonal moving average parameter negative Sma 2/1.72 positive Sma 2/1.87 17.834 0.00002
integration of time series parameter with integration 2/1.75 without integration 2/2.12 66.72 3.129e−16
integration of seasonal time
series parameter

with seasonal
integration

2/1.74 without seasonal
integration

2/2.1 62.122 3.229e−15

dispersion parameter Low dispersion 2/2.09 High dispersion 1/1.37 409.68 <¡ 2.2e−16
mean parameter Low mean 2/1.8 High mean 1/1.45 2.4248 0.1194

proposed statistical distribution, of a negative binomial type, which is capable of admitting
data at zero, assigning to this value a probability distribution according to its historical
and temporal frequency. To confirm that the original time series is stationary, we applied
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Figure 3 Time series weekly of number of reports of Salmonella enterica serovar Enteriditis cases.
Full-size DOI: 10.7717/peerj.10009/fig-3

Augmented Dickey-Fuller Test, obtaining a statistics Dickey-Fuller = −4.0722, Lag order
= 3, p-value = 0.0144 for alternative hypothesis of time series with stationarity.
In this study we explored the relationship between the number of reports of Salmonella
enterica serovar Enteriditis cases and different covariates obtained for the same time periods
and city mentioned above. The consumption of undercooked eggs is known to be a risk
factor for non-typhoid salmonellosis (Martelli & Davies, 2012) and infectious outbreaks
caused by Salmonella enterica serovar Enteritidis have been widely reported worldwide
(Pijnacker et al., 2019; Jiang et al., 2020; Muvhali et al., 2017; Rizzo, 2006). Additionally,
environmental factors like temperature and humidity were included in this study. High
temperatures have been previously correlated to an increased incidence of Salmonella
infections (Akil, Ahmad & Reddy, 2014; Kovats et al., 2004), while humidity has been
positively associated to Salmonella infections (Kim et al., 2015).

In this study, the covariates corresponded to the climatic variables of mean maximum
temperature per week (◦C/week), mean 3pm relative humidity (%/week), as well as the
weekly demand for eggs (units/person*week). The climatological data were collected
from the Bureau of Meteorology of the Australian Government, while egg consumption
data were collected from the Euromonitor Agency. Figure 5 shows scatterplots between
number of reports of Salmonella enterica serovar Enteriditis as response variable and the
mentioned covariates. Note that, in general, the relationships between reports of Salmonella
enterica serovar Enteriditis as response variable and the mentioned covariates are linear
and positives. The covariates seemed to have a symmetric distribution.

We assumed a GSARIMA(p,d,q) model, with p= {0,1,2}, d = 0 and q= {0,1} using
a NBI statistical distribution for the number of reports de Salmonella enterica serovar
Enteriditis cases and considered the covariates described with different link functions for
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Figure 4 (A) ACF, (B) PACF and (C) NBII QQ-plot of the number of actual reports of Salmonella en-
terica serovar Enteriditis cases of the dataset in study.

Full-size DOI: 10.7717/peerj.10009/fig-4

the mean response. In order to select the best GSARIMA model, we used AIC, BIC and
GD, whose are reported on Table 3.

From Table 3, note that the smallest AIC, BIC and GD correspond to the
GSARIMA(2.0,0) model with an identity link function, which is equivalent to a GLARMA
model (2.0). In order to model the response variable of number of reports of Salmonella
enterica serovar Enteriditis (Y ), we propose the GLARMA model given by

E(Yj)=µj =β0+β1xj+φ1
(
yj−1−β0−β1xj−1

)
+φ2

(
yj−2−β0−β1xj−2

)
, (8)

where β0 and β1 are the regression coefficients, xj is the value of the covariate vector
X = x1,x2,x3, where x1 = Mean Maximal Temperature (◦ C/week), x2 = Mean 3pm
Relative Humidity (%/week), x3= weekly demand for eggs (units/person*week) and φ1,φ2
are the autoregressive coefficients. We fit the GLARMA model by using the command
garmaFit. The maximum likelihood estimates of the parameters of the model given in Eq.
(8), with approximate estimated standard errors in parenthesis, are: β̂0=−15.28(0.86),
β̂1 = {β̂x1 = 0.25(0.019),β̂x2 = 0.19(0.02),β̂x3 = 0.95(0.58)}, φ̂1 = −0.021(0.045),
φ̂2 =−0.014(0.045) and (V̂ar(Yt |Ht ))1/2 = (̂ϕ(µt ))1/2 = 0.041(0.016). All coefficients
are significant at 10%. The coefficient of determination (R2) of this model is 0.88. This
indicates that the variables considered in the model (yt−1,yt−2,x1,x2,x3) explain 88%
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Figure 5 Scatterplots between number of reports of Salmonella enterica serovar Enteriditis as re-
sponse variable and covariates: (A) weekly demand for eggs (units/person*week), (B) mean 3 pm rela-
tive humidity (%/week), and (C) meanmaximum temperature per week (◦C/week).

Full-size DOI: 10.7717/peerj.10009/fig-5

of the variations of the response variable (y). In this model not all explanatory variables
contribute the same in determining the variation of the response variable. For example,
extracting the variable x3 from the model R2 remains almost unchanged (0.87), while
extracting x3 and x2, R2 decreases to 0.73, leaving only the lags yt−1,yt−2 explaining the
response variable y , R2 decreases to just 0.09. Then, prediction model can be expressed as

µ̂j+1 =−15.28+0.25x1j+1+0.19x2j+1+0.95x3j+1
−0.021(̂yj− (−15.28+0.25x1j +0.19x2j +0.95x3j ))+

0.041(̂yj−1− (−15.28+0.25x1j−1+0.19x2j−1+0.95x3j−1)).

To confirm the correct fit of this proposed GLARMA model, six plots were examined
in Fig. 6: (a) Observed time series related to fixed effect of GLM estimation or GLARMA
estimation;, (b) Disposition of Pearson Residuals in the time; (c) Histogram of Uniform
PIT, (d) Histogram of Randomized Residuals normalized (randomized for a discrete
response distribution); (e) Quantile-Quantile (QQ) Plots for randomized residuals of a
fitted GLARMA object; and (f) Plot of the ACF of the residuals. These results indicated
that is possible to apply a GLARMA model to original data, considering the covariates and
logarithmic link function to the mean of response variable in each time of its realization.
The selection of the best GLARMAmodel order is according Akaike criteria. Addiotonally,
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Table 3 Criterion and GD for different GSARIMAmodels with actual data of the number of reports of Salmonella enterica serovar Enteriditis
cases.

Information GSARIMA(0,0,0) GSARIMA(1,0,0) GSARIMA(0,0,1) GSARIMA(1,0,1) GSARIMA(2,0,0) GSARIMA(2,0,1)

criterion Identity Log Identity Log Identity Log Identity Log Identity Log Identity Log

AIC 691.56 693.61 665.67 657.32 657.12 659.29 653.22 651.06 646.73 869.17 644.65 867.33

BIC 694.34 697.23 676.98 664.12 669.44 668.64 656.84 660.42 657.96 880.40 656.43 878.14

GD 683.76 683.22 657.94 650.42 648.55 648.29 634.93 641.06 634.73 857.17 633.12 856.72

we also checked Box–Pierce test type Ljung to corroborate aleatory disposition to 2 lags
with statistic χ2

= 1.18, degree of freedom (df) = 2, and p-value = 0.582, and normal
distributions of the randomized residuals of the model, with Shapiro–Wilk normality test
obtained statisticW = 0.9874, p-value= 0.9321. The forecast PDF serves to simulate future
scenarios of number of reports of Salmonella enterica serovar Enteriditis cases.

Following Algorithm 1 we can apply our model for prevention of future foodborne non-
typhoidal salmonellosis outbreaks considered the above mentioned forecast covariates
projected for the next year. These weeks results are shown in Fig. 7. Our model makes it
possible to predict 3 alarms in the third quarter of next year, given the expected weather
and egg consumption conditions. Remember that upperbound showed as a dashed line
shows four-week aggregated data. In this case, the model does not forecast outbreaks.

DISCUSSION
In this work, we developed a forecast model for the prevention of foodborne outbreaks
due to non-typhoidal salmonellosis, which is useful for alerting future infectious outbreaks
related to the intake of foods considered of risk.

We validated our alert model for infectious outbreaks related to food consumption and
weather conditions, based on real time series data of reports of Salmonella enterica serovar
Enteriditis infections in Australia, which uses food and weather conditions as predictive
variables. Through a very flexible statistical treatment granted by GSARIMA, which uses
covariates and can adapt to a varied class of statistical counting distributions that can have
different degrees of asymmetry as well as temporal effects of seasonality, it was possible to
predict the adjusted value with high precision.

We analyzed the conceptual antecedents and the theoretical foundations that lead to
the processes of our research modeling, which resulted useful for the implementation and
applications of the science of administration in the field of epidemiology. Through this
model, we intend to contribute with a useful tool for public health decision taking, that can
accurately alert foodborne outbreaks of non-typhoidal salmonellosis. The ability to predict
outbreaks of our model depends on the interaction of recognized hazards and associated
conditions. Therefore, for the evaluation of the appearance of new food safety risk factors,
it is necessary to study whether or not these risks are associated with outbreaks of infectious
diseases, and how much they contribute to them. In this context, an application of our
model could be to identify when the known or new factors can be useful or fail to predict
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Figure 6 Confirmatory plot analysis of the fit of the proposed GLARMAmodel for the response vari-
able in the data set of the illustrative study: (A) Observed time series related to fixed effect of GLM esti-
mation or GLARMA estimation; (B) Pearson Residuals; (C) Histogram of Uniform PIT; (D) Histogram
of Randomized Residuals normalized, (E) QQ Plots for randomized residuals of a fitted GLARMA ; and
(F) Plot of the ACF of the residuals (source: authors).

Full-size DOI: 10.7717/peerj.10009/fig-6

the appearance of diseases. Failure to predict a known factor could be a signal for the
emergence of a new food safety hazard.

The main limitations of our model are related to the homoscedasticity assumption of
the infection report count data. Therefore, this limitation leads to a possible future topic of
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 Forecast 2017 for prevention of outbreaks Salmonella enterica serovar Enteriditis 
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Figure 7 Model for the prevention of foodborne outbreaks produced by Salmonella enterica serovar
Enteriditis to the illustrative response variable in the dataset in study (source: authors).
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reserach. Apparently, this limitation could be overcome by using models of multivariate-
type generalized autoregressive conditional heteroscedasticity (GARCH), whose have
some attractive properties, like a greater weight on the most recent observations, but also
inconveniences like an arbitrary disintegration factor that introduces subjectivity in the
estimation, see Thamanukornsri & Tiensuwan (2018).

CONCLUSION
We propose a forecast model for non-typhoidal salmonellosis outbreaks, a foodborne
illness, which in the case of Salmonella enterica serovar Enteritidis is related to the
consumption of eggs and climatic factors of humidity and ambient temperature.

The proposedmethodology uses themodeling of infection reports bymean of GSARIMA
model, which allows the use of predictive covariates. Additionally, this model can raise an
alarm when a high probability of a foodborne infectious outbreak is detected, which can
be useful in the surveillance and management of health care.
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