Advisory Board and Editors Statistics

PeerJ Factsheet
A one-page facts and stats PDF, to help when considering journal options with your co-authors.

Kees Albers

I studied theoretical physics at Radboud University, Nijmegen. I obtained my PhD degree in 2008 under the supervision of Prof. Bert Kappen in the SNN/Machine Learning group on the subject of approximate inference algorithms and Bayesian graphical models for genetic linkage analysis (Radboud University). I then moved to the UK for a postdoc with Prof. Willem Ouwehand at the University of Cambridge and Prof. Richard Durbin at the Wellcome Trust Sanger Institute. I developed algorithms for detecting genetic variation from large scale sequencing data as a member of the 1000 Genomes Project Consortium. I also analysed exome sequencing data for rare genetic disorders and identified the underlying gene for TAR syndrome and Gray Platelet Syndrome. In 2012 I moved back to the Netherlands to start my own group. We apply functional genomics methods such as ATAC-Seq and develop statistical methods to map gene regulatory networks in iPSC-derived neurons and predict the role of genetic variants for neurodevelopmental disorders.

Adam Auton

Assistant Professor of Computation Genetics at Albert Einstein College of Medicine, NY.

Peter Beerli

Professor in Scientific Computing; Training as an evolutionary biologist working with water frogs in the Mediterranean Sea; Distributor of the Bayesian population genetics inference program MIGRATE.
Interested in computational biology, in particular in computational population genetics and phylogenetics

Joanne Berghout

Dr. Berghout received her PhD in Biochemistry from McGill University in Montreal, QC where she researched the genetics of complex traits and susceptibility to infectious disease in humans and mouse models. Following that, she spent three years as the Outreach Coordinator for the Mouse Genome Informatics (MGI) database in Bar Harbor, ME. There, she trained researchers in genetics, genomics, data structures and data mining to answer biological questions, and worked closely with other members of the MGI group to develop and optimize the MGI resource. Now her research interests include genetics of all kinds, personalized medicine, big data, and scientific communication. She is currently pursuing projects in precision medicine for analysis of transcriptome data from patients with rare lung diseases (Sarcoidosis, Coccidiomycosis), and integrative network analysis of complex traits including Alzheimer's Disease. She is currently appointed at the University of Arizona's Center for Biomedical Informatics and Biostatistics (CB2) and The Center for Genetics and Genomic Medicine (TCG2M) in Tucson, AZ.

Karl W Broman

Karl Broman is Professor in the Department of Biostatistics & Medical Informatics at the University of Wisconsin–Madison; research in statistical genetics; developer of R/qtl (for R).

Karl received a BS in mathematics in 1991, from the University of Wisconsin–Milwaukee, and a PhD in statistics in 1997, from the University of California, Berkeley; his PhD advisor was Terry Speed. He was a postdoctoral fellow with James Weber at the Marshfield Clinic Research Foundation, 1997-1999. He was a faculty member in the Department of Biostatistics at Johns Hopkins University, 1999-2007. In 2007, he moved to the University of Wisconsin–Madison, where he is now Professor.

Karl is a Senior Editor for Genetics, Academic Editor for PeerJ, and a member of the BMC Biology Editorial Board.

Karl is an applied statistician focusing on problems in genetics and genomics – particularly the analysis of meiotic recombination and the genetic dissection of complex traits in experimental organisms. The latter is often called “QTL mapping.” A QTL is a quantitative trait locus – a genetic locus that influences a quantitative trait. Recently he has been focusing on the development of interactive data visualizations for high-dimensional genetic data.

Chris Brown

Chris Brown is a clinical trial bio-statistician at the NHMRC Clinical Trails Centre at the University of Sydney. His main area of expertise is in oncology trials but also has experience in cardiology and neonatal research. His main areas of research are in pharmacoepidemiology and statistical methods.

Steven Buyske

Associate Research Professor of Statistics & Biostatistics at Rutgers University, with adjunct appointments in the Deptartment of Genetics and the Center of Alcohol Studies. Particular interest in how statistics is applied, especially in Biology, Medicine, and particularly Human Genetics.

Andrew W Byrne

Veterinary epidemiologist at the Agri-Food and Biosciences Institute, Belfast, UK, and an Honorary Lecturer at the School of Biological Sciences, Queen's University Belfast, UK. My research interests are primarily focused on infectious disease in wildlife and domestic hosts, wildlife ecology and management, and the concept of "one health".

Nichole Carlson

Associate Professor Biostatistics and Informatics Colorado School of Public Health; Associate Chair for Research Biostatistics and Informatics; Director Colorado Biostatistics Consortium; Director Clinical and Translational Science Institute Biostatistics, Epidemiology and Research Design Program; Theme Chair, Biostatistics Special Interest Group, Association for Clinical and Translational Science

Reed A Cartwright

Head of Human and Comparative Genomics Laboratory in the Biodesign Institute at Arizona State University. Affiliated faculty with the Center for Evolution and Medicine, ASU.

My research is at the interface of genetics, statistics, and software development. I am primarily interested in developing statistical models to estimate evolutionary process from large, genomic datasets. Currently most of my research is connected to mutations.

Tianfeng Chai

Tianfeng Chai is an Associate Research Scientist at CICS-MD and the Department of Atmospheric & Oceanic Science, University of Maryland, College Park, Maryland, USA. He got his master and bachelor degrees from Tsinghua University in Beijing, majoring in Fluid Mechanics, Engineering Mechanics, and Environmental Engineering. He earned his Ph.D. at the University of Iowa, with his dissertation of "Four-Dimensional Variational Data Assimilation Using Lidar Data" focusing on atmospheric boundary flow. He then worked with Dr. Greg Carmichael to develop chemical transport model adjoints and computational framework for data assimilation applications before moving to working on the NOAA National Air Quality Forecast Capability (NAQFC) project in 2007. He currently works on the inverse modeling problems using HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) to support several projects at NOAA Air Resources Laboratory.

Steve Chen

Bayesian inference, longitudinal data analysis, dynamic models, joint models