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ABSTRACT
The inference of gene regulatory networks gained within recent years a considerable
interest in the biology and biomedical community. The purpose of this paper
is to investigate the influence that environmental conditions can exhibit on the
inference performance of network inference algorithms. Specifically, we study
five network inference methods, Aracne, BC3NET, CLR, C3NET and MRNET,
and compare the results for three different conditions: (I) observational gene
expression data: normal environmental condition, (II) interventional gene
expression data: growth in rich media, (III) interventional gene expression
data: normal environmental condition interrupted by a positive spike-in
stimulation. Overall, we find that different statistical inference methods lead
to comparable, but condition-specific results. Further, our results suggest
that non-steady-state data enhance the inferability of regulatory networks.

Subjects Bioinformatics, Computational Biology, Mathematical Biology, Statistics
Keywords Gene regulatory networks, Statistical network inference, Gene expression data,
Experimental design, Interventional data

INTRODUCTION
More than ten years after the completion of the H G P (Consortium,

2004; Lander et al., 2001; Venter et al., 2001) it is nowadays generally acknowledged

that in order to obtain a functional understanding of organisms and the emergence of

their phenotypes it is not sufficient to study sequence data alone. Instead, within recent

years there are increasing attempts to infer genome-scale molecular interactions from

high-throughput data to tackle this problem. Depending on the applied technology, this

resulted in the construction of protein–protein interaction networks, metabolic networks

or transcription regulatory networks (Blais & Dynlacht, 2005; Förster et al., 2003; Lee et al.,

2002; Ma et al., 2004; Palsson, 2006; Yu et al., 2008). These networks can be considered as

phenomenological networks because each interaction within these networks is based on the

measurement of the corresponding biochemical binding between genes or gene products.

For examples, in a transcriptional regulatory network an edge in the network corresponds

to the binding of a transcription factor to the promotor region of the DNA that is necessary
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to regulate the transcription of a gene. Or in protein–protein interaction networks an edge

corresponds, e.g., to the binding of two proteins to form a protein complex. In contrast

to these phenomenological networks gene regulatory networks constructed from gene

expression data are inferential networks. The difference is due to the nature of the employed

data to construct the network because gene expression data do only provide information

about the concentration of mRNAs, but not direct information about the biochemical

binding of genes or gene products. For this reason, an edge in a gene regulatory network

is not uniquely specified but could correspond either to transcription regulation, as

in transcriptional regulatory networks, or to protein bindings, as in protein–protein

interaction networks (de Matos Simoes, Tripathi & Emmert-Streib, 2012). In the remainder

of this paper we focus on gene expression data and the gene regulatory networks inferred

from these data.

Despite the maturity of available technologies to generate gene expression data,

e.g., by using DNA microarrays, there is still much to learn about the capabilities of

such data (Emmert-Streib & Dehmer, 2010). This is related to a variety of reasons. First,

the major use of gene expression data is to identify differentially expressed genes. For

this reason the majority of methods developed for these data are for this problem (Chen,

Dougherty & Bittner, 1997; Ge, Dudoit & Speed, 2003; Speed, 2003; Steinhoff & Vingron,

2006; Storey & Tibshirani, 2003). Second, going beyond differentially expressed genes

requires different, more sophisticated, statistical methods and the costs to generate data for,

e.g., the identification of differentially expressed pathways increases substantially (Emmert-

Streib & Dehmer, 2008; Reimers, 2010). Third, not only the absolute number of the available

samples may be important to succeed in the application of advanced analysis methods, but

also the condition and configuration used to generate the data. This last point relates to the

experimental design (Hinkelmann & Kempthorne, 2008) of gene expression data used to

generate these data.

In this paper, we study an aspect of the experimental design of gene expression data in

the particular context of inferring gene regulatory networks from such data. Specifically,

we investigate the influence of environmental conditions on the inference performance

of five popular network estimation algorithms, namely, Aracne (Margolin et al., 2006),

BC3NET (de Matos Simoes & Emmert-Streib, 2012), CLR (Faith et al., 2007), C3NET (Altay

& Emmert-Streib, 2011; Altay & Emmert-Streib, 2010) and MRNET (Meyer, Kontos &

Bontempi, 2007; Meyer, Lafitte & Bontempi, 2008). The rational behind our study is the

fact that the information stored in the DNA is not sufficient to explain the phenotypic

characteristics of an organism. Instead, there are genotype-environment interactions that

have an important influence on this (Falconer & Mackay, 1996; Lynch & Walsh, 1998). For

similar reasons studying the expression of genes without considering the environmental

conditions of the cells under investigation is fragmented.

In order to study the influence of environmental conditions on the gene expression,

and ultimately on the inference performance of network inference algorithms, we focus

on two important, biologically relevant conditions. The first environmental condition we

study corresponds to the placement of cells into a rich media. This leads to an increased
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proliferation of the cells due to the surplus of nutrition. The second environmental

condition corresponds to a positive spike-in stimulation of cells as induced, e.g., by the

administration of drugs. Here by spike-in stimulation we mean that the influence of a

drug starts abruptly and lasts only for a short period of time. In addition to these two

environmental conditions, we contrast the inference performance for data generated under

these two conditions with results for data that correspond to a normal condition, where we

do not assume an environment influence. For conducting these investigations we simulate

gene expression data because this allows us controlling the corresponding conditions and

simultaneously guarantees the availability of sufficiently large sample sizes to enable robust

statistical findings that can be utilized to advance the experimental design of future gene

expression studies aiming to infer gene regulatory networks. Specifically, for our study we

generate 6600 different data sets and infer a total of 33,000 different regulatory networks.

Despite the well known fact that the environment has an influence on the expression

of genes this aspect is not well studied in the literature of methods for the inference

of gene regulatory networks. Instead, most studies are based on observational data

only (Emmert-Streib et al., 2012). Notable exceptions in this context are studies that

addressed related but different questions, e.g., investigating the appropriate level of

description to simulate gene expression data, the influence of the number of time points,

the number of categories and the interval length between samples (Chen, 1999; Smith,

Jarvis & Hartemink, 2002; Yu et al., 2004; Husmeier, 2003). However, these studies have

been conducted for time series data. Instead, in this paper we are not using longitudinal

data.

This paper is organized as follows. In the next section, we describe all methods

and evaluation measures we are using for our analysis. Further, we provide a detailed

explanation of the data we are using and their generation. In the results section we

present results for three different types of data: (I) observational gene expression data:

normal environmental condition (II) interventional gene expression data: growth in

rich media (III) interventional gene expression data: normal environmental condition

interrupted by a brief, positive stimulation (spike-in stimulation). We study these data

for five network inference methods (Aracne (Margolin et al., 2006), BC3NET (de Matos

Simoes & Emmert-Streib, 2012), CLR (Faith et al., 2007), C3NET (Altay & Emmert-Streib,

2011; Altay & Emmert-Streib, 2010) and MRNET (Meyer, Kontos & Bontempi, 2007; Meyer,

Lafitte & Bontempi, 2008) and two different topologies of regulatory networks. This paper

finishes with a discussion and conclusions.

METHODS
In this section we describe our model, the method and the data we are using for our

analysis.

Generation of gene expression data
In order to simulate gene expression data we are using  (Di Camillo, Toffolo

& Cobelli, 2009). N is a R package that combines a fuzzy logic with differential

equations to enhance the simulation of transcription regulation processes. Differential
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equations are used to describe the continuous dynamics of gene expression on a

continuous time scale and gene-specific kinetic parameters are used to achieve realistic

simulations that mimic the real dynamical behavior of gene expression. For our study we

are generating gene expression data for three different conditions that correspond to two

different types of data:

(I) observational gene expression data: normal environmental condition

(II) interventional gene expression data: growth in rich media

(III) interventional gene expression data: normal environmental condition interrupted by

a positive spike-in stimulation

That means, we are generating gene expression data that correspond to observational

(I) and interventional data (II and III). However, we are not generating data by gene

knockout or silencing (Eccleston & Eggleston, 2004; Meister & Tuschl, 2004). The reason

for this is that an inclusion of such perturbation experiments would limit the scope of

this paper. Specifically, for human subjects it is for ethical reasons not possible to conduct

in vivo gene-knockout experiments. Hence, if we would include such studies we would

need to exclude a discussion of gene expression data, e.g., from clinical studies. On

the other hand, the chosen interventional strategies for the generation of the data are

equally applicable to model organisms as well as human subjects. This allows a general

extrapolation of our results.

The first type of data we are generating corresponds to cells in normal environmental

conditions meaning that for these simulations we do not use an external stimulation of

the gene expression. The second type of data can be seen as a media rich environment

which has a favorable effect on the proliferation of cells. For this condition each gene

receives an external positive stimulus facilitating its expression. For your simulations

this is accomplished by using a constant stimulation of a fixed positive constant Ec. The

third type of data corresponds to time dependent interventional data because we alter

the environmental condition of the cells over time. This change of the environmental

condition translates into a change of the dynamic of the gene expression in a time

dependent manner. Specifically, we start simulating gene expression under the same

conditions as in (I) but add at a certain time point, ts, a constant but random stimulation

Es
× r for each gene. Here Es is a constant factor and r is a random variable uniformly

sampled from [0,1]. This stimulation lasts a short period of time 1t = 0.2. After this

period, the gene expression is again governed by the same conditions as in (I). Biologically,

this corresponds to a normal condition that is interrupted by a short positive stimulation,

e.g., the administration of a drug.

Interaction structure among the genes: Regulatory networks
We are conducting our analysis for two different topology types of regulatory networks

that govern the interactions between genes. The first type is a Erdös–Réyni network

(Erdös & Rényi, 1959; Solomonoff & Rapoport, 1951) that is generated by an algorithm.

This network represents a synthetic network. The second type is a subnetwork of the

Emmert-Streib (2013), PeerJ, DOI 10.7717/peerj.10 4/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.10


Figure 1 Schematic overview of our simulation design. The above procedure is repeated for each environmental condition and each Gtrue
regulatory network studied.

transcriptional regulatory network of S. cerevisiae (Faith et al., 2008) and, hence, represents

a real biological network. Each of these networks consists of 100 genes.

For each of these two types of regulatory networks we are generating simulated gene

expression data, as described in the previous section. This allows us to study the influence

that the interaction structure among the genes has on the performance of inference

algorithms by keeping the dynamical system of the underlying equations unchanged.

Simulation design of our study
In Fig. 1 we show a schematic overview of our simulation study. For the generation

of gene expression data we are using , which simulates coupled systems of

differential equations. The coupling between the genes is given by a network Gtrue.
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The connections between two genes can be positive (activator) or negative (repressor)

and, hence, lead to the enhancement or repression of a transcription regulation.

We use  to generate time series data that are measured at T different time

points, i.e, {t1,...,tT}. We are not using the time series data themselves to estimate the

underlying network, given by Gtrue, but, instead, we generate an ensemble of T × E× S
different data sets. We organize these data sets according to the observation time points,

i.e., Di = {D1(ti),D2(ti),...,DE(ti)}with i ∈ {1,...,T}. This gives us T different sets of data

sets, Di, each consisting of E different data sets De(ti) with e ∈ {1,...,E} and i ∈ {1,...,T}
with S samples. That means, each data set De(ti) contains measurements that correspond

to one particular time point ti only. See Fig. 1 for an overview.

These sets of data sets, Di, allow us to assess the inference characteristics of statistical

network inference methods on the population level, because when the value of E is

large enough chosen it allow us to draw conclusions with respect to the behavior of the

population. Specifically, we use each of the E data sets De(ti) in Di to infer E networks,

{G1(ti),...,GE(ti)}. By using knowledge about the true underlying network structure

among the genes, given by Gtrue, we obtain E different F-scores that quantify the inference

performance of the used network estimation algorithm, i.e., {F1(ti),...,FE(ti)}. Now

the ensemble of F-scores allows us to estimate the mean inference performance and its

variability. It is important to emphasize that information about the variability of the

inference performance is necessary in order to obtain a robust evaluation. If only one or

a few data sets would be used, the obtained results could be spurious. To avoid this, we

use for our following numerical analysis E = 100, T = 11 and a sample size of S = 300.

This results in a total of T × E = 1100 different data sets for each network Gtrue and each

condition. Application of 5 different inference methods results in the inference of 5500

networks for each network Gtrue and each condition. In total, we infer for the two different

networks we are studying (Erdös–Réyni network and subnetwork of the transcriptional

regulatory network of S. cerevisiae) and the five different inference methods (Aracne,

BC3NET, CLR, C3NET and MRNET) 33,000 different networks.

Performance measure
In order to evaluate the performance of a network inference algorithm we are using the

F-score. The F-score is defined by

F = 2
P ·R

P+R
(1)

and assumes values in [0,1], whereas zero corresponds to the worst and one to the best

performance. Here P corresponds to the precision and R to the recall, i.e.,

P=
TP

TP+FP
, (2)

R=
TP

TP+FN
. (3)
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The precision and recall are functions of the number of true positives (TP), false positives

(FP) and false negatives (FN). We would like to emphasize that these numbers are available

from the comparison of the estimated network, Gest, with the true network, Gtrue. More

precisely, for an estimated network, Gest, the true network, Gtrue, and their corresponding

adjacency matrices, Aest, and, Atrue, we obtain

TP=
∑
i,j

I(Aest(i,j)= 1‖Atrue(i,j)= 1), (4)

FP=
∑
i,j

I(Aest(i,j)= 1‖Atrue(i,j)= 0), (5)

FN =
∑
i,j

I(Aest(i,j)= 0‖Atrue(i,j)= 1). (6)

Here I() corresponds to the indicator function that is 1 if its argument is true and 0

otherwise.

Network inference methods
For our numerical analysis to infer gene regulatory networks, we use 5 different network

inference methods, BC3NET, C3NET, CLR, MRNET and Aracne. In Table 1 we provide

a summary of these methods. A detailed discussion of the functioning of these methods

can be found in Altay & Emmert-Streib (2010), Altay & Emmert-Streib (2011), de Matos

Simoes & Emmert-Streib (2012), Faith et al. (2007), Margolin et al. (2006), Meyer, Lafitte &

Bontempi (2008) or in a recent review paper (Emmert-Streib et al., 2012).

All 5 methods are information theory based utilizing estimates of mutual information

coefficients (Cover & Thomas , 1991). Mutual information coefficients form a non-linear

extension of (linear) correlation coefficients, e.g., the Pearson correlation coefficient.

Mutual information is defined by the marginal probabilities P(X) and P(Y) and the joint

probability P(X,Y) of two random variables X and Y (Cover & Thomas , 1991):

I(X,Y)=
∑
xi∈X

∑
yj∈Y

P(X = xi,Y = yj) · log
P(X = xi,Y = yj)

P(X = xi) ·P(Y = yj)
. (7)

Here log means the logarithm to the base of 2. The mutual information, I(X,Y), between

two random variables has the property to be always ≥0. I(X,Y) is equal to zero if the

two random variables are (statistically) independent from each other, because in this case

P(x,y)= P(y)P(x).
Practically, the marginal and joint probability distributions are not available and, hence,

mutual information values need to be estimated by means of statistical methods from the

data. In de Matos Simoes & Emmert-Streib (2011) it was found that the Miller–Madow

estimator (Paninski, 2003) has overall the most favorable inference capabilities compared

with 3 further esimators.
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Table 1 Summary of the 5 network inference methods we use for our analysis. The first column gives the name of the method, the second provides
a succinct description of the principle idea the method is based on and column three gives references describing the methods in detail.

Inference method Principle idea Reference

BC3NET Bagging C3NET (de Matos Simoes & Emmert-Streib, 2012)

C3NET Maximal mutual information (Altay & Emmert-Streib, 2010; Altay & Emmert-Streib, 2011)

CLR Local estimates of mutual information (Faith et al., 2007)

MRNET Maximal relevance, minimum redundancy (Meyer, Lafitte & Bontempi, 2008)

Aracne Pairwise mutual information and DPI (Margolin et al., 2006)

The Miller–Madow estimator utilizes the fact that the mutual information can also be

written in terms of entropies (Cover & Thomas , 1991),

I(X,Y)= H(X)+H(Y)−H(X,Y). (8)

Here the entropy for a random variable X is defined by:

H(X)=−
∑
xi∈X

P(X = xi) · log(P(X = xi)), (9)

and the joint entropy H(X,Y) is given by

H(X,Y)=−
∑
xi∈X

∑
yj∈Y

P(X = xi,Y = xj,) · log(P(X = xi,Y = xj)). (10)

The simplest estimator to estimate such entropies is the empirical estimator that estimates

the entropy from the observed joint frequencies for each bin (Paninski, 2003). Specifically,

the empirical entropy Hemp can be estimated from the observed frequency distribution

with nk number of samples in bin k, the total number of samples N and the total number of

bins b. For example, for the entropy in Eq. (9) the empirical estimator is given by,

Hemp =−

b∑
k=1

(nk

N

)
log
(nk

N

)
. (11)

The Empirical estimator gives the maximum-likelihood entropy estimate for a discretized

random variable. A main problem of the empirical approach is the underestimation of the

true entropy, H, due to an undersampling of the cell frequencies when the number of bins

increases. A variety of approaches have been developed to account for this bias that range

from correcting the estimate by a constant factor or using a multinomial distribution to

model the extend of missing information.

The Miller–Madow estimator (Paninski, 2003) accounts for the undersampling bias

by adjusting the estimate by a constant factor that is proportional to the bin size and the

sample size:

Hmm = Hemp+
b− 1
2 ·N

. (12)

Here b is the number of bins and N is the number of samples.
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A practical problem when applying the Miller–Madow estimator is that it is com-

putationally demanding, .e.g., compared to the Pearson estimator for mutual informa-

tion (Olsen, Meyer & Bontempi, 2009). The Pearson estimator for mutual information is

estimated from

I(X,Y)=
1
2

log
(
1− ρ(X,Y)2

)
, (13)

where ρ(X,Y) is the Pearson correlation coefficient. For normal distributed random

variables X and Y this expression is exact.

From a numerical comparison of both estimators we find that the application of the

Miller–Madow estimator takes about two orders of magnitude longer than the application

of the Pearson estimator for mutual information. Further, from comparing different

network inference methods we find that the performance for all methods is similarly

effected by the estimators. For reasons of computational ease, we use for our following

simulations the Pearson estimator, because our principle results are independent of the

selected estimator and do not depend on the selection of the best estimator leading to the

highest F-scores.

RESULTS
We begin our analysis by studying data that correspond to normal environmental

conditions (I). Figure 2 shows a summary of our results for BC3NET, C3NET,

CLR, MRNET and Aracne. Specifically, we generate for each observational time step

t
(
= (0.0,0.5,1.0,2.0,2.5,3.0,3.5,5.0,10.0,30.0,50.0)

)
, E = 100 different data sets for

an Erdös–Réyni network (Fig. 2A) and a subnetwork of the transcriptional regulatory

network of S. cerevisiae (Fig. 2B). Each of these networks consists of 100 genes. That means

for each time step t, we generate D = {D1(tj),...,DE(tj)} different data sets and each of

these data sets contains S = 300 samples (as described in section ‘Simulation design of

our study’). The inference performance of each algorithm is estimated by F-scores that are

presented in dependence on t.
From our results in Fig. 2 one can see that the F-scores of all inference methods

depend crucially on the time step at which the data have been measured. For t1 = 0.0
the shown F-scores correspond to F-scores assumed by chance, because the data for

t1 = 0.0 correspond to the random initial values of the underlying dynamical system

used to simulate the gene expression data. As one can see, for all methods these F-scores are

close to zero without being identically zero.

The long term behavior of the F-scores for all five methods, for both regulatory

networks, converge to nearly constant F-scores for values of t larger than t9 = 10.0. This

behavior indicates that the dynamical systems reach steady-state values and simulating for

longer times does not lead to further changes. From our results we see that t = t11 = 50.0
can be safely assumed to lead to steady-state values for all five method.

Interestingly, the highest F-scores are observed for t2 = 0.5 and t3 = 1.0, depending on

the method and the underlying regulatory network. However, in either case t2,t3 � t11,

which means that the most informative time step is far from the steady-state of the
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Figure 2 Inference performance of BC3NET, C3NET, CLR, MRNET and Aracne for a Erdös–Réyni network (A) and a subnetwork of the
transcriptional regulatory network of S. cerevisiae (B) each consisting of 100 genes. (continued on next page...)
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Figure 2 (...continued)

The figures show results for T = 11 observational time steps, each with E = 100 different data sets and S = 300 samples. The summary figure
provides information about the relative value of each F-score relative to its asymptotic value F(t∞).

dynamical system. In order to quantify the gain in the inference performance for

each observational time step, we relate all median F-scores to the steady-state values,

i.e., F(tj)/F(t11). Due to the fact that the F-scores do no longer change beyond t11,

the value of F(t11) is equivalent to the asymptotic value of the dynamical system,

i.e., F(t∞) = limt→∞F(t). A summary of these results is shown in Fig. 2. An interesting

observation from these results is that all methods benefit from non-steady-state data

by increasing their (median) F-scores by a factor of up to 1.4. However, it should be

emphasized that the strength of this effect is dependent on the topology of the regulatory

network, as one can see for MRNET and CLR.

The next experimental condition we are investigating corresponds to the growth of

cells in a rich media (II), as modeled by a constant and positive external stimulation, Ec,

for each gene. The results from this analysis are shown in Fig. 3. Compared to the results

from the normal condition, shown in Fig. 2, there are two important differences. First,

the optimal observational time step is for all methods shifted to larger values (t ≈ 2.5).

We repeated this analysis for different values of Ec and found that the larger this constant

stimulation is the further one can delay the time to reach optimal F-scores. However, for

too large values of Ec the transcription regulation is essentially driven by the external

stimulation which does not lead to meaningful results.

Second, the observed results are much more sensitive with respect to the underlying

topology of the regulatory network. Whereas for the Erdös–Réyni network (Fig. 3A)

the overall results are similar to Fig. 2(A and B), the results for the subnetwork of the

transcriptional regulatory network of S. cerevisiae (Fig. 3B) are qualitatively different,

because now there is no gain in measuring data at time steps before the system reached its

steady-state. This is consistent for all five inference methods.

Finally, we study data by simulating normal conditions interrupted by a brief period

of a positive external stimulation (spike-in) (III). These results are shown in Fig. 4.

The first observation is that the obtained results are again strongly dependent on the

underlying network, as in Fig. 3. Additionally, we observe a method-dependent effect,

because MRNET and Aracne have a considerably larger variation in the estimated F-scores

for observational time steps between t4 = 2.0 and t7 = 3.5 than the other three methods.

This indicates that these two methods are potentially stronger effected by the spike-in

stimulation than the other methods because the simulation starts at 1.0 and lasts till 1.2.

However, for all five inference methods we observe that the spike-in stimulation leads to an

oscillation in the F-scores without increasing the optimal values.

For the subnetwork of the transcriptional regulatory network of S. cerevisiae (Fig. 4B)

we find a surprising result because these results are qualitatively similar to the results for

the normal condition (shown in Fig. 2B). This means that the underlying topology of the

regulatory network is capable of compensating the dynamical modifications, as induced by
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Figure 3 Inference performance of BC3NET, C3NET, CLR, MRNET and Aracne for a Erdös–Réyni network (A) and a subnetwork of the
transcriptional regulatory network of S. cerevisiae (B) each consisting of 100 genes. For these data a constant external stimulation (II) has been
applied.
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Figure 4 Inference performance of BC3NET, C3NET, CLR, MRNET and Aracne for a Erdös–Réyni network (A) and a subnetwork of the
transcriptional regulatory network of S. cerevisiae (B) each consisting of 100 genes. For these data a positive spike-in stimulation (III) has been
applied.
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the spike-in stimulation. Further, this behavior is method-independent because for all five

inference methods, we observe qualitatively similar results.

DISCUSSION
In this paper we investigated the influence that environmental conditions can have on

the inference performance of network inference algorithms. Specifically, we studied and

compared the results for three different conditions: (I) observational gene expression

data: normal environmental condition, (II) interventional gene expression data: growth

in rich media, (III) interventional gene expression data: normal environmental condition

interrupted by a positive spike-in stimulation. We found that different statistical inference

methods lead to comparable but condition-specific results. That means, qualitatively,

the five network inference methods (Aracne (Margolin et al., 2006), BC3NET (de Matos

Simoes & Emmert-Streib, 2012), CLR (Faith et al., 2007), C3NET (Altay & Emmert-Streib,

2011; Altay & Emmert-Streib, 2010) and MRNET (Meyer, Kontos & Bontempi, 2007;

Meyer, Lafitte & Bontempi, 2008)) we used for our study showed a similar behavior in

their inference performance, for each condition. The only exception we found is for (III)

interventional gene expression data (normal environmental condition interrupted by

a positive spike-in stimulation) and Erdös–Réyni networks, because for this condition

MRNET and Aracne assume a significantly larger variation in the estimated F-scores

than the other three inference methods (see Fig. 4). However, even for this condition the

observed median F-scores are for all five methods comparable.

Overall, we can draw the following conclusions from our numerical results. (1) The

problem to infer gene regulatory networks from expression data is very challenging and

depends on (A) the time point when data are measured, (B) the kind of the external

stimulation and (C) the interconnectedness of the genes respectively their molecular

interactions. Regarding the experimental design of future experiments our results suggest

that it is not necessary to ensure that the gene expression data reached a stead-state

value, and it could actually be detrimental for the inference of networks. Instead, usually,

expression data far from the steady-state of the dynamical system contain more exploitable

information that translates into increased F-scores. This finding is consistent among

all five network inference methods. This makes actually the design of an experiment

easier because it is practically not straight forward to control if the expression of genes

reached their steady-state values. Further, for samples from human patients such a control

is usually not possible for medical and ethical reasons. Hence, our findings relieve the

experimenter from the need to ensure steady-state conditions in microarray experiments.

A potential explanation for this effect could be that the noise-level in the system is

for the optimal time points large enough to change occasionally the expression of a

gene but not too strong to shatter the concerted interaction among groups of genes.

This may be comparable to the functioning of the optimization method simulated

annealing (Kirkpatrick, Gellatt & Vecchi, 1983). For this method a certain among of noise

(corresponding to a temperature) is necessary to overcome local minima but if the noise is

too large the whole search process becomes distorted.
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(2) Another important finding is that the presence of an external stimulation (as studied

in this paper) did not lead to an increase in the observed F-scores. Also this finding

is consistent among all five network inference methods. That means that despite the

presence of a global perturbation on the expression of the genes this effect did not translate

beneficially into an increase in the observed F-scores. This suggests that local perturbations

or interventions need to be applied to a cellular systems in order to obtain data containing

more information. For example, the knockout of genes or silencing techniques may be

beneficial in this respect (Eccleston & Eggleston, 2004; Meister & Tuschl, 2004). However, the

disadvantage of such interventions would be that they are for ethical reasons not applicable

to human patients.

(3) Our results for (III) interventional gene expression data (normal environmental

condition interrupted by a positive spike-in stimulation) and the subnetwork of the

transcriptional regulatory network of S. cerevisiae (see Fig. 4B) hint to an intriguing

design principle of gene regulatory networks. The fact that the effect of an external

stimulation can be compensated by the interaction structure among genes (compare

Fig. 4A with 4B) allows to raise the hypothesis that evolution might favor network

structures that are less severely influenced by changes in environmental conditions. The

reason for this may be an increased robustness of these systems because for different

external signals the system exhibits essentially the same dynamical behavior. Previous

studies investigating the robustness of gene networks focused on the elimination of

interactions, (see, e.g., Jeong et al., 2000; Stelling et al., 2004; Kitano, 2007; Emmert-Streib &

Dehmer, 2009; Wagner, 2005; Wagner, 2007), and not on changes of external signals, as in

this study. For this reason the observed effect in our study presents a new and potentially

important factor that deserves more attention in future studies.
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Erdös P, Rényi A. 1959. On random graphs. I. Publicationes Mathematicae 6:290–297.

Faith JJ, Driscoll ME, Fusaro VA, Cosgrove EJ, Hayete B, Juhn FS, Schneider SJ, Gardner TS.
2008. Many microbe microarrays database: Uniformly normalized affymetrix compendia

Emmert-Streib (2013), PeerJ, DOI 10.7717/peerj.10 16/20

https://peerj.com
http://dx.doi.org/10.1186/1752-0509-4-132
http://dx.doi.org/10.1186/1745-6150-6-31
http://dx.doi.org/10.1101/gad.1325605
http://dx.doi.org/10.1016/S0959-440X(99)80007-4
http://dx.doi.org/10.1117/12.281504
http://dx.doi.org/10.1038/nature03001
http://dx.doi.org/10.1371/journal.pone.0029279
http://dx.doi.org/10.1371/journal.pone.0033624
http://dx.doi.org/10.1186/1752-0509-6-38
http://dx.doi.org/10.1111/j.1749-6632.2008.03756.x
http://dx.doi.org/10.1038/431337a
http://dx.doi.org/10.1186/1752-0509-3-35
http://dx.doi.org/10.3389/fgene.2012.00008
http://dx.doi.org/10.7717/peerj.10


with structured experimental metadata. Nucleic Acids Research 36(Suppl 1):D866–D870
DOI ./nar/gkm.

Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J et al. 2007. Large-scale mapping and
validation of escherichia coli transcriptional regulation from a compendium of expression
profiles. PLoS Biology 5(1): e8 DOI ./journal.pbio..

Falconer DS, Mackay TFC. 1996. Harlow, Essex, UK: Longmans Green.

Förster J, Famili I, Fu P, Palsson B, Nielsen J. 2003. Genome-scale reconstruction of
the saccharomyces cerevisiae metabolic network. Genome Research 13(2):244–253
DOI ./gr..

Ge Y, Dudoit S, Speed T. 2003. Resampling-based multiple testing for microarray data analysis.
TEST 12(1):1–77 DOI ./BF.

Hinkelmann K, Kempthorne O. 2008. Design and analysis of experiments: introduction to
experimental design. Chichester: Wiley-Interscience.

Husmeier D. 2003. Sensitivity and specificity of inferring genetic regulatory interactions from
microarray experiments with dynamic bayesian networks. Bioinformatics 19(17):2271–2282
DOI ./bioinformatics/btg.

Jeong H, Tombor B, Albert R, Olivai Z, Barabasi A. 2000. The large-scale organization of
metabolic networks. Nature 407:651–654 DOI ./.

Kirkpatrick S, Gellatt C, Vecchi M. 1983. Optimization by simulated annealing. Science
220:671–680 DOI ./science....

Kitano H. 2007. Towards a theory of biological robustness. Molecular Systems Biology.

Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K,
Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L,
Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C,
Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C,
Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J,
Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R,
Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T,
Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S,
Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK,
Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH,
Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB,
Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P,
Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uber-
bacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC,
Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM,
Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H,
Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T,
Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K,
Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H,
Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA,
Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV,
Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M,
Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR,
de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L,
Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L,

Emmert-Streib (2013), PeerJ, DOI 10.7717/peerj.10 17/20

https://peerj.com
http://dx.doi.org/10.1093/nar/gkm815
http://dx.doi.org/10.1371/journal.pbio.0050008
http://dx.doi.org/10.1101/gr.234503
http://dx.doi.org/10.1007/BF02595811
http://dx.doi.org/10.1093/bioinformatics/btg313
http://dx.doi.org/10.1038/35036627
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.7717/peerj.10


Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS,
Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K,
Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV,
Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N,
Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J,
Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI,
Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA,
Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ.
2001. Initial sequencing and analysis of the human genome. Nature 409(6822):860–921
DOI ./.

Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT,
Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B,
Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA. 2002. Transcriptional
regulatory networks in saccharomyces cerevisiae. Science 298(5594):799–804
DOI ./science..

Lynch M, Walsh B. 1998. Sunderland: Sinauer.

Ma HW, Kumar B, Ditges U, Gunzer F, Buer J, Zeng AP. 2004. An extended transcriptional
regulatory network of Escherichia coli and analysis of its hierarchical structure and network
motifs. Nucleic Acids Research 32:6643–6649 DOI ./nar/gkh.

Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A.
2006. ARACNE: An algorithm for the reconstruction of gene regulatory networks in a
mammalian cellular context. BMC Bioinformatics 7:S7 DOI ./---S-S.

Meister G, Tuschl T. 2004. Mechanisms of gene silencing by double-stranded rna. Nature
431(7006):343–349 DOI ./nature.

Meyer P, Kontos K, Bontempi G. 2007. Information-theoretic inference of large transcriptional
regulatory networks. EURASIP Journal on Bioinformatics and Systems Biology 2007:79879
DOI .//.

Meyer P, Lafitte F, Bontempi G. 2008. Minet: A R/bioconductor package for inferring large
transcriptional networks using mutual information. BMC Bioinformatics 9(1): 461
DOI ./---.

Olsen C, Meyer P, Bontempi G. 2009. On the impact of entropy estimator in transcriptional
regulatory network inference. EURASIP Journal on Bioinformatics and Systems Biology
2009:308959 DOI .//.

Palsson B. 2006. Systems biology. Cambridge, New York: Cambridge University Press.

Paninski L. 2003. Estimation of entropy and mutual information. Neural Computation
15:1191–1253 DOI ./.

R Development Core Team. 2008. R: A language and environment for statistical computing. Austria:
R Foundation for Statistical Computing Vienna ISBN 3-900051-07-0.

Reimers M. 2010. Making informed choices about microarray data analysis. PLoS Computational
Biology 6(5): e1000786 DOI ./journal.pcbi..

Smith VA, Jarvis ED, Hartemink AJ. 2002. Evaluating functional network inference using
simulations of complex biological systems. Bioinformatics 18(Suppl 1):S216–S224
DOI ./bioinformatics/.suppl .S.

Solomonoff R, Rapoport A. 1951. Connectivity of random nets. Bulletin of Mathematical
Biophysics 13:107–117 DOI ./BF.

Speed T. 2003. Chapman and Hall/CRC.

Emmert-Streib (2013), PeerJ, DOI 10.7717/peerj.10 18/20

https://peerj.com
http://dx.doi.org/10.1038/35057062
http://dx.doi.org/10.1126/science.1075090
http://dx.doi.org/10.1093/nar/gkh1009
http://dx.doi.org/10.1186/1471-2105-7-S1-S7
http://dx.doi.org/10.1038/nature02873
http://dx.doi.org/10.1155/2007/79879
http://dx.doi.org/10.1186/1471-2105-9-461
http://dx.doi.org/10.1155/2009/308959
http://dx.doi.org/10.1162/089976603321780272
http://dx.doi.org/10.1371/journal.pcbi.1000786
http://dx.doi.org/10.1093/bioinformatics/18.suppl_1.S216
http://dx.doi.org/10.1007/BF02478357
http://dx.doi.org/10.7717/peerj.10


Steinhoff C, Vingron M. 2006. Normalization and quantification of differential expression in gene
expression microarrays. Briefings in Bioinformatics 7(2):166–177 DOI ./bib/bbl.

Stelling M, Sauer U, Szallasi Z, Doyle F III, Doyle J. 2004. Robustness of cellular functions. Cell
118:675–685 DOI ./j.cell....

Storey J, Tibshirani R. 2003. Statistical significance for genomewide studies. Proceedings
of the National Academy of Sciences of the United States of America 100(16):9440–9445
DOI ./pnas..

Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M,
Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR,
Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD,
Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA,
Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R,
Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S,
Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K,
Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K,
Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W,
Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z,
Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK,
Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z,
Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W,
Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S,
Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H,
Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L,
Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N,
Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J,
Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D,
McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C,
Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B,
Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S,
Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K,
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